Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Animal models in epilepsy research: legacies and new directions

Abstract

Human epilepsies encompass a wide variety of clinical, behavioral and electrical manifestations. Correspondingly, studies of this disease in nonhuman animals have brought forward an equally wide array of animal models; that is, species and acute or chronic seizure induction protocols. Epilepsy research has a long history of comparative anatomical and physiological studies on a range of mostly mammalian species. Nonetheless, a relatively limited number of rodent models have emerged as the primary choices for most investigations. In many cases, these animal models are selected on the basis of convenience or tradition, although technical or experimental rationale does, and should, factor into these decisions. More complex mammalian brains and genetic model organisms including zebrafish have been studied less, but offer substantial advantages that are becoming widely recognized.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

Philippa J. Karoly, Vikram R. Rao, … Maxime O. Baud

References

  1. Willner, P. Animal models as simulations of depression. Trends Pharmacol. Sci. 12, 131–136 (1991).

    CAS  PubMed  Google Scholar 

  2. Avanzini, G. Animal models relevant to human epilepsies. Ital. J. Neurol. Sci. 16, 5–8 (1995).

    CAS  PubMed  Google Scholar 

  3. Baraban, S.C. Animal Models of Epilepsy: Methods and Innovations (Humana Press, 2009).

  4. Buckmaster, P.S. Laboratory animal models of temporal lobe epilepsy. Comp. Med. 54, 473–485 (2004).

    CAS  PubMed  Google Scholar 

  5. Calcagnotto, M.E. & Baraban, S.C. Animal models of epilepsy. in Youmans Textbook of Neurological Surgery (ed. Winn, H.R.) 659–665 (Elsevier, 2011).

  6. Harward, S.C. & McNamara, J.O. Aligning animal models with clinical epilepsy: where to begin? Adv. Exp. Med. Biol. 813, 243–251 (2014).

    PubMed  Google Scholar 

  7. Kandratavicius, L. et al. Animal models of epilepsy: use and limitations. Neuropsychiatr. Dis. Treat. 10, 1693–1705 (2014).

    PubMed  PubMed Central  Google Scholar 

  8. Löscher, W. Critical review of current animal models of seizures and epilepsy used in the discovery and development of new antiepileptic drugs. Seizure 20, 359–368 (2011).

    PubMed  Google Scholar 

  9. Pitkänen, A., Schwartzkroin, P.A. & Moshé, S.L. Models of Seizures and Epilepsy (Elsevier, 2005).

  10. Purpura, D.P., Penry, J.K., Tower, D., Woodbury, D.M. & Walter, R. Experimental Models of Epilepsy: a Manual for the Laboratory Worker (Raven Press, 1972).

  11. Raol, Y.H. & Brooks-Kayal, A.R. Experimental models of seizures and epilepsies. Prog. Mol. Biol. Transl. Sci. 105, 57–82 (2012).

    CAS  PubMed  Google Scholar 

  12. Schwartzkroin, P.A. Epilepsy: Models, Mechanisms, and Concepts (Cambridge University Press, Cambridge, 1993).

  13. Bradford, H.F. Glutamate, GABA and epilepsy. Prog. Neurobiol. 47, 477–511 (1995).

    CAS  PubMed  Google Scholar 

  14. Pun, R.Y. et al. Excessive activation of mTOR in postnatally generated granule cells is sufficient to cause epilepsy. Neuron 75, 1022–1034 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Ryan, K., Backos, D.S., Reigan, P. & Patel, M. Post-translational oxidative modification and inactivation of mitochondrial complex I in epileptogenesis. J. Neurosci. 32, 11250–11258 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Jobe, P.C., Mishra, P.K., Ludvig, N. & Dailey, J.W. Scope and contribution of genetic models to an understanding of the epilepsies. Crit. Rev. Neurobiol. 6, 183–220 (1991).

    CAS  PubMed  Google Scholar 

  17. Löscher, W. Genetic animal models of epilepsy as a unique resource for the evaluation of anticonvulsant drugs. A review. Methods Find. Exp. Clin. Pharmacol. 6, 531–547 (1984).

    PubMed  Google Scholar 

  18. Noebels, J.L. Single-gene models of epilepsy. Adv. Neurol. 79, 227–238 (1999).

    CAS  PubMed  Google Scholar 

  19. Puranam, R.S. & McNamara, J.O. Seizure disorders in mutant mice: relevance to human epilepsies. Curr. Opin. Neurobiol. 9, 281–287 (1999).

    CAS  PubMed  Google Scholar 

  20. Schwartzkroin, P.A., Roper, S.N. & Wenzel, H.J. Cortical dysplasia and epilepsy: animal models. Adv. Exp. Med. Biol. 548, 145–174 (2004).

    CAS  PubMed  Google Scholar 

  21. Anonymous. Comparative pathology. Br. Med. J. 2, 371–372 (1869).

  22. Ferrier, D. Experimental researches in cerebral physiology and pathology. J. Anat. Physiol. 8, 152–155 (1873).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Putnam, T.J. & Merritt, H.H. Experimental determination of the anticonvulsant properties of some phenyl derivatives. Science 85, 525–526 (1937).

    CAS  PubMed  Google Scholar 

  24. Gutnick, M.J. & Prince, D.A. Effects of projected cortical epileptiform discharges on neuronal activities in ventrobasal thalamus of the cat: ictal discharge. Exp. Neurol. 46, 418–431 (1975).

    CAS  PubMed  Google Scholar 

  25. Dichter, M. & Spencer, W.A. Penicillin-induced interictal discharges from the cat hippocampus. I. Characteristics and topographical features. J. Neurophysiol. 32, 649–662 (1969).

    CAS  PubMed  Google Scholar 

  26. Krogh, A. The progress of physiology. Science 70, 200–204 (1929).

    CAS  PubMed  Google Scholar 

  27. Kopeloff, L.M., Barrera, S.E. & Kopeloff, N. Recurrent convulsive seizures in animals produced by immunologic and chemical means. Am. J. Psychiatry 98, 881–902 (1942).

    CAS  Google Scholar 

  28. Szabó, C.Á. et al. Epidemiology and characterization of seizures in a pedigreed baboon colony. Comp. Med. 62, 535–538 (2012).

    PubMed  PubMed Central  Google Scholar 

  29. Young, N.A. et al. Epileptic baboons have lower numbers of neurons in specific areas of cortex. Proc. Natl. Acad. Sci. USA 110, 19107–19112 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Howbert, J.J. et al. Forecasting seizures in dogs with naturally occurring epilepsy. PLoS ONE 9, e81920 (2014).

    PubMed  PubMed Central  Google Scholar 

  31. Loscher, W., Potschka, H., Rieck, S., Tipold, A. & Rundfeldt, C. Anticonvulsant efficacy of the low-affinity partial benzodiazepine receptor agonist ELB 138 in a dog seizure model and in epileptic dogs with spontaneously recurrent seizures. Epilepsia 45, 1228–1239 (2004).

    PubMed  Google Scholar 

  32. Potschka, H., Fischer, A., von Ruden, E.L., Hulsmeyer, V. & Baumgartner, W. Canine epilepsy as a translational model? Epilepsia 54, 571–579 (2013).

    CAS  PubMed  Google Scholar 

  33. Sakurai, A., Tamvacakis, A.N. & Katz, P.S. Hidden synaptic differences in a neural circuit underlie differential behavioral susceptibility to a neural injury. Elife 3, e02598 (2014).

    PubMed Central  Google Scholar 

  34. Tauck, D.L. & Nadler, J.V. Evidence of functional mossy fiber sprouting in hippocampal formation of kainic acid–treated rats. J. Neurosci. 5, 1016–1022 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Bell, M.R., Belarde, J.A., Johnson, H.F. & Aizenman, C.D. A neuroprotective role for polyamines in a Xenopus tadpole model of epilepsy. Nat. Neurosci. 14, 505–512 (2011).

    CAS  PubMed  Google Scholar 

  36. Velluti, J.C., Costa da Costa, J. & Russo, R.E. The cerebral hemisphere of the turtle in vitro. An experimental model with spontaneous interictal-like spikes for the study of epilepsy. Epilepsy Res. 28, 29–37 (1997).

    CAS  PubMed  Google Scholar 

  37. Pamenter, M.E., Hogg, D.W., Gu, X.Q., Buck, L.T. & Haddad, G.G. Painted turtle cortex is resistant to an in vitro mimic of the ischemic mammalian penumbra. J. Cereb. Blood Flow Metab. 32, 2033–2043 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Margoliash, D., van Drongelen, W. & Kohrman, M. Introducing songbirds as a model system for epilepsy research. J. Clin. Neurophysiol. 27, 433–437 (2010).

    PubMed  Google Scholar 

  39. Teillet, M.A. et al. Transfer of genetic epilepsy by embryonic brain grafts in the chicken. Proc. Natl. Acad. Sci. USA 88, 6966–6970 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Buckmaster, P.S., Wen, X., Toyoda, I., Gulland, F.M. & Van Bonn, W. Hippocampal neuropathology of domoic acid-induced epilepsy in California sea lions (Zalophus californianus). J. Comp. Neurol. 522, 1691–1706 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Do Carmo, S. & Cuello, A.C. Modeling Alzheimer's disease in transgenic rats. Mol. Neurodegener. 8, 37 (2013).

    PubMed  PubMed Central  Google Scholar 

  42. Duranthon, V. et al. On the emerging role of rabbit as human disease model and the instrumental role of novel transgenic tools. Transgenic Res. 21, 699–713 (2012).

    CAS  PubMed  Google Scholar 

  43. Chieppa, M.N. et al. Modeling amyotrophic lateral sclerosis in hSOD1 transgenic swine. Neurodegener. Dis. 13, 246–254 (2014).

    CAS  PubMed  Google Scholar 

  44. Niu, Y. et al. Generation of gene-modified cynomolgus monkey via Cas9/RNA-mediated gene targeting in one-cell embryos. Cell 156, 836–843 (2014).

    CAS  PubMed  Google Scholar 

  45. Pinel, J.P.J., Mucha, R.F. & Phillips, A.G. Spontaneous seizures generated in rats by kindling - preliminary report. Physiol. Psychol. 3, 127–129 (1975).

    Google Scholar 

  46. Bertram, E. The relevance of kindling for human epilepsy. Epilepsia 48 (suppl. 2), 65–74 (2007).

    PubMed  Google Scholar 

  47. Lynch, V.J. Use with caution: developmental systems divergence and potential pitfalls of animal models. Yale J. Biol. Med. 82, 53–66 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Schauwecker, P.E. The relevance of individual genetic background and its role in animal models of epilepsy. Epilepsy Res. 97, 1–11 (2011).

    PubMed  PubMed Central  Google Scholar 

  49. Frankel, W.N., Taylor, L., Beyer, B., Tempel, B.L. & White, H.S. Electroconvulsive thresholds of inbred mouse strains. Genomics 74, 306–312 (2001).

    CAS  PubMed  Google Scholar 

  50. McKhann, G.M. II, Wenzel, H.J., Robbins, C.A., Sosunov, A.A. & Schwartzkroin, P.A. Mouse strain differences in kainic acid sensitivity, seizure behavior, mortality, and hippocampal pathology. Neuroscience 122, 551–561 (2003).

    CAS  PubMed  Google Scholar 

  51. Snyder, J.S. et al. Adult-born hippocampal neurons are more numerous, faster maturing, and more involved in behavior in rats than in mice. J. Neurosci. 29, 14484–14495 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Parent, J.M. et al. Dentate granule cell neurogenesis is increased by seizures and contributes to aberrant network reorganization in the adult rat hippocampus. J. Neurosci. 17, 3727–3738 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Cantallops, I. & Routtenberg, A. Kainic acid induction of mossy fiber sprouting: dependence on mouse strain. Hippocampus 10, 269–273 (2000).

    CAS  PubMed  Google Scholar 

  54. Swartz, B.E. et al. Hippocampal cell loss in posttraumatic human epilepsy. Epilepsia 47, 1373–1382 (2006).

    PubMed  Google Scholar 

  55. Green, M.C. & Sidman, R.L. Tottering: a neuromusclar mutation in the mouse. And its linkage with oligosyndacylism. J. Hered. 53, 233–237 (1962).

    CAS  PubMed  Google Scholar 

  56. Tsuji, S. & Meier, H. Evidence for allelism of leaner and tottering in the mouse. Genet. Res. 17, 83–88 (1971).

    CAS  PubMed  Google Scholar 

  57. Noebels, J.L. & Sidman, R.L. Inherited epilepsy: spike-wave and focal motor seizures in the mutant mouse tottering. Science 204, 1334–1336 (1979).

    CAS  PubMed  Google Scholar 

  58. Seyfried, T.N. & Glaser, G.H. A review of mouse mutants as genetic models of epilepsy. Epilepsia 26, 143–150 (1985).

    CAS  PubMed  Google Scholar 

  59. Fletcher, C.F. et al. Absence epilepsy in tottering mutant mice is associated with calcium channel defects. Cell 87, 607–617 (1996).

    CAS  PubMed  Google Scholar 

  60. Fletcher, C.F. & Frankel, W.N. Ataxic mouse mutants and molecular mechanisms of absence epilepsy. Hum. Mol. Genet. 8, 1907–1912 (1999).

    CAS  PubMed  Google Scholar 

  61. Noebels, J.L. The voltage-gated calcium channel and absence epilepsy. in Jasper's Basic Mechanisms of the Epilepsies (eds. Noebels, J.L., Avoli, M., Rogawski, M.A., Olsen, R.W. & Delgado-Escueta, A.V.) (Bethesda, 2012).

  62. Jones, D.L. & Baraban, S.C. Characterization of inhibitory circuits in the malformed hippocampus of Lis1 mutant mice. J. Neurophysiol. 98, 2737–2746 (2007).

    PubMed  Google Scholar 

  63. Wang, Y. et al. Neocortical hyperexcitability in a human case of tuberous sclerosis complex and mice lacking neuronal expression of TSC1. Ann. Neurol. 61, 139–152 (2007).

    CAS  PubMed  Google Scholar 

  64. Yu, F.H. et al. Reduced sodium current in GABAergic interneurons in a mouse model of severe myoclonic epilepsy in infancy. Nat. Neurosci. 9, 1142–1149 (2006).

    CAS  PubMed  Google Scholar 

  65. Zeng, L.H., Xu, L., Gutmann, D.H. & Wong, M. Rapamycin prevents epilepsy in a mouse model of tuberous sclerosis complex. Ann. Neurol. 63, 444–453 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Han, S. et al. Autistic-like behaviour in Scn1a+/− mice and rescue by enhanced GABA-mediated neurotransmission. Nature 489, 385–390 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Lakaye, B., Thomas, E., Minet, A. & Grisar, T. The genetic absence epilepsy rat from Strasbourg (GAERS), a rat model of absence epilepsy: computer modeling and differential gene expression. Epilepsia 43 (suppl. 5), 123–129 (2002).

    CAS  PubMed  Google Scholar 

  68. Baulac, S. et al. A rat model for LGI1-related epilepsies. Hum. Mol. Genet. 21, 3546–3557 (2012).

    CAS  PubMed  Google Scholar 

  69. Salkoff, L. & Kelly, L. Temperature-induced seizure and frequency-dependent neuromuscular block in a ts mutant of Drosophila. Nature 273, 156–158 (1978).

    CAS  PubMed  Google Scholar 

  70. Sun, L. et al. A knock-in model of human epilepsy in Drosophila reveals a novel cellular mechanism associated with heat-induced seizure. J. Neurosci. 32, 14145–14155 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Abou-Khalil, B. et al. Partial and generalized epilepsy with febrile seizures plus and a novel SCN1A mutation. Neurology 57, 2265–2272 (2001).

    CAS  PubMed  Google Scholar 

  72. Lossin, C. A catalog of SCN1A variants. Brain Dev. 31, 114–130 (2009).

    PubMed  Google Scholar 

  73. Papazian, D.M., Schwarz, T.L., Tempel, B.L., Jan, Y.N. & Jan, L.Y. Cloning of genomic and complementary DNA from Shaker, a putative potassium channel gene from Drosophila. Science 237, 749–753 (1987).

    CAS  PubMed  Google Scholar 

  74. Smart, S.L. et al. Deletion of the K(V)1.1 potassium channel causes epilepsy in mice. Neuron 20, 809–819 (1998).

    CAS  PubMed  Google Scholar 

  75. Zuberi, S.M. et al. A novel mutation in the human voltage-gated potassium channel gene (Kv1.1) associates with episodic ataxia type 1 and sometimes with partial epilepsy. Brain 122 (Pt 5): 817–825 (1999).

    PubMed  Google Scholar 

  76. Frankel, W.N. Detecting genes in new and old mouse models for epilepsy: a prospectus through the magnifying glass. Epilepsy Res. 36, 97–110 (1999).

    CAS  PubMed  Google Scholar 

  77. Thomas, R.H. & Berkovic, S.F. The hidden genetics of epilepsy-a clinically important new paradigm. Nat. Rev. Neurol. 10, 283–292 (2014).

    PubMed  Google Scholar 

  78. Williams, S.N., Locke, C.J., Braden, A.L., Caldwell, K.A. & Caldwell, G.A. Epileptic-like convulsions associated with LIS-1 in the cytoskeletal control of neurotransmitter signaling in Caenorhabditis elegans. Hum. Mol. Genet. 13, 2043–2059 (2004).

    CAS  PubMed  Google Scholar 

  79. Gao, S. & Zhen, M. Action potentials drive body wall muscle contractions in Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA 108, 2557–2562 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Roosen-Runge, E.C. On the early development—bipolar differentiation and cleavage—of the zebra fish, Brachydanio rerio. Biol. Bull. 75, 119–133 (1938).

    Google Scholar 

  81. Howe, K. et al. The zebrafish reference genome sequence and its relationship to the human genome. Nature 496, 498–503 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Baraban, S.C., Taylor, M.R., Castro, P.A. & Baier, H. Pentylenetetrazole induced changes in zebrafish behavior, neural activity and c-fos expression. Neuroscience 131, 759–768 (2005).

    CAS  PubMed  Google Scholar 

  83. Hunt, R.F., Hortopan, G.A., Gillespie, A. & Baraban, S.C. A novel zebrafish model of hyperthermia-induced seizures reveals a role for TRPV4 channels and NMDA-type glutamate receptors. Exp. Neurol. 237, 199–206 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Jirsa, V.K., Stacey, W.C., Quilichini, P.P., Ivanov, A.I. & Bernard, C. On the nature of seizure dynamics. Brain 137, 2210–2230 (2014).

    PubMed  PubMed Central  Google Scholar 

  85. Granato, M. et al. Genes controlling and mediating locomotion behavior of the zebrafish embryo and larva. Development 123, 399–413 (1996).

    CAS  PubMed  Google Scholar 

  86. Muto, A. et al. Forward genetic analysis of visual behavior in zebrafish. PLoS Genet. 1, e66 (2005).

    PubMed  PubMed Central  Google Scholar 

  87. Hortopan, G.A., Dinday, M.T. & Baraban, S.C. Spontaneous seizures and altered gene expression in GABA signaling pathways in a mind bomb mutant zebrafish. J. Neurosci. 30, 13718–13728 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Baraban, S.C., Dinday, M.T. & Hortopan, G.A. Drug screening in Scn1a zebrafish mutant identifies clemizole as a potential Dravet syndrome treatment. Nat. Commun. 4, 2410 (2013).

    PubMed  Google Scholar 

  89. Ramirez, I.B. et al. Impaired neural development in a zebrafish model for Lowe syndrome. Hum. Mol. Genet. 21, 1744–1759 (2012).

    CAS  PubMed  Google Scholar 

  90. Baraban, S.C. Forebrain electrophysiological recording in larval zebrafish. J. Vis. Exp. published online, doi:10.3791/50104 (24 January 2013).

  91. Baraban, S.C. et al. A large-scale mutagenesis screen to identify seizure-resistant zebrafish. Epilepsia 48, 1151–1157 (2007).

    PubMed  PubMed Central  Google Scholar 

  92. Chege, S.W., Hortopan, G.A., Matthew, T.D. & Baraban, S.C. Expression and function of KCNQ channels in larval zebrafish. Dev. Neurobiol. 72, 186–198 (2012).

    CAS  PubMed  Google Scholar 

  93. Hortopan, G.A. & Baraban, S.C. Aberrant expression of genes necessary for neuronal development and Notch signaling in an epileptic mind bomb zebrafish. Dev. Dyn. 240, 1964–1976 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Kettleborough, R.N. et al. A systematic genome-wide analysis of zebrafish protein-coding gene function. Nature 496, 494–497 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Moens, C.B., Donn, T.M., Wolf-Saxon, E.R. & Ma, T.P. Reverse genetics in zebrafish by TILLING. Brief. Funct. Genomic. Proteomic. 7, 454–459 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Teng, Y. et al. Knockdown of zebrafish Lgi1a results in abnormal development, brain defects and a seizure-like behavioral phenotype. Hum. Mol. Genet. 19, 4409–4420 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Suls, A. et al. De novo loss-of-function mutations in CHD2 cause a fever-sensitive myoclonic epileptic encephalopathy sharing features with Dravet syndrome. Am. J. Hum. Genet. 93, 967–975 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Bill, B.R., Petzold, A.M., Clark, K.J., Schimmenti, L.A. & Ekker, S.C. A primer for morpholino use in zebrafish. Zebrafish 6, 69–77 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Hwang, W.Y. et al. Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat. Biotechnol. 31, 227–229 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Arrenberg, A.B. & Driever, W. Integrating anatomy and function for zebrafish circuit analysis. Front. Neural. Circuits 7, 74 (2013).

    PubMed  PubMed Central  Google Scholar 

  101. Renninger, S.L. & Orger, M.B. Two-photon imaging of neural population activity in zebrafish. Methods 62, 255–267 (2013).

    CAS  PubMed  Google Scholar 

  102. Hall, C.S. Genetic differences in fatal audiogenic seizures between two inbred strains of house mice. J. Hered. 38, 2–6 (1947).

    CAS  PubMed  Google Scholar 

  103. Trimble, M., Anlezark, G. & Meldrum, B. Seizure activity in photosensitive baboons following antidepressant drugs and the role of serotoninergic mechanisms. Psychopharmacology (Berl.) 51, 159–164 (1977).

    CAS  Google Scholar 

Download references

Acknowledgements

The authors thank R. Hunt and M. Howard for discussions and advice. S.C.B. is supported by funds from the US National Institutes of Health, Citizens United for Research in Epilepsy, Dravet Syndrome Foundation and California Institute for Regenerative Medicine. B.P.G. is supported, in part, by funds from the Lennox-Gastaut Syndrome foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian P Grone.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grone, B., Baraban, S. Animal models in epilepsy research: legacies and new directions. Nat Neurosci 18, 339–343 (2015). https://doi.org/10.1038/nn.3934

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.3934

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing