Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

PI 3-kinase p110β: a new target for antithrombotic therapy

Abstract

Platelet activation at sites of vascular injury is essential for the arrest of bleeding; however, excessive platelet accumulation at regions of atherosclerotic plaque rupture can result in the development of arterial thrombi, precipitating diseases such as acute myocardial infarction and ischemic stroke. Rheological disturbances (high shear stress) have an important role in promoting arterial thrombosis by enhancing the adhesive and signaling function of platelet integrin αIIbβ3 (GPIIb-IIIa). In this study we have defined a key role for the Type Ia phosphoinositide 3-kinase (PI3K) p110β isoform in regulating the formation and stability of integrin αIIbβ3 adhesion bonds, necessary for shear activation of platelets. Isoform-selective PI3K p110β inhibitors have been developed which prevent formation of stable integrin αIIbβ3 adhesion contacts, leading to defective platelet thrombus formation. In vivo, these inhibitors eliminate occlusive thrombus formation but do not prolong bleeding time. These studies define PI3K p110β as an important new target for antithrombotic therapy.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: PI3K promotes cytosolic calcium flux and stable platelet adhesion on immobilized fibrinogen following exposure to rapid increases in shear.
Figure 2: Development of a new PI3K p110β isoform–selective inhibitor.
Figure 3: PI3K p110β promotes cytosolic calcium flux and stable platelet adhesion in response to rapid increases in shear.
Figure 4: Role of PI3K p110β in promoting platelet activation in response to fluid shear stress or soluble agonists.
Figure 5: Role of PI3K p110β in regulating platelet activation induced by physiological agonists.
Figure 6: Antithrombotic activity of TGX-221.

Similar content being viewed by others

References

  1. Baumgartner, H.R., Tschopp, T.B. & Weiss, H.J. Platelet interaction with collagen fibrils in flowing blood. II. Impaired adhesion-aggregation in bleeding disorders. A comparison with subendothelium. Thromb. Haemost. 37, 17–28 (1977).

    Article  CAS  Google Scholar 

  2. Weiss, H.J. et al. Fibrinogen-independent platelet adhesion and thrombus formation on subendothelium mediated by glycoprotein IIb-IIIa complex at high shear rate. J. Clin. Invest. 83, 288–297 (1989).

    Article  CAS  Google Scholar 

  3. van Zanten, G.H. et al. Increased platelet deposition on atherosclerotic coronary arteries. J. Clin. Invest. 93, 615–632 (1994).

    Article  CAS  Google Scholar 

  4. Wilcox, J.N., Smith, K.M., Schwartz, S.M. & Gordon, D. Localization of tissue factor in the normal vessel wall and in the atherosclerotic plaque. Proc. Natl. Acad. Sci. USA 86, 2839–2843 (1989).

    Article  CAS  Google Scholar 

  5. Toschi, V. et al. Tissue factor modulates the thrombogenicity of human atherosclerotic plaques. Circulation 95, 594–599 (1997).

    Article  CAS  Google Scholar 

  6. Goto, S., Ikeda, Y., Saldivar, E. & Ruggeri, Z.M. Distinct mechanisms of platelet aggregation as a consequence of different shearing flow conditions. J. Clin. Invest. 101, 479–486 (1998).

    Article  CAS  Google Scholar 

  7. Ruggeri, Z.M. Mechanisms of shear-induced platelet adhesion and aggregation. Thromb. Haemost. 70, 119–123 (1993).

    Article  CAS  Google Scholar 

  8. Jander, S. et al. Expression of tissue factor in high-grade carotid artery stenosis: association with plaque destabilization. Stroke 32, 850–854 (2001).

    Article  CAS  Google Scholar 

  9. Strony, J., Beaudoin, A., Brands, D. & Adelman, B. Analysis of shear stress and hemodynamic factors in a model of coronary artery stenosis and thrombosis. Am. J. Physiol. 265, H1787–H1796 (1993).

    CAS  PubMed  Google Scholar 

  10. Ruggeri, Z.M. Platelets in atherothrombosis. Nat. Med. 8, 1227–1234 (2002).

    Article  CAS  Google Scholar 

  11. Jackson, S.P. & Schoenwaelder, S.M. Antiplatelet therapy: in search of the 'magic bullet'. Nat. Rev. Drug Discov. 2, 775–789 (2003).

    Article  CAS  Google Scholar 

  12. Yap, C.L. et al. Essential role for phosphoinositide 3-kinase in shear-dependent signaling between platelet glycoprotein Ib/V/IX and integrin alpha(IIb)beta(3). Blood 99, 151–158 (2002).

    Article  CAS  Google Scholar 

  13. Resendiz, J.C. et al. Purinergic P2Y12 receptor blockade inhibits shear-induced platelet phosphatidylinositol 3-kinase activation. Mol. Pharmacol. 63, 639–645 (2003).

    Article  CAS  Google Scholar 

  14. Vanhaesebroeck, B., Leevers, S.J., Panayotou, G. & Waterfield, M.D. Phosphoinositide 3-kinases: a conserved family of signal transducers. Trends Biochem. Sci. 22, 267–272 (1997).

    Article  CAS  Google Scholar 

  15. Anderson, K.E. & Jackson, S.P. Class I phosphoinositide 3-kinases. Int. J. Biochem. Cell Biol. 35, 1028–1033 (2003).

    Article  CAS  Google Scholar 

  16. Jackson, S.P., Yap, C.L. & Anderson, K.E. Phosphoinositide 3-kinases and the regulation of platelet function. Biochem. Soc. Trans. 32, 387–392 (2004).

    Article  CAS  Google Scholar 

  17. Vanhaesebroeck, B. & Waterfield, M.D. Signaling by distinct classes of phosphoinositide 3-kinases. Exp. Cell Res. 253, 239–254 (1999).

    Article  CAS  Google Scholar 

  18. Vanhaesebroeck, B. et al. P110delta, a novel phosphoinositide 3-kinase in leukocytes. Proc. Natl. Acad. Sci. USA 94, 4330–4335 (1997).

    Article  CAS  Google Scholar 

  19. Zhang, J., Vanhaesebroeck, B. & Rittenhouse, S.E. Human platelets contain p110delta phosphoinositide 3-kinase. Biochem. Biophys. Res. Commun. 296, 178–181 (2002).

    Article  CAS  Google Scholar 

  20. Watanabe, N. et al. Functional phenotype of phosphoinositide 3-kinase p85alpha-null platelets characterized by an impaired response to GP VI stimulation. Blood 102, 541–548 (2003).

    Article  CAS  Google Scholar 

  21. Nesbitt, W.S. et al. Distinct glycoprotein Ib/V/IX and integrin alpha IIbbeta 3-dependent calcium signals cooperatively regulate platelet adhesion under flow. J. Biol. Chem. 277, 2965–2972 (2002).

    Article  CAS  Google Scholar 

  22. Jackson, S.P. et al. Adhesion receptor activation of phosphatidylinositol 3-kinase. von Willebrand factor stimulates the cytoskeletal association and activation of phosphatidylinositol 3-kinase and pp60c-src in human platelets. J. Biol. Chem. 269, 27093–27099 (1994).

    CAS  PubMed  Google Scholar 

  23. Kasirer-Friede, A. et al. Signaling through GP Ib-IX-V activates alpha IIb beta 3 independently of other receptors. Blood 103, 3403–3411 (2004).

    Article  CAS  Google Scholar 

  24. Kauffenstein, G. et al. The P2Y(12) receptor induces platelet aggregation through weak activation of the alpha(IIb)beta(3) integrin--a phosphoinositide 3-kinase-dependent mechanism. FEBS Lett. 505, 281–290 (2001).

    Article  CAS  Google Scholar 

  25. Goncalves, I. et al. Integrin alpha IIb beta 3-dependent calcium signals regulate platelet-fibrinogen interactions under flow. Involvement of phospholipase C gamma 2. J. Biol. Chem. 278, 34812–34822 (2003).

    Article  CAS  Google Scholar 

  26. Maxwell, M.J. et al. SHIP1 and Lyn Kinase Negatively Regulate Integrin alpha IIb beta 3 signaling in platelets. J. Biol. Chem. 279, 32196–32204 (2004).

    Article  CAS  Google Scholar 

  27. Goncalves, I., Nesbitt, W.S., Yuan, Y. & Jackson, S.P. Importance of temporal flow gradients and integrin alpha IIb beta 3 mechanotransduction for rapid shear-activation of platelets. J. Biol. Chem. published online 8 February 2005 (10.1074/jbc.M410235200).

  28. Sadhu, K. et al. Inhibitors of human phosphatidylinositol 3-kinase delta. US Patent No. 6,518,277 (2003).

  29. Gachet, C. et al. Activation of ADP receptors and platelet function. Thromb. Haemost. 78, 271–275 (1997).

    Article  CAS  Google Scholar 

  30. Bertoni, A. et al. Relationships between Rap1b, affinity modulation of integrin alpha IIbbeta 3, and the actin cytoskeleton. J. Biol. Chem. 277, 25715–25721 (2002).

    Article  CAS  Google Scholar 

  31. Folts, J.D., Stamler, J. & Loscalzo, J. Intravenous nitroglycerin infusion inhibits cyclic blood flow responses caused by periodic platelet thrombus formation in stenosed canine coronary arteries. Circulation 83, 2122–2127 (1991).

    Article  CAS  Google Scholar 

  32. Bush, L.R. & Shebuski, R.J. In vivo models of arterial thrombosis and thrombolysis. FASEB J. 4, 3087–3098 (1990).

    Article  CAS  Google Scholar 

  33. Goto, S., Tamura, N., Eto, K., Ikeda, Y. & Handa, S. Functional significance of adenosine 5 -diphosphate receptor (P2Y(12)) in platelet activation initiated by binding of von Willebrand factor to platelet GP Ibalpha induced by conditions of high shear rate. Circulation 105, 2531–2536 (2002).

    Article  CAS  Google Scholar 

  34. Nesbitt, W.S. et al. Distinct glycoprotein Ib/V/IX and integrin alpha IIbbeta 3-dependent calcium signals cooperatively regulate platelet adhesion under flow. J. Biol. Chem. 277, 2965–2972 (2002).

    Article  CAS  Google Scholar 

  35. Bos, J.L. et al. The role of Rap1 in integrin-mediated cell adhesion. Biochemical Society Transactions 31, 83-6 (2003).

    Article  Google Scholar 

  36. Walker, E.H. et al. Structural determinants of phosphoinositide 3-kinase inhibition by wortmannin, LY294002, quercetin, myricetin, and staurosporine. Mol. Cell 6, 909–919 (2000).

    Article  CAS  Google Scholar 

  37. Djordjevic, S. & Driscoll, P.C. Structural insight into substrate specificity and regulatory mechanisms of phosphoinositide 3-kinases. Trends Biochem. Sci. 27, 426–432 (2002).

    Article  CAS  Google Scholar 

  38. Okkenhaug, K. et al. Impaired B and T cell antigen receptor signaling in p110delta PI 3-kinase mutant mice. Science 297, 1031–1034 (2002).

    CAS  Google Scholar 

  39. Sasaki, T. et al. Function of PI3Kgamma in thymocyte development, T cell activation, and neutrophil migration. Science 287, 1040–1046 (2000).

    Article  CAS  Google Scholar 

  40. Stein, R.C. & Waterfield, M.D. PI3-kinase inhibition: a target for drug development? Mol. Med. Today 6, 347–357 (2000).

    Article  CAS  Google Scholar 

  41. Yap, C.L. et al. Synergistic adhesive interactions and signaling mechanisms operating between platelet glycoprotein Ib/IX and integrin alpha IIbbeta 3. Studies in human platelets ans transfected Chinese hamster ovary cells. J. Biol. Chem. 275, 41377–41388 (2000).

    Article  CAS  Google Scholar 

  42. Jackson, S.P. et al. Preparation of morpholinyl- and pyridinyl-substituted heterobicyclic ketones as selective inhibitors of phosphoinositide 3-kinase beta for use against thrombosis. (International, WO 2003-IB4177, 2004).

  43. Schoenwaelder, S.M. et al. Tyrosine kinases regulate the cytoskeletal attachment of integrin alpha IIb beta 3 (platelet glycoprotein IIb/IIIa) and the cellular retraction of fibrin polymers. J. Biol. Chem. 269, 32479–32487 (1994).

    CAS  PubMed  Google Scholar 

  44. Lova, P. et al. A selective role for phosphatidylinositol 3,4,5-trisphosphate in the Gi-dependent activation of platelet Rap1B. J. Biol. Chem. 278, 131–138 (2003).

    Article  CAS  Google Scholar 

  45. Woulfe, D., Jiang, H., Mortensen, R., Yang, J. & Brass, L.F. Activation of Rap1B by G(i) family members in platelets. J. Biol. Chem. 277, 23382–23390 (2002).

    Article  CAS  Google Scholar 

  46. Foukas, L.C. et al. Direct effects of caffeine and theophylline on p110 delta and other phosphoinositide 3-kinases. Differential effects on lipid kinase and protein kinase activities. J. Biol. Chem. 277, 37124–37130 (2002).

    Article  CAS  Google Scholar 

  47. Bang, C.J., Berstad, A. & Talstad, I. Incomplete reversal of enoxaparin-induced bleeding by protamine sulfate. Haemostasis 21, 155–160 (1991).

    CAS  PubMed  Google Scholar 

  48. Herbert, J.M., Bernat, A. & Maffrand, J.P. Aprotinin reduces clopidogrel-induced prolongation of the bleeding time in the rat. Thromb. Res. 71, 433–441 (1993).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Health and Medical Research Council and the National Heart Foundation of Australia. Kinacia Pty Ltd also contributed financial support. We would like to thank L. Stephens, P. Hawkins and Z. Ruggeri for discussions, and D. Williamson, P. Mangin, K. Heel, D. Dunstan, I. Harper, and G. Currie, P. Freeman, M. Mulchandani, T. Domagala, M. Wang, N. Mistry, V. Strangis, S. Turnbull and T. Hinds for technical assistance and advice during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaun P Jackson.

Ethics declarations

Competing interests

Vijaya Kenche, Hishani Prabaharan, Philip E. Thompson, Gregg D. Smith, Dilek Saylik, Sharelle A. Sturgeon, Catherine Jones and Lucy Lu were full time employees of Kinacia during the performance of these studies. A number of the authors have competing financial interests, primarily as shareholders in the biotechnology company Kinacia Pty Ltd (a wholly owned subsidiary of Cerylid Biosciences Ltd), which developed the inhibitors against PI 3-kinase p110beta. None of the authors currently own more than 1% stock in Cerylid Biosciences. Gregg D. Smith, Hishani Prabaharan and Dilek Saylik are currently full-time employees of Cerylid and Alan D. Robertson, James A. Angus and Christine E. Wright have consultancy arrangements with the company. This work was partially funded by Kinacia.

Supplementary information

Supplementary Fig. 1

Synthesis of TGX-221, a novel inhibitor of PI 3-kinase. (PDF 58 kb)

Supplementary Fig. 2

Role of PI3K p110δ and γ in shear-dependent platelet calcium flux in platelets. (PDF 62 kb)

Supplementary Fig. 3

Role of PI3K p110β in promoting platelet activation in response to physiological agonists (PDF 58 kb)

Supplementary Fig. 4

Effect of TGX-221 on P2Y1-dependent calcium flux and platelet shape change in ADP-stimulated platelets. (PDF 63 kb)

Supplementary Fig. 5

Antithrombotic effect of TGX-221. (PDF 69 kb)

Supplementary Fig. 6

Dration of the antithrombotic effect of TGX-221 following a single i.v. bolus. (PDF 40 kb)

Supplementary Table 1

Relative inhibitory potency of TGX-221 against a broad panel of lipid and protein kinases. (PDF 51 kb)

Supplementary Methods (PDF 56 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jackson, S., Schoenwaelder, S., Goncalves, I. et al. PI 3-kinase p110β: a new target for antithrombotic therapy. Nat Med 11, 507–514 (2005). https://doi.org/10.1038/nm1232

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm1232

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing