Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Local potentiation of excitatory synapses by serotonin and its alteration in rodent models of depression

Abstract

The causes of major depression remain unknown. Antidepressants elevate concentrations of monoamines, particularly serotonin, but it remains uncertain which downstream events are critical to their therapeutic effects. We found that endogenous serotonin selectively potentiated excitatory synapses formed by the temporoammonic pathway with CA1 pyramidal cells via activation of serotonin receptors (5-HT1BRs), without affecting nearby Schaffer collateral synapses. This potentiation was expressed postsynaptically by AMPA-type glutamate receptors and required calmodulin-dependent protein kinase–mediated phosphorylation of GluA1 subunits. Because they share common expression mechanisms, long-term potentiation and serotonin-induced potentiation occluded each other. Long-term consolidation of spatial learning, a function of temporoammonic-CA1 synapses, was enhanced by 5-HT1BR antagonists. Serotonin-induced potentiation was quantitatively and qualitatively altered in a rat model of depression, restored by chronic antidepressants, and required for the ability of chronic antidepressants to reverse stress-induced anhedonia. Changes in serotonin-mediated potentiation, and its recovery by antidepressants, implicate excitatory synapses as a locus of plasticity in depression.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: 5-HT1BR activation selectively potentiates TA-CA1 cell excitatory synapses.
Figure 2: Expression of 5-HT1BR–induced potentiation of TA-CA1 synapses is mediated postsynaptically.
Figure 3: Anpirtoline activates CaMK and increases phosphorylation of GluA1 at serine 831 in SLM tissue.
Figure 4: 5-HT1BR–mediated potentiation occludes LTP at TA-CA1 synapses and influences memory consolidation.
Figure 5: Spatial memory consolidation is affected by endogenous activation of 5-HT1BRs.
Figure 6: Chronic stress enhances, whereas chronic antidepressants eliminate, the effect of anpirtoline on TA-CA1 synaptic transmission.
Figure 7: 5-HT1BR–dependent potentiation of GluA1 receptors is necessary for the therapeutic action of antidepressants.

Similar content being viewed by others

References

  1. Krishnan, V. & Nestler, E.J. The molecular neurobiology of depression. Nature 455, 894–902 (2008).

    Article  CAS  Google Scholar 

  2. Billings, A.G., Cronkite, R.C. & Moos, R.H. Social-environmental factors in unipolar depression: comparisons of depressed patients and nondepressed controls. J. Abnorm. Psychol. 92, 119–133 (1983).

    Article  CAS  Google Scholar 

  3. Heninger, G.R., Delgado, P.L. & Charney, D.S. The revised monoamine theory of depression: a modulatory role for monoamines, based on new findings from monoamine depletion experiments in humans. Pharmacopsychiatry 29, 2–11 (1996).

    Article  CAS  Google Scholar 

  4. Duman, R.S. & Aghajanian, G.K. Synaptic dysfunction in depression: potential therapeutic targets. Science 338, 68–72 (2012).

    Article  CAS  Google Scholar 

  5. Sanacora, G., Zarate, C.A., Krystal, J.H. & Manji, H.K. Targeting the glutamatergic system to develop novel, improved therapeutics for mood disorders. Nat. Rev. Drug Discov. 7, 426–437 (2008).

    Article  CAS  Google Scholar 

  6. Yuen, E.Y. et al. Repeated stress causes cognitive impairment by suppressing glutamate receptor expression and function in prefrontal cortex. Neuron 73, 962–977 (2012).

    Article  CAS  Google Scholar 

  7. Campbell, S. & Macqueen, G. The role of the hippocampus in the pathophysiology of major depression. J. Psychiatry Neurosci. 29, 417–426 (2004).

    PubMed  PubMed Central  Google Scholar 

  8. Hickie, I. et al. Reduced hippocampal volumes and memory loss in patients with early- and late-onset depression. Br. J. Psychiatry 186, 197–202 (2005).

    Article  Google Scholar 

  9. Phillipson, O.T. & Griffiths, A.C. The topographic order of inputs to nucleus accumbens in the rat. Neuroscience 16, 275–296 (1985).

    Article  CAS  Google Scholar 

  10. Lim, B.K., Huang, K.W., Grueter, B.A., Rothwell, P.E. & Malenka, R.C. Anhedonia requires MC4R-mediated synaptic adaptations in nucleus accumbens. Nature 487, 183–189 (2012).

    Article  CAS  Google Scholar 

  11. Ihara, N., Ueda, S., Kawata, M. & Sano, Y. Immunohistochemical demonstration of serotonin-containing nerve fibers in the mammalian hippocampal formation. Acta Anat. 132, 335–346 (1988).

    Article  CAS  Google Scholar 

  12. Remondes, M. & Schuman, E.M. Role for a cortical input to hippocampal area CA1 in the consolidation of a long-term memory. Nature 431, 699–703 (2004).

    Article  CAS  Google Scholar 

  13. Lambe, E.K., Goldman-Rakic, P.S. & Aghajanian, G.K. Serotonin induces EPSCs preferentially in layer V pyramidal neurons of the frontal cortex in the rat. Cereb. Cortex 10, 974–980 (2000).

    Article  CAS  Google Scholar 

  14. Kobayashi, K., Ikeda, Y., Haneda, E. & Suzuki, H. Chronic fluoxetine bidirectionally modulates potentiating effects of serotonin on the hippocampal mossy fiber synaptic transmission. J. Neurosci. 28, 6272–6280 (2008).

    Article  CAS  Google Scholar 

  15. Aït Amara, D., Segu, L., Naili, S. & Buhot, M.C. Serotonin 1B receptor regulation after dorsal subiculum deafferentation. Brain Res. Bull. 38, 17–23 (1995).

    Article  Google Scholar 

  16. Sari, Y. et al. Cellular and subcellular localization of 5-hydroxytryptamine1B receptors in the rat central nervous system: immunocytochemical, autoradiographic and lesion studies. Neuroscience 88, 899–915 (1999).

    Article  CAS  Google Scholar 

  17. Saudou, F. et al. Enhanced aggressive behavior in mice lacking 5-HT1B receptor. Science 265, 1875–1878 (1994).

    Article  CAS  Google Scholar 

  18. Svenningsson, P. et al. Alterations in 5-HT1B receptor function by p11 in depressive-like states. Science 311, 77–80 (2006).

    Article  CAS  Google Scholar 

  19. Göthert, M. et al. 5-HT3 receptor antagonism by anpirtoline, a mixed 5-HT1 receptor agonist/5-HT3 receptor antagonist. Br. J. Pharmacol. 114, 269–274 (1995).

    Article  Google Scholar 

  20. Dewar, K.M., Grondin, L., Carli, M., Lima, L. & Reader, T.A. [3H]paroxetine binding and serotonin content of rat cortical areas, hippocampus, neostriatum, ventral mesencephalic tegmentum, and midbrain raphe nuclei region following p-chlorophenylalanine and p-chloroamphetamine treatment. J. Neurochem. 58, 250–257 (1992).

    Article  CAS  Google Scholar 

  21. Sharp, T., Bramwell, S.R. & Grahame-Smith, D.G. 5-HT1 agonists reduce 5-hydroxytryptamine release in rat hippocampus in vivo as determined by brain microdialysis. Br. J. Pharmacol. 96, 283–290 (1989).

    Article  CAS  Google Scholar 

  22. Jarsky, T., Roxin, A., Kath, W.L. & Spruston, N. Conditional dendritic spike propagation following distal synaptic activation of hippocampal CA1 pyramidal neurons. Nat. Neurosci. 8, 1667–1676 (2005).

    Article  CAS  Google Scholar 

  23. Cai, X. et al. Unique roles of SK and Kv4.2 potassium channels in dendritic integration. Neuron 44, 351–364 (2004).

    Article  CAS  Google Scholar 

  24. Hsu, E.H., Lochan, A.C. & Cowen, D.S. Activation of Akt1 by human 5-hydroxytryptamine (serotonin)1B receptors is sensitive to inhibitors of MEK. J. Pharmacol. Exp. Ther. 298, 825–832 (2001).

    CAS  PubMed  Google Scholar 

  25. Leone, A.M., Errico, M., Lin, S.L. & Cowen, D.S. Activation of extracellular signal-regulated kinase (ERK) and Akt by human serotonin 5-HT(1B) receptors in transfected BE(2)-C neuroblastoma cells is inhibited by RGS4. J. Neurochem. 75, 934–938 (2000).

    Article  CAS  Google Scholar 

  26. Giese, K.P., Fedorov, N.B., Filipkowski, R.K. & Silva, A.J. Autophosphorylation at Thr286 of the alpha calcium-calmodulin kinase II in LTP and learning. Science 279, 870–873 (1998).

    Article  CAS  Google Scholar 

  27. Roche, K.W., O'Brien, R.J., Mammen, A.L., Bernhardt, J. & Huganir, R.L. Characterization of multiple phosphorylation sites on the AMPA receptor GluA1 subunit. Neuron 16, 1179–1188 (1996).

    Article  CAS  Google Scholar 

  28. Lee, H.K., Barbarosie, M., Kameyama, K., Bear, M.F. & Huganir, R.L. Regulation of distinct AMPA receptor phosphorylation sites during bidirectional synaptic plasticity. Nature 405, 955–959 (2000).

    Article  CAS  Google Scholar 

  29. Lee, H.-K., Takamiya, K., Hen, K., Song, L. & Huganir, R.L. Specific roles of AMPA receptor subunit GluR1(GluA1) phosphorylation sites in regulation synaptic plasticity in the CA1 region of the hippocampus. J. Neurophysiol. 103, 479–489 (2010).

    Article  Google Scholar 

  30. Malinow, R. & Malenka, R.C. AMPA receptor trafficking and synaptic plasticity. Annu. Rev. Neurosci. 25, 103–126 (2002).

    Article  CAS  Google Scholar 

  31. Sybirska, E., Davachi, L. & Goldman-Rakic, P.S. Prominence of direct entorhinal-CA1 pathway activation in sensorimotor and cognitive tasks revealed by 2-DG functional mapping in nonhuman primate. J. Neurosci. 20, 5827–5834 (2000).

    Article  CAS  Google Scholar 

  32. Nakashiba, T., Young, J.Z., McHugh, T.J., Buhl, D.L. & Tonegawa, S. Transgenic inhibition of synaptic transmission reveals role of CA3 output in hippocampal learning. Science 319, 1260–1264 (2008).

    Article  CAS  Google Scholar 

  33. Tatarczyńska, E., Kłodzińska, A., Stachowicz, K. & Chojnacka-Wójcik, E. Effects of a selective 5–HT1B receptor agonist and antagonists in animal models of anxiety and depression. Behav. Pharmacol. 15, 523–534 (2004).

    Article  Google Scholar 

  34. Buhot, M.C. et al. Spatial learning in the 5–HT1B receptor knockout mouse: selective facilitation/impairment depending on the cognitive demand. Learn. Mem. 10, 466–477 (2003).

    Article  Google Scholar 

  35. Willner, P., Towell, A., Sampson, D., Sophokleous, S. & Muscat, R. Reduction of sucrose preference by chronic unpredictable mild stress, and its restoration by a tricyclic antidepressant. Psychopharmacology (Berl.) 93, 358–364 (1987).

    Article  CAS  Google Scholar 

  36. David, D.J. et al. Neurogenesis-dependent and -independent effects of fluoxetine in an animal model of anxiety/depression. Neuron 62, 479–493 (2009).

    Article  CAS  Google Scholar 

  37. Svenningsson, P. et al. Involvement of striatal and extrastriatal DARPP-32 in biochemical and behavioral effects of fluoxetine (Prozac). Proc. Natl. Acad. Sci. USA 99, 3182–3187 (2002).

    Article  CAS  Google Scholar 

  38. Bondi, C.O., Rodriguez, G., Gould, G.G., Frazer, A. & Morilak, D.A. Chronic unpredictable stress induces a cognitive deficit and anxiety-like behavior in rats that is prevented by chronic antidepressant drug treatment. Neuropsychopharmacology 33, 320–331 (2008).

    Article  CAS  Google Scholar 

  39. Malatynska, E. & Knapp, R. Dominant-submissive behavior as models of mania and depression. Neurosci. Biobehav. Rev. 29, 715–737 (2005).

    Article  Google Scholar 

  40. Gaster, L.M. et al. The selective 5–HT1B receptor inverse agonist 1′-methyl-5-[[2′-methyl-4′-(5-methyl-1,2,4-oxadiazol-3-yl)biphenyl-4-yl]carbonyl]-2,3,6,7-tetrahydro-spiro[furo[2,3-f]indole-3,4′-piperidine](SB-224289) potently blocks terminal 5-HT autoreceptor function both in vitro and in vivo. J. Med. Chem. 41, 1218–1235 (1998).

    Article  CAS  Google Scholar 

  41. Bechtholt, A.J., Smith, K., Gaughan, S. & Lucki, I. Sucrose intake and fasting glucose levels in 5-HT(1A) and 5-HT(1B) receptor mutant mice. Physiol. Behav. 93, 659–665 (2008).

    Article  CAS  Google Scholar 

  42. O'Neill, M.F. & Conway, M.W. Role of 5-HT1A and 5-HT1B receptors in the mediation of behavior in the forced swim test in mice. Neuropsychopharmacology 24, 391–398 (2001).

    Article  CAS  Google Scholar 

  43. Buard, I. et al. CaMKII “autonomy” is required for initiating but not for maintaining neuronal long-term information storage. J. Neurosci. 30, 8214–8220 (2010).

    Article  CAS  Google Scholar 

  44. Krugers, H.J., Lucassen, P.J., Karst, H. & Joëls, M. Chronic stress effects on hippocampal structure and synaptic function: relevance for depression and normalization by anti-glucocorticoid treatment. Front. Synaptic Neurosci. 2, 1–10 (2010).

    Google Scholar 

  45. Pavlides, C., Nivon, L.G. & McEwen, B.S. Effects of chronic stress on hippocampal long-term potentiation. Hippocampus 12, 245–257 (2002).

    Article  Google Scholar 

  46. Boulenguez, P. et al. Modulation of dopamine release in the nucleus accumbens by 5HTlB agonists: Involvement of the hippocampo-accumbens pathway. Neuropharmacology 35, 1521–1529 (1996).

    Article  CAS  Google Scholar 

  47. Chaudhury, D. et al. Rapid regulation of depression-related behaviours by control of midbrain dopamine neurons. Nature 493, 532–536 (2013).

    Article  CAS  Google Scholar 

  48. Chourbaji, S. et al. AMPA receptor subunit 1 (GluR-A) knockout mice model the glutamate hypothesis of depression. FASEB J. 22, 3129–3134 (2008).

    Article  CAS  Google Scholar 

  49. Autry, A.E. et al. NMDA receptor blockade at rest triggers rapid behavioural antidepressant responses. Nature 475, 91–95 (2011).

    Article  CAS  Google Scholar 

  50. Santarelli, L. et al. Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants. Science 301, 805–809 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank S. Ahmari and R. Hen (Columbia University) for providing Hrt1b−/− mice, B. Alger, T. Blanpied, T. Gould, J. Kim and M. McCarthy for their comments, S. Aungst for advice on immunohistochemistry, and H. Zimmerman, L. Mok and M. Taylor for technical assistance. This work was funded by a Mr. and Mrs. Robert and Lee Peterson Southwest Florida National Alliance for Research on Schizophrenia and Depression Young Investigator Award (X.C.), the Howard Hughes Medical Institute (R.L.H.) and the US National Institutes of Health (R.L.H., H.-K.L., X.C. and S.M.T.).

Author information

Authors and Affiliations

Authors

Contributions

X.C., A.J.K., M.D.K., A.M.B. and S.M.T. designed the study. X.C., A.J.K., M.D.K., S.G., K.G. and A.M.B. performed the experiments and analyzed the data. H.-K.L. and R.L.H. provided the GluA1 S831A mice. X.C., A.J.K. and S.M.T. prepared the manuscript. All of the authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Scott M Thompson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7 (PDF 8719 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cai, X., Kallarackal, A., Kvarta, M. et al. Local potentiation of excitatory synapses by serotonin and its alteration in rodent models of depression. Nat Neurosci 16, 464–472 (2013). https://doi.org/10.1038/nn.3355

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.3355

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing