Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Minimotif Miner: a tool for investigating protein function

Abstract

In addition to large domains, many short motifs mediate functional post-translational modification of proteins as well as protein-protein interactions and protein trafficking functions. We have constructed a motif database comprising 312 unique motifs and a web-based tool for identifying motifs in proteins. Functional motifs predicted by MnM can be ranked by several approaches, and we validated these scores by analyzing thousands of confirmed examples and by confirming prediction of previously unidentified 14-3-3 motifs in EFF-1.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic representation of the modules of the MnM application.
Figure 2: The 14-3-3 motifs are required for EFF-1 function.

Similar content being viewed by others

References

  1. Blom, N., Gammeltoft, S. & Brunak, S. J. Mol. Biol. 294, 1351–1362 (1999).

    Article  CAS  Google Scholar 

  2. Kreegipuu, A., Blom, N. & Brunak, S. Nucleic Acids Res. 27, 237–239 (1999).

    Article  CAS  Google Scholar 

  3. Blom, N., Sicheritz-Ponten, T., Gupta, R., Gammeltoft, S. & Brunak, S. Proteomics 4, 1633–1649 (2004).

    Article  CAS  Google Scholar 

  4. Puntervoll, P. et al. Nucleic Acids Res. 31, 3625–3630 (2003).

    Article  CAS  Google Scholar 

  5. Obenauer, J.C., Cantley, L.C. & Yaffe, M.B. Nucleic Acids Res. 31, 3635–3641 (2003).

    Article  CAS  Google Scholar 

  6. Wheeler, D.L. et al. Nucleic Acids Res. 28, 10–14 (2000).

    Article  CAS  Google Scholar 

  7. Naderi-Manesh, H., Sadeghi, M., Arab, S. & Moosavi Movahedi, A.A. Proteins 42, 452–459 (2001).

    Article  CAS  Google Scholar 

  8. Kloczkowski, A., Ting, K.L., Jernigan, R.L. & Garnier, J. Proteins 49, 154–166 (2002).

    Article  CAS  Google Scholar 

  9. Thiruv, B., Quon, G., Saldanha, S.A. & Steipe, B. BMC Struct. Biol. 5, 12 (2005).

    Article  CAS  Google Scholar 

  10. Mohler, W.A. et al. Dev. Cell 2, 355–362 (2002).

    Article  CAS  Google Scholar 

  11. delCampo, J.J. et al. Curr. Biol. 15, 413–423 (2005).

    Article  CAS  Google Scholar 

  12. Tzivion, G. & Avruch, J. J. Biol. Chem. 277, 3061–3064 (2002).

    Article  CAS  Google Scholar 

  13. Pruitt, K.D. & Maglott, D.R. Nucleic Acids Res. 29, 137–140 (2001).

    Article  CAS  Google Scholar 

  14. Bateman, A. et al. Nucleic Acids Res. 32, D138–D141 (2004).

    Article  CAS  Google Scholar 

  15. Bairoch, A. & Boeckmann, B. Nucleic Acids Res. 19 (Suppl.), 2247–2249 (1991).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was funded in part by US National Institutes of Health grants MH65567 to M.R.S., CCR-9912395 and ITR-0326155 to S.R., EB001496 to M.R.G. and HD43156 to W.A.M., and a Muscular Dystrophy Association grant to W.A.M. We thank R. Holz for providing the GST–14-3-3η construct.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin R Schiller.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Output windows of a MnM Analysis. (PDF 423 kb)

Supplementary Fig. 2

14-3-3 motifs are required for EFF-1 function. (PDF 408 kb)

Supplementary Table 1

Enrichment of selected motifs in the human proteome. (PDF 17 kb)

Supplementary Methods (DOC 77 kb)

Supplementary Discussion (DOC 25 kb)

Supplementary Video 1

Time-lapse video microscopy of normal embryonic cell fusions rescued with wild-type EFF-1. (MOV 703 kb)

Supplementary Video 2

Time-lapse video microscopy of normal embryonic cell fusions rescued with S632/634T mutant EFF-1. (MOV 976 kb)

Supplementary Video 3

Time-lapse video microscopy of abnormal embryonic cell fusions not rescued with S632/634A mutant EFF-1. (MOV 1051 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Balla, S., Thapar, V., Verma, S. et al. Minimotif Miner: a tool for investigating protein function. Nat Methods 3, 175–177 (2006). https://doi.org/10.1038/nmeth856

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth856

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing