Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Glucagon-like peptide-1 receptor is involved in learning and neuroprotection

Abstract

Glucagon-like peptide-1 (GLP-1) is a gut peptide that, together with its receptor, GLP-1R, is expressed in the brain. Here we show that intracerebroventricular (i.c.v.) GLP-1 and [Ser(2)]exendin(1–9) (HSEGTFTSD; homologous to a conserved domain in the glucagon/GLP-1 family) enhance associative and spatial learning through GLP-1R. [Ser(2)]exendin(1–9), but not GLP-1, is also active when administered peripherally. GLP-1R-deficient mice have a phenotype characterized by a learning deficit that is restored after hippocampal Glp1r gene transfer. In addition, rats overexpressing GLP-1R in the hippocampus show improved learning and memory. GLP-1R-deficient mice also have enhanced seizure severity and neuronal injury after kainate administration, with an intermediate phenotype in heterozygotes and phenotypic correction after Glp1r gene transfer in hippocampal somatic cells. Systemic administration of [Ser(2)]exendin(1–9) in wild-type animals prevents kainate-induced apoptosis of hippocampal neurons. Brain GLP-1R represents a promising new target for both cognitive-enhancing and neuroprotective agents.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Effects of i.c.v. GLP-1 and [Ser(2)]exendin(1–9) on associative and spatial learning.
Figure 2: Enhancement of learning and memory by intranasal [Ser(2)]exendin(1–9).
Figure 3: Behavioral phenotype of wild-type Glp1r+/+, heterozygous Glp1r+/− and homozygous Glp1r−/− knockout mice, and rescue of Glp1r−/− phenotype by recombinant AAV–mediated intrahippocampal gene transfer of Glp1r.
Figure 4: Overexpression of GLP-1R in rat hippocampus with recombinant AAV.
Figure 5: Kainic acid neurotoxicity in Glp1r knockout mice and effects of intranasal [Ser(2)]exendin(1–9) in rats.
Figure 6: Effects of [Ser(2)]exendin(1–9) on MAP kinase pathway.

Similar content being viewed by others

References

  1. Tseng, C.C., Zhang, X.Y. & Wolfe, M.M. Effect of GIP and GLP-1 antagonists on insulin release in the rat. Am. J. Physiol. 76, E1049–E1054 (1999).

    Google Scholar 

  2. Drucker, D.J. The glucagon-like peptides. Endocrinology 142, 521–527 (2001).

    Article  CAS  Google Scholar 

  3. Stoffers, D.A. et al. Insulinotropic glucagon-like peptide 1 agonists stimulate expression of homeodomain protein IDX-1 and increase islet size in mouse pancreas. Diabetes 49, 741–748 (2000).

    Article  CAS  Google Scholar 

  4. Turton, M.D. et al. A role for glucagon-like peptide-1 in the central regulation of feeding. Nature 379, 69–72 (1996).

    Article  CAS  Google Scholar 

  5. Jin, S.L.C. et al. Distribution of glucagon like peptide I (GLP-1), glucagon, and glicentin in the rat brain: an immunocytochemical study. J. Comp. Neurol. 271, 519–532 (1988).

    Article  CAS  Google Scholar 

  6. Merchenthaler, I., Lane, M. & Shughrue, P. Distribution of pre-proglucagon and glucagon-like peptide-1 receptor messenger RNAs in the rat central nervous system. J. Comp. Neurol. 403, 261–280 (1999).

    Article  CAS  Google Scholar 

  7. Alvarez, E., Roncero, I., Chowen, J.A., Thorens, B. & Blazquenz, E. Expression of the glucagons-like peptide receptor gene in rat brain. J. Neurochem. 66, 920–927 (1996).

    Article  CAS  Google Scholar 

  8. Kandel, E.R. The molecular biology of memory storage: a dialogue between genes and synapses. Science 294, 1030–1038 (2001).

    Article  CAS  Google Scholar 

  9. Montrose-Rafizadeh, C. et al. Pancreatic glucagon-like peptide-1 receptor couples to multiple G proteins and activates mitogen-activated protein kinase pathways in Chinese hamster ovary cells. Endocrinology 140, 1132–1140 (1999).

    Article  CAS  Google Scholar 

  10. Wheeler, M.B. et al. Functional expression of the rat glucagon-like peptide-I receptor, evidence for coupling to both adenylyl cyclase and phospholipase-C. Endocrinology 133, 57–62 (1993).

    Article  CAS  Google Scholar 

  11. Raufman, J.P., Singh, L. & Eng, J. Exendin-3, a novel peptide from Heloderma horridum venom, interacts with vasoactive intestinal peptide receptors and a newly described receptor on dispersed acini from guinea pig pancreas. Description of exendin-3(9–39) amide, a specific exendin receptor antagonist. J. Biol. Chem. 266, 2897–2902 (1991).

    CAS  PubMed  Google Scholar 

  12. Gallwitz, B. et al. GLP-1-analogues resistant to degradation by dipeptidlyl- peptidase IV in vitro. Regul. Pept. 86, 103–111 (2000).

    Article  CAS  Google Scholar 

  13. Praz, G.A. et al. Regulation of immunoreactive-insulin release from a rat cell line (RINm5F). Biochem. J. 15, 345–352 (1983).

    Article  Google Scholar 

  14. Weatherly, L.S., Harding, J.W. & Wright, J.W. Effects of discrete kainic acid-induced hippocampal lesions on spatial and contextual learning and memory in rats. Brain Res. 716, 29–38 (1996).

    Article  Google Scholar 

  15. Morris, R.G.M., Garrud, P., Rawlins, J.N.P. & O'Keefe, J. Place navigation impaired in rats with hippocampal lesions. Nature 297, 681–683 (1982).

    Article  CAS  Google Scholar 

  16. DeWied, D. Long term effect of vasopressin on the maintenance of a conditioned avoidance response in rats. Nature 232, 58–60 (1971).

    Article  CAS  Google Scholar 

  17. Born, J. et al. Sniffing neuropeptides: a transnasal approach to the human brain. Nat. Neurosci. 5, 514–516 (2002).

    Article  CAS  Google Scholar 

  18. Banks, W.A., Kastin, A.J. & Pan, W. Uptake and degradation of blood-borne insulin by the olfactory bulb. Peptides 20, 373–378 (1999).

    Article  CAS  Google Scholar 

  19. Cashion, M.F. & Banks, W.A., Bost, K.L., Kastin, A.J. Transmission routes of HIV-1 gp120 from brain to lymphoid tissues. Brain Res. 822, 26–33 (1999).

    Article  CAS  Google Scholar 

  20. Banks,W.A., Goulet, M., Rushe, J.R., Niehoff, M.L. & Boismenu, R. Differential transport of a secretin analog across the blood-brain and blood-cerebrospinal fluid barriers of the mouse. J. Pharmacol. Exp. Therap. 302, 1062–1069 (2002).

    Article  CAS  Google Scholar 

  21. Setlow, B. & McGaugh, J.L. D2 dopamine receptor blockade immediately post-training enhances retention in hidden and visible platform versions of the water maze. Learn. Mem. 7, 187–191 (2000).

    Article  CAS  Google Scholar 

  22. Santucci, A.C., Schroeder, H. & Riccio, D.C. Homeostatic disruption and memory: effect of insulin administration in rats. Behav. Neurol. Biol. 53, 321–333 (1990).

    Article  CAS  Google Scholar 

  23. Scrocchi, L.A. et al. Glucose intolerance but normal satiety in mice with a null mutation in the glucagons-like peptide 1 receptor gene. Nat. Med. 2, 1254–1258 (1996).

    Article  CAS  Google Scholar 

  24. Young, D., Lawlor, P.A., Leone, P., Dragunow, M. & During, M.J. Environmental enrichment inhibits spontaneous apoptosis, prevents seizures and is neuroprotective. Nat. Med. 5, 448–453 (1999).

    Article  CAS  Google Scholar 

  25. Gozes, I. Neuroprotective peptide drug delivery and development: potential new therapeutics. Trends Neurosci. 24, 700–705 (2001).

    Article  CAS  Google Scholar 

  26. Perry, T. et al. A novel neurotrophic property of glucagon-like pepide 1: a promoter of nerve growth factor-mediated differentiation in PC12 cells. J. Pharmacol. Exp. Ther. 300, 958–966 (2002).

    Article  CAS  Google Scholar 

  27. Perry, T., Haughey, N.J., Mattson, M.P., Egan, J.M. & Greig, N.H. Protection and reversal of excitotoxic neuronal damage by glucagon-like peptide-1 and exendin-4. J. Pharmacol. Exp. Ther. 302, 881–888 (2002).

    Article  CAS  Google Scholar 

  28. Schmued, L.C. & Hopkins, K.J. Fluoro-jade B: a high affinity fluorescent marker for the localization of neuronal degeneration. Brain Res. 874, 123–130 (2000).

    Article  CAS  Google Scholar 

  29. Buteau, J., Roduit, R., Susini, S. & Prentki, M. Glucagon-like peptide-1 promotes DNA synthesis, activates phosphatidylinositol 3-kinase and increases transcription factor pancreatic and duodenal homeobox gene 1 (PDX-1) DNA binding activity in beta (INS-1)-cells. Diabetologia 42, 856–864 (1999).

    Article  CAS  Google Scholar 

  30. Holz, G.G., Leech, C.A. & Habener, J.F. Activation of a cAMP-regulated Ca(2+)-signaling pathway in pancreatic beta-cells by the insulinotropic hormone glucagon-like peptide-1. J. Biol. Chem. 270, 17749–17757 (1995).

    Article  CAS  Google Scholar 

  31. Zhou, J., Wang, X., Pineyro, M.A. & Egan, J.M. Glucagon-like peptide 1 and exendin-4 convert pancreatic AR42J cells into glucagon- and insulin-producing cells. Diabetes 48, 2358–2366 (1999).

    Article  CAS  Google Scholar 

  32. Perfetti, R., Zhou, J., Doyle, M.E. & Egan, J.M. Glucagon-like peptide-1 induces cell proliferation and pancreatic-duodenum homeobox-1 expression and increases endocrine cell mass in the pancreas of old, glucose-intolerant rats. Endocrinology 141, 4600–4605 (2000).

    Article  CAS  Google Scholar 

  33. Weeber, E.J. & Sweatt, J.D. Molecular neurobiology of human cognition. Neuron 33, 845–848 (2002).

    Article  CAS  Google Scholar 

  34. Ramanathan, M. & Jaiswal, A.K., Bhattacharya, S.K. Differential effects of diazepam on anxiety in streptozotocin induced diabetic and non-diabetic rats. Psychopharmacology (Berl.) 135, 361–367 (1998).

    Article  CAS  Google Scholar 

  35. Kastin, A.J., Ackerstrom, V. & Pan, W. Interactions of glucagon-like peptide-1 (GLP-1) with the blood-brain barrier. J. Mol. Neurosci. 18, 7–14 (2002).

    Article  CAS  Google Scholar 

  36. Kern, W., Born, J., Schreiber, H. & Fehm, H.L. Central nervous system effects of intranasally administered insulin during euglycemia in men. Diabetes 48, 557–563 (1999).

    Article  CAS  Google Scholar 

  37. Chowen, J.A. et al. Increased glucagon-like peptide-1 receptor expression in glia after mechanical lesion of the rat brain. Neuropeptides 33, 212–215 (1999).

    Article  CAS  Google Scholar 

  38. Patterson, S.L. et al. Some forms of cAMP-mediated long-lasting potentiation are associated with release of BDNF and nuclear translocation of phospho-MAP kinase. Neuron 32, 123–130 (2001).

    Article  CAS  Google Scholar 

  39. Venable, N. & Kelly, P.H. Effects of NMDA receptor antagonists on passive avoidance learning and retrieval in rats and mice. Psychopharmacology 100, 215–221 (1990).

    Article  CAS  Google Scholar 

  40. Racine, R.J. Modification of seizure activity by electrical stimulation. II. Motor seizure. Electroencephalogr. Clin. Neurophysiol. 32, 281–294 (1972).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. Brooks, L. Cunningham, R. Horst and C. Leichtlein for scientific and technical input and helpful discussions. This work was supported in part by the Jefferson Faculty Foundation, National Institutes of Health, European Molecular Biology Organization, New Zealand Health Research Council, New Economy Research Fund and Marsden Fund of New Zealand.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew J During.

Ethics declarations

Competing interests

M.J.D. and C.N.H. are coauthors on a patent application related to [Ser(2)]exendin(1–9), which is assigned to Thomas Jefferson University.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

During, M., Cao, L., Zuzga, D. et al. Glucagon-like peptide-1 receptor is involved in learning and neuroprotection. Nat Med 9, 1173–1179 (2003). https://doi.org/10.1038/nm919

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm919

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing