Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Kinomics: methods for deciphering the kinome

Abstract

Phosphorylation by protein kinases is the most widespread and well-studied signaling mechanism in eukaryotic cells. Phosphorylation can regulate almost every property of a protein and is involved in all fundamental cellular processes. Cataloging and understanding protein phosphorylation is no easy task: many kinases may be expressed in a cell, and one-third of all intracellular proteins may be phosphorylated, representing as many as 20,000 distinct phosphoprotein states. Defining the kinase complement of the human genome, the kinome, has provided an excellent starting point for understanding the scale of the problem. The kinome consists of 518 kinases, and every active protein kinase phosphorylates a distinct set of substrates in a regulated manner. Deciphering the complex network of phosphorylation-based signaling is necessary for a thorough and therapeutically applicable understanding of the functioning of a cell in physiological and pathological states. We review contemporary techniques for identifying physiological substrates of the protein kinases and studying phosphorylation in living cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Flow chart of strategies available for the identification of either substrate or kinase.

Similar content being viewed by others

References

  1. Hunter, T. Signaling–2000 and beyond. Cell 100, 113–127 (2000).

    Article  CAS  Google Scholar 

  2. Knebel, A., Morrice, N. & Cohen, P. A novel method to identify protein kinase substrates: eEF2 kinase is phosphorylated and inhibited by SAPK4/p38delta. EMBO J. 20, 4360–4369 (2001).

    Article  CAS  Google Scholar 

  3. Fukunaga, R. & Hunter, T. Identification of MAPK substrates by expression screening with solid-phase phosphorylation. Methods Mol. Biol. 250, 211–236 (2004).

    CAS  PubMed  Google Scholar 

  4. Lock, P., Abram, C.L., Gibson, T. & Courtneidge, S.A. A new method for isolating tyrosine kinase substrates used to identify fish, an SH3 and PX domain-containing protein, and Src substrate. EMBO J. 17, 4346–4357 (1998).

    Article  CAS  Google Scholar 

  5. Cujec, T.P., Medeiros, P.F., Hammond, P., Rise, C. & Kreider, B.L. Selection of v-abl tyrosine kinase substrate sequences from randomized peptide and cellular proteomic libraries using mRNA display. Chem. Biol. 9, 253–264 (2002).

    Article  CAS  Google Scholar 

  6. Zhu, H. et al. Analysis of yeast protein kinases using protein chips. Nat. Genet. 26, 283–289 (2000).

    Article  CAS  Google Scholar 

  7. Reimer, U., Reineke, U. & Schneider-Mergener, J. Peptide arrays: from macro to micro. Curr. Opin. Biotechnol. 13, 315–320 (2002).

    Article  CAS  Google Scholar 

  8. Rychlewski, L., Kschischo, M., Dong, L., Schutkowski, M. & Reimer, U. Target specificity analysis of the Abl kinase using peptide microarray data. J. Mol. Biol. 336, 307–311 (2004).

    Article  CAS  Google Scholar 

  9. Zhu, H. et al. Global analysis of protein activities using proteome chips. Science 293, 2101–2105 (2001).

    Article  CAS  Google Scholar 

  10. Houseman, B.T. & Mrksich, M. Towards quantitative assays with peptide chips: a surface engineering approach. Trends Biotechnol. 20, 279–281 (2002).

    Article  CAS  Google Scholar 

  11. Ouyang, Z. et al. Preparing protein microarrays by soft-landing of mass-selected ions. Science 301, 1351–1354 (2003).

    Article  CAS  Google Scholar 

  12. Dykxhoorn, D.M., Novina, C.D. & Sharp, P.A. Killing the messenger: short RNAs that silence gene expression. Nat. Rev. Mol. Cell Biol. 4, 457–467 (2003).

    Article  CAS  Google Scholar 

  13. Sledz, C.A., Holko, M., de Veer, M.J., Silverman, R.H. & Williams, B.R. Activation of the interferon system by short-interfering RNAs. Nat. Cell Biol. 5, 834–839 (2003).

    Article  CAS  Google Scholar 

  14. Brummelkamp, T.R., Bernards, R. & Agami, R. A system for stable expression of short interfering RNAs in mammalian cells. Science 296, 550–553 (2002).

    Article  CAS  Google Scholar 

  15. Eyers, P.A. van den, I.P., Quinlan, R.A., Goedert, M. & Cohen, P. Use of a drug-resistant mutant of stress-activated protein kinase 2a/p38 to validate the in vivo specificity of SB 203580. FEBS Lett. 451, 191–196 (1999).

    Article  CAS  Google Scholar 

  16. Shah, K., Liu, Y., Deirmengian, C. & Shokat, K.M. Engineering unnatural nucleotide specificity for Rous sarcoma virus tyrosine kinase to uniquely label its direct substrates. Proc. Natl. Acad. Sci. USA 94, 3565–3570 (1997).

    Article  CAS  Google Scholar 

  17. Bishop, A.C. et al. Design of allele-specific inhibitors to probe protein kinase signaling. Curr. Biol. 8, 257–266 (1998).

    Article  CAS  Google Scholar 

  18. Biondi, R.M. & Nebreda, A.R. Signalling specificity of Ser/Thr protein kinases through docking-site-mediated interactions. Biochem. J. 372, 1–13 (2003).

    Article  CAS  Google Scholar 

  19. Gavin, A.C. et al. Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 415, 141–147 (2002).

    Article  CAS  Google Scholar 

  20. Chen, M. & Cooper, J.A. Ser-3 is important for regulating Mos interaction with and stimulation of mitogen-activated protein kinase kinase. Mol. Cell. Biol. 15, 4727–4734 (1995).

    Article  CAS  Google Scholar 

  21. Uetz, P. et al. A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae. Nature 403, 623–627 (2000).

    Article  CAS  Google Scholar 

  22. Zhou, T., Aumais, J.P., Liu, X., Yu-Lee, L.Y. & Erikson, R.L. A role for Plk1 phosphorylation of NudC in cytokinesis. Dev. Cell 5, 127–138 (2003).

    Article  CAS  Google Scholar 

  23. Songyang, Z. et al. A structural basis for substrate specificities of protein Ser/Thr kinases: primary sequence preference of casein kinases I and II, NIMA, phosphorylase kinase, calmodulin-dependent kinase II, CDK5, and Erk1. Mol. Cell. Biol. 16, 6486–6493 (1996).

    Article  CAS  Google Scholar 

  24. Hutti, J.E. et al. A rapid method for determining protein kinase phosphorylation specficity. Nat. Methods 1, 27–29 (2004).

    Article  CAS  Google Scholar 

  25. Yaffe, M.B. et al. A motif-based profile scanning approach for genome-wide prediction of signaling pathways. Nat. Biotechnol. 19, 348–353 (2001).

    Article  CAS  Google Scholar 

  26. Manning, B.D., Tee, A.R., Logsdon, M.N., Blenis, J. & Cantley, L.C. Identification of the tuberous sclerosis complex-2 tumor suppressor gene product tuberin as a target of the phosphoinositide 3-kinase/akt pathway. Mol. Cell 10, 151–162 (2002).

    Article  CAS  Google Scholar 

  27. Wooten, M.W. In-gel kinase assay as a method to identify kinase substrates. Sci. STKE 153, PL15 (2002).

    Google Scholar 

  28. Maly, D.J., Allen, J.A. & Shokat, K.M. A mechanism-based cross-linker for the identification of kinase-substrate pairs. J. Am. Chem. Soc. 126, 9160–9161 (2004).

    Article  CAS  Google Scholar 

  29. Kole, H.K., Abdel-Ghany, M. & Racker, E. Specific dephosphorylation of phosphoproteins by protein-serine and -tyrosine kinases. Proc. Natl. Acad. Sci. USA 85, 5849–5853 (1988).

    Article  CAS  Google Scholar 

  30. Sims, C.E. & Allbritton, N.L. Single-cell kinase assays: opening a window onto cell behavior. Curr. Opin. Biotechnol. 14, 23–28 (2003).

    Article  CAS  Google Scholar 

  31. Perez, O.D. & Nolan, G.P. Simultaneous measurement of multiple active kinase states using polychromatic flow cytometry. Nat. Biotechnol. 20, 155–162 (2002).

    Article  CAS  Google Scholar 

  32. Verveer, P.J., Wouters, F.S., Reynolds, A.R. & Bastiaens, P.I. Quantitative imaging of lateral ErbB1 receptor signal propagation in the plasma membrane. Science 290, 1567–1570 (2000).

    Article  CAS  Google Scholar 

  33. Oancea, E., Teruel, M.N., Quest, A.F. & Meyer, T. Green fluorescent protein (GFP)-tagged cysteine-rich domains from protein kinase C as fluorescent indicators for diacylglycerol signaling in living cells. J. Cell Biol. 140, 485–498 (1998).

    Article  CAS  Google Scholar 

  34. Codazzi, F., Teruel, M.N. & Meyer, T. Control of astrocyte Ca(2+) oscillations and waves by oscillating translocation and activation of protein kinase C. Curr. Biol. 11, 1089–1097 (2001).

    Article  CAS  Google Scholar 

  35. Toutchkine, A., Kraynov, V. & Hahn, K. Solvent-sensitive dyes to report protein conformational changes in living cells. J. Am. Chem. Soc. 125, 4132–4145 (2003).

    Article  CAS  Google Scholar 

  36. Miyawaki, A. Visualization of the spatial and temporal dynamics of intracellular signaling. Dev. Cell 4, 295–305 (2003).

    Article  CAS  Google Scholar 

  37. Adams, S.R., Harootunian, A.T., Buechler, Y.J., Taylor, S.S. & Tsien, R.Y. Fluorescence ratio imaging of cyclic AMP in single cells. Nature 349, 694–697 (1991).

    Article  CAS  Google Scholar 

  38. Suzuki, H. et al. In vivo imaging of C. elegans mechanosensory neurons demonstrates a specific role for the MEC-4 channel in the process of gentle touch sensation. Neuron 39, 1005–1017 (2003).

    Article  CAS  Google Scholar 

  39. Isotani, E. et al. Real-time evaluation of myosin light chain kinase activation in smooth muscle tissues from a transgenic calmodulin-biosensor mouse. Proc. Natl. Acad. Sci. USA 101, 6279–6284 (2004).

    Article  CAS  Google Scholar 

  40. Massoud, T.F. & Gambhir, S.S. Molecular imaging in living subjects: seeing fundamental biological processes in a new light. Genes Dev. 17, 545–580 (2003).

    Article  CAS  Google Scholar 

  41. Steen, H. & Mann, M. The abc's (and xyz's) of peptide sequencing. Nat. Rev. Mol. Cell Biol. 5, 699–711 (2004).

    Article  CAS  Google Scholar 

  42. Mann, M. et al. Analysis of protein phosphorylation using mass spectrometry: deciphering the phosphoproteome. Trends Biotechnol. 20, 261–268 (2002).

    Article  CAS  Google Scholar 

  43. Syka, J.E., Coon, J.J., Schroeder, M.J., Shabanowitz, J. & Hunt, D.F. Peptide and protein sequence analysis by electron transfer dissociation mass spectrometry. Proc. Natl. Acad. Sci. USA 101, 9528–9533 (2004).

    Article  CAS  Google Scholar 

  44. Brill, L.M. et al. Robust phosphoproteomic profiling of tyrosine phosphorylation sites from human T cells using immobilized metal affinity chromatography and tandem mass spectrometry. Anal. Chem. 76, 2763–2772 (2004).

    Article  CAS  Google Scholar 

  45. Steen, H., Kuster, B., Fernandez, M., Pandey, A. & Mann, M. Tyrosine phosphorylation mapping of the epidermal growth factor receptor signaling pathway. J. Biol. Chem. 277, 1031–1039 (2002).

    Article  CAS  Google Scholar 

  46. Oda, Y., Nagasu, T. & Chait, B.T. Enrichment analysis of phosphorylated proteins as a tool for probing the phosphoproteome. Nat. Biotechnol. 19, 379–382 (2001).

    Article  CAS  Google Scholar 

  47. Beausoleil, S.A. et al. Large-scale characterization of HeLa cell nuclear phosphoproteins. Proc. Natl. Acad. Sci. USA 101, 12130–12135 (2004).

    Article  CAS  Google Scholar 

  48. Ong, S.E. et al. Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol. Cell. Proteomics 1, 376–386 (2002).

    Article  CAS  Google Scholar 

  49. Blagoev, B., Ong, S.E., Kratchmarova, I. & Mann, M. Temporal analysis of phosphotyrosine-dependent signaling networks by quantitative proteomics. Nat. Biotechnol. 22, 1139–1145 (2004).

    Article  CAS  Google Scholar 

  50. Gygi, S.P. et al. Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat. Biotechnol. 17, 994–999 (1999).

    Article  CAS  Google Scholar 

  51. Zhang, H. et al. Phosphoprotein analysis using antibodies broadly reactive against phosphorylated motifs. J. Biol. Chem. 277, 39379–39387 (2002).

    Article  CAS  Google Scholar 

  52. Yaffe, M.B. & Elia, A.E. Phosphoserine/threonine-binding domains. Curr. Opin. Cell Biol. 13, 131–138 (2001).

    Article  CAS  Google Scholar 

  53. Malabarba, M.G. et al. A repertoire library that allows the selection of synthetic SH2s with altered binding specificities. Oncogene 20, 5186–5194 (2001).

    Article  CAS  Google Scholar 

  54. Basu, S., Totty, N.F., Irwin, M.S., Sudol, M. & Downward, J. Akt phosphorylates the Yes-associated protein, YAP, to induce interaction with 14–3-3 and attenuation of p73-mediated apoptosis. Mol. Cell 11, 11–23 (2003).

    Article  CAS  Google Scholar 

  55. Woodring, P.J. et al. c-Abl phosphorylates Dok1 to promote filopodia during cell spreading. J. Cell Biol. 165, 493–503 (2004).

    Article  CAS  Google Scholar 

  56. Cross, D.A., Alessi, D.R., Cohen, P., Andjelkovich, M. & Hemmings, B.A. Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature 378, 785–789 (1995).

    Article  CAS  Google Scholar 

  57. Datta, S.R. et al. Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell 91, 231–241 (1997).

    Article  CAS  Google Scholar 

  58. Scott, P.H., Brunn, G.J., Kohn, A.D., Roth, R.A. & Lawrence, J.C., Jr. Evidence of insulin-stimulated phosphorylation and activation of the mammalian target of rapamycin mediated by a protein kinase B signaling pathway. Proc. Natl. Acad. Sci. USA 95, 7772–7777 (1998).

    Article  CAS  Google Scholar 

  59. Nave, B.T., Ouwens, M., Withers, D.J., Alessi, D.R. & Shepherd, P.R. Mammalian target of rapamycin is a direct target for protein kinase B: identification of a convergence point for opposing effects of insulin and amino-acid deficiency on protein translation. Biochem. J. 344, 427–431 (1999).

    Article  CAS  Google Scholar 

  60. Paradis, S. & Ruvkun, G. Caenorhabditis elegans Akt/PKB transduces insulin receptor-like signals from AGE-1 PI3 kinase to the DAF-16 transcription factor. Genes. Dev. 12, 2488–2498 (1998).

    Article  CAS  Google Scholar 

  61. Zimmermann, S. & Moelling, K. Phosphorylation and regulation of Raf by Akt (protein kinase B). Science 286, 1741–1744 (1999).

    Article  CAS  Google Scholar 

  62. Altiok, S. et al. Heregulin induces phosphorylation of BRCA1 through phosphatidylinositol 3-Kinase/AKT in breast cancer cells. J. Biol. Chem. 274, 32274–32278 (1999).

    Article  CAS  Google Scholar 

  63. Dimmeler, S. et al. Activation of nitric oxide synthase in endothelial cells by Akt-dependent phosphorylation. Nature 399, 601–605 (1999).

    Article  CAS  Google Scholar 

  64. Ozes, O.N. et al. NF-kappaB activation by tumour necrosis factor requires the Akt serine-threonine kinase. Nature 401, 82–85 (1999).

    Article  CAS  Google Scholar 

  65. Mayo, L.D. & Donner, D.B. A phosphatidylinositol 3-kinase/Akt pathway promotes translocation of Mdm2 from the cytoplasm to the nucleus. Proc. Natl. Acad. Sci. USA 98, 11598–11603 (2001).

    Article  CAS  Google Scholar 

  66. Berwick, D.C., Hers, I., Heesom, K.J., Moule, S.K. & Tavare, J.M. The identification of ATP-citrate lyase as a protein kinase B (Akt) substrate in primary adipocytes. J. Biol. Chem. 277, 33895–33900 (2002).

    Article  CAS  Google Scholar 

  67. Manning, B.D., Tee, A.R., Logsdon, M.N., Blenis, J. & Cantley, L.C. Identification of the tuberous sclerosis complex-2 tumor suppressor gene product tuberin as a target of the phosphoinositide 3-kinase/akt pathway. Mol. Cell. 10, 151–162 (2002).

    Article  CAS  Google Scholar 

  68. Vitari, A.C. et al. WNK1, the kinase mutated in an inherited high-blood-pressure syndrome, is a novel PKB (protein kinase B)/Akt substrate. Biochem. J. 378, 257–268 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge the critical reading and suggestions of S. Ghosh. T.H. is a Frank and Else Schilling American Cancer Society Research Professor. We apologize to workers in the field for omitting many relevant references and details due to lack of space.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tony Hunter.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Johnson, S., Hunter, T. Kinomics: methods for deciphering the kinome. Nat Methods 2, 17–25 (2005). https://doi.org/10.1038/nmeth731

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth731

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing