Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Combined chemokine and cytokine gene transfer enhances antitumor immunity

Abstract

The probability of producing a specific antitumor response should be increased by multiplying the number of T lymphocytes that encounter the malignant cells. We tested this prediction in a murine model, using a recently discovered T–cell chemokine, lymphotactin (Lptn). This chemokine increased tumor cell infiltration with CD4+ lymphocytes but generated little antitumor activity. Coexpression of the T–cell growth factor interleukin–2, however, greatly expanded the T lymphocytes attracted by Lptn, affording protection from the growth of established tumor in a CD4+ and CD8+ T cell–dependent manner. Lesser synergy was seen with GM–CSF. Hence coexpression of a T–cell chemokine and T–cell growth factor potentiates antitumor responses in vivo, suggesting a general strategy to improve cancer immunotherapy.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Nabel, G.J. et al. Direct gene transfer with DNA-liposome complexes in melanoma: Expression, biologic activity, and lack of toxicity in humans. Proc. Natl Acad. Sri. USA 90, 11307–11311 (1993).

    Article  CAS  Google Scholar 

  2. Foreman, N.K. et al. Mechanisms of selective killing of neuroblastoma cells by natural killer cells and lymphokine activated killer cells: Potential for residual disease eradication. Br. J. Cancer 67, 933–938 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Gansbacher, B. et al. Interleukin-2 gene transfer into tumor cells abrogates tumorigenicity and induces protective immunity. J. Exp. Med. 172, 1217–1224 (1990).

    Article  CAS  PubMed  Google Scholar 

  4. Golumbek, P.T. et al. Treatment of established renal cancer by tumor cells engineered to secrete interleukin-4. Science 254, 713–716 (1991).

    Article  CAS  PubMed  Google Scholar 

  5. Dranoff, G. et al. Vaccination with irradiated tumor cells engineered to secrete murine granulocyte-macrophage colony-stimulating factor stimulates potent, specific, and long-lasting anti-tumor immunity. Proc. Natl. Acad. Sci. USA 90, 3539 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Guinan, E.C. et al. Pivotal role of the B7:CD28 pathway in transplantation tolerance and tumor immunity. Blood 84, 3261–3282 (1994).

    CAS  PubMed  Google Scholar 

  7. Tahara, H. et al. Fibroblasts genetically engineered to secrete interleukin 12 can suppress tumor growth and induce antitumor immunity to a murine melanoma in vivo. Cancer Res. 54, 182–189 (1994).

    CAS  PubMed  Google Scholar 

  8. Fearon, E.R. et al. Interleukin-2 production by tumor cells bypasses T helper function in the generation of an antitumor response. Cell 60, 397–403 (1990).

    Article  CAS  PubMed  Google Scholar 

  9. Asher, A.L. et al. Murine tumor cells transduced with the gene for tumor necrosis factor-alpha: Evidence for paracrine immune effects of tumor necrosis factor against tumors. J. Immunol. 146, 3227–3234 (1991).

    CAS  PubMed  Google Scholar 

  10. Baskar, S. et al. Major histocompatibility complex class II+B71+ tumor cells are potent vaccines for stimulating tumor rejection in tumor-bearing mice. J. Exp. Med. 181, 619–629 (1995).

    Article  CAS  PubMed  Google Scholar 

  11. Matulonis, U.A. et al. Role of B7-1 in mediating an immune response to myeloid leukemia cells. Blood 85, 2507–2515 (1995).

    CAS  PubMed  Google Scholar 

  12. Chen, L. et al. Costimulation of antitumor immunity by the B7 counterreceptor for the T lymphocyte molecules CD28 and CTLA-4. Cell 71, 1093–1102 (1992).

    Article  CAS  PubMed  Google Scholar 

  13. Schwartz, R.H. Costimulation of T lymphocytes: The role of CD28, CTLA-4, and B7/BB1 in interleukin-2 production and immunotherapy. Cell 71, 1065–1068 (1992).

    Article  CAS  PubMed  Google Scholar 

  14. Kelner, G.S. et al. Lymphotactin: A cytokine that represents a new class of chemokine. Science 266, 1395 (1994).

    Article  CAS  PubMed  Google Scholar 

  15. Kennedy, J. et al. Molecular cloning and functional characterization of human lymphotactin. J. Immunol. 155, 203–209 (1995).

    CAS  PubMed  Google Scholar 

  16. Schmidt, W. et al. Cancer vaccines: The interleukin 2 dosage effect. Proc. Natl. Acad. Sci. USA 92, 4711–4714 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Russell, S.J. et al. Decreased tumorigenicity of a transplantable rat sarcoma following transfer and expression of IL-2 cDNA. Int.J. Cancer 47, 244–251 (1991).

    Article  CAS  PubMed  Google Scholar 

  18. Fakhrai, H. et al. Cytokine gene therapy with interleukin-2 transduced fibroblasts: Effects of IL-2 dose on anti-tumor immunity. Hum. Gene Ther. 6, 591–601 (1995).

    Article  CAS  PubMed  Google Scholar 

  19. Maass, G. et al. Priming of tumor-specific T cells in the draining lymph nodes after immunization with interleukin 2-secreting tumor cells: Three consecutive stages may be required for successful tumor vaccination. Proc. Nati. Acad. Sci. USA 92, 5540–5544 (1995).

    Article  CAS  Google Scholar 

  20. Kim, K.J. et al. Establishment and characterization of BALB/c lymphoma lines with B cell properties. J. Immunol. 122, 549–554 (1979).

    CAS  PubMed  Google Scholar 

  21. Glimcher, L.H., Kim, K., Green, I. & Paul, W.E. la antigen-bearing B cell tumor lines can present protein antigen and alloantigen in a major histocompatibility complex-restricted fashion to antigen-reactive T cells. J. Exp. Med. 155, 445–459 (1982).

    Article  CAS  PubMed  Google Scholar 

  22. Armstrong, C.A. et al. Antitumor effects of granulocyte-macrophage colony-stimulating factor production by melanoma cells. Cancer Res. 56, 2191–2198 (1996).

    CAS  PubMed  Google Scholar 

  23. Oppenheim, J.J., Zachariae, C.O., Mukaida, N. & Matsushima, K. Properties of the novel proinflammatory supergene “intercrine” cytokine family. Annu. Rev. Immunol. 9, 617 (1991).

    Article  CAS  PubMed  Google Scholar 

  24. Schell, T. The chemokines. in The Cytokine Handbook. (Thomson, A., ed.) 419–460 (Academic Press, New York, 1994).

    Google Scholar 

  25. Karp, S.E. et al. Cytokine secretion by genetically modified nonimmunogenic murine fibrosarcoma. J. Immunol. 150, 896–908 (1993).

    CAS  PubMed  Google Scholar 

  26. Maraninchi, D. et al. High-dose recombinant interleukin-2 and acute myeloid leukemias in relapse. Blood 78, 2182–2187 (1991).

    CAS  PubMed  Google Scholar 

  27. Meloni, G. et al. Interleukin-2 may induce prolonged remissions in advanced acute myelogenous leukemia. Blood 84, 2158–2163 (1994).

    CAS  PubMed  Google Scholar 

  28. Wakimoto, H. et al. Intensified antitumor immunity by a cancer vaccine that produces granulocyte-macrophage colony-stimulating factor plus interleukin-4. Cancer Res. 56, 1828–1833 (1996).

    CAS  PubMed  Google Scholar 

  29. Patek, P.Q., Collins, J.L. & Cohn, M. Transformed cell lines susceptible or resistant to in vivo surveillance against tumorigenesis. Nature 276, 510–511 (1978).

    Article  CAS  PubMed  Google Scholar 

  30. Spencer, H.T. et al. A gene transfer strategy for making bone marrow cells resistant to trimetrexate. Blood (in the press).

  31. Pear, W.S., Nolan, G.P., Scott, M.L. & Baltimore, D. Production of high-titer helper-free retroviruses by transient transfection. Proc. Natl. Acad. Sci. USA 90, 8392–8396 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hogge, D.E., Cashman, J.D., Humphries, R.K. & Eaves, C.J. Differential and syn-ergistic effects of human granulocyte-macrophage colony-stimulating factor and human granulocyte colony-stimulating factor on hematopoiesis in human long-term marrow cultures. Blood 77, 493–499 (1991).

    CAS  PubMed  Google Scholar 

  33. Brenner, M.K. et al. Gene marking to determine whether autologous marrow infusion restores long-term haemopoiesis in cancer patients. Lancet 342, 1134–1137 (1993).

    Article  CAS  PubMed  Google Scholar 

  34. Bender, M.A., Palmer, T.D., Gelinas, R.E. & Miller, A.D. Evidence that the packaging signal of Moloney murine leukemia virus extends into the gag region. J. Virol. 61, 1639–1646 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Bacon, K.B., Camp, R.D., Cunningham, F.M. & Woollard, P.M. Contrasting in vitro lymphocyte chemotactic activity of the hydroxy enantiomers of 12-hydroxy-5,8,10,14-eicosatetraenoic acid. Br. J. Pharmacol. 95, 966–974 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Dialynas, D.P. et al. Characterization of the murine T-cell surface molecule, designated L3T4, identified by monoclonal antibody GK1.5: Similarity of L3T4 to the human Leu-3/T4 molecule. J. Immunol. 131, 2445–2451 (1983).

    CAS  PubMed  Google Scholar 

  37. Sarmiento, M., Glasebrook, A.L. & Fitch, F.W. IgG or IgM monoclonal antibodies reactive with different determinants on the molecular complex bearing Lyt 2 antigen block T cell-mediated cytolysis in the absence of complement. J. Immunol. 125, 2665–2672 (1980).

    CAS  PubMed  Google Scholar 

  38. Li, C.Y., Ziesmer, S.C. & Yam, L.T. Practical immunocytochemical identification of human blood cells. Am.J. Clin. Pathol. 81, 204 (1984).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dilloo, D., Bacon, K., Holden, W. et al. Combined chemokine and cytokine gene transfer enhances antitumor immunity. Nat Med 2, 1090–1095 (1996). https://doi.org/10.1038/nm1096-1090

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm1096-1090

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing