Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Subunit-specific temporal and spatial patterns of AMPA receptor exocytosis in hippocampal neurons

Abstract

Using a thrombin cleavage assay in cultured hippocampal neurons, we studied the kinetics, regulation and site of AMPA receptor surface delivery. Surface insertion of the GluR1 subunit occurs slowly in basal conditions and is stimulated by NMDA receptor activation and insulin, whereas GluR2 exocytosis is constitutively rapid. Although both subunits ultimately concentrate in synapses, GluR1 and GluR2 show different spatial patterns of surface accumulation, consistent with GluR1 being inserted initially at extrasynaptic sites and GluR2 being inserted more directly at synapses. The spatiotemporal pattern of surface accumulation is determined by the cytoplasmic tails of GluR subunits, and in heteromeric receptors, GluR1 acts dominantly over GluR2. We propose that GluR1 controls the exocytosis and GluR2/3, the recycling and endocytosis of AMPA receptors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Specificity of thrombin cleavage of surface HA/T-GluR.
Figure 2: Time course of surface delivery of HA/T-GluR1 and -GluR2 in cultured hippocampal neurons.
Figure 3: Time course of HA/T-GluR1 and HA/T-GluR2 recycling in hippocampal neurons.
Figure 4: Time course of exocytosis of GluR chimeras and heteromeric GluR1/GluR2 receptors.
Figure 5: Regulation of exocytosis of HA/T-GluR1 and -GluR2 by NMDA receptor activation and insulin.
Figure 6: Effect of C-terminal mutations on the surface level and exocytosis of GluR1.
Figure 7: Effect of C-terminal mutations on surface levels and exocytosis of GluR2.
Figure 8: Synaptic concentration of HA/T-GluR1 and HA/T-GluR2 in hippocampal neurons.
Figure 9: Differential spatiotemporal pattern of surface accumulation of HA/T-GluR1 and -GluR2.

Similar content being viewed by others

References

  1. Dingledine, R., Borges, K., Bowie, D. & Traynelis, S. F. The glutamate receptor ion channels. Pharmacol. Rev. 51, 7–61 (1999).

    CAS  PubMed  Google Scholar 

  2. Turrigiano, G. G. AMPA receptors unbound: membrane cycling and synaptic plasticity. Neuron 26, 5–8 (2000).

    CAS  PubMed  Google Scholar 

  3. Malinow, R., Mainen, Z. F. & Hayashi, Y. LTP mechanisms: from silence to four-lane traffic. Curr. Opin. Neurobiol. 10, 352–357 (2000).

    CAS  PubMed  Google Scholar 

  4. Scannevin, R. H. & Huganir, R. L. Postsynaptic organization and regulation of excitatory synapses. Nat. Rev. Neurosci. 1, 133–141 (2000).

    CAS  PubMed  Google Scholar 

  5. Lüscher, C., Nicoll, R. A., Malenka, R. C. & Muller, D. Synaptic plasticity and dynamic modulation of the postsynaptic membrane. Nat. Neurosci. 3, 545–550 (2000).

    PubMed  Google Scholar 

  6. Lüscher, C. et al. Role of AMPA receptor cycling in synaptic transmission and plasticity. Neuron 24, 649–658 (1999).

    PubMed  Google Scholar 

  7. Wang, Y. T. & Linden, D. J. Expression of cerebellar long-term depression requires postsynaptic clathrin-mediated endocytosis. Neuron 25, 635–647 (2000).

    CAS  PubMed  Google Scholar 

  8. Man, Y. H. et al. Regulation of AMPA receptor-mediated synaptic transmission by clathrin-dependent receptor internalization. Neuron 25, 649–662 (2000).

    CAS  PubMed  Google Scholar 

  9. Carroll, R. C., Lissin, D. V., von Zastrow, M., Nicoll, R. A. & Malenka, R. C. Rapid redistribution of glutamate receptors contributes to long-term depression in hippocampal cultures. Nat. Neurosci. 2, 454–460 (1999).

    CAS  PubMed  Google Scholar 

  10. Lissin, D. V. et al. Activity differentially regulates the surface expression of synaptic AMPA and NMDA glutamate receptors. Proc. Natl. Acad. Sci. USA 95, 7097–7102 (1998).

    CAS  PubMed  Google Scholar 

  11. Carroll, R. C. et al. Dynamin-dependent endocytosis of ionotropic glutamate receptors. Proc. Natl. Acad. Sci. USA 96, 14112–14117 (1999).

    CAS  PubMed  Google Scholar 

  12. Lin, J. W. et al. Distinct molecular mechanisms and divergent endocytotic pathways of AMPA receptor internalization. Nat. Neurosci. 3, 1282–1290 (2000).

    CAS  PubMed  Google Scholar 

  13. Beattie, E. C. et al. Regulation of AMPA receptor endocytosis by a signaling mechanism shared with LTD. Nat. Neurosci. 3, 1291–1300 (2000).

    CAS  PubMed  Google Scholar 

  14. Ehlers, M. D. Reinsertion or degradation of AMPA receptors determined by activity-dependent endocytic sorting. Neuron 28, 511–525 (2000).

    CAS  PubMed  Google Scholar 

  15. Xia, J., Chung, H. J., Wihler, C., Huganir, R. L. & Linden, D. J. Cerebellar long-term depression requires PKC-regulated interactions between GluR2/3 and PDZ domain-containing proteins. Neuron 28, 499–510 (2000).

    CAS  PubMed  Google Scholar 

  16. Chung, H. J., Xia, J., Scannevin, R. H., Zhang, X. & Huganir, R. L. Phosphorylation of the AMPA receptor subunit GluR2 differentially regulates its interaction with PDZ domain-containing proteins. J. Neurosci. 20, 7258–7267 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Hayashi, Y. et al. Driving AMPA receptors into synapses by LTP and CaMKII: requirement for GluR1 and PDZ domain interaction. Science 287, 2262–2267 (2000).

    CAS  PubMed  Google Scholar 

  18. Shi, S. H. et al. Rapid spine delivery and redistribution of AMPA receptors after synaptic NMDA receptor activation. Science 284, 1811–1816 (1999).

    CAS  PubMed  Google Scholar 

  19. Zhu, J. J., Esteban, J. A., Hayashi, Y. & Malinow, R. Postnatal synaptic potentiation: delivery of GluR4-containing AMPA receptors by spontaneous activity. Nat. Neurosci. 3, 1098–1106 (2000).

    CAS  PubMed  Google Scholar 

  20. Shi, S., Hayashi, Y., Esteban, J. A. & Malinow, R. Subunit-specific rules governing AMPA receptor trafficking to synapses in hippocampal pyramidal neurons. Cell 105, 331–343 (2001).

    CAS  PubMed  Google Scholar 

  21. Lledo, P.-M., Zhang, X., Südhof, T. C., Malenka, R. C. & Nicoll, R. A. Postsynaptic membrane fusion and long-term potentiation. Science 279, 399–403 (1998).

    CAS  PubMed  Google Scholar 

  22. Chen, L. et al. Stargazin regulates synaptic targeting of AMPA receptors by two distinct mechanisms. Nature 408, 936–943 (2000).

    CAS  PubMed  Google Scholar 

  23. Nakagawa, T. & Sheng, M. Neurobiology. A stargazer foretells the way to the synapse. Science 290, 2270–2271 (2000).

    CAS  PubMed  Google Scholar 

  24. Hein, L., Ishii, K., Coughlin, S. R. & Kobilka, B. K. Intracellular targeting and trafficking of thrombin receptors. A novel mechanism for resensitization of a G protein-coupled receptor. J. Biol. Chem. 269, 27719–27726 (1994).

    CAS  PubMed  Google Scholar 

  25. Daunt, D. A. et al. Subtype-specific intracellular trafficking of α2-adrenergic receptors. Mol. Pharmacol. 51, 711–720 (1997).

    CAS  PubMed  Google Scholar 

  26. Wenthold, R. J., Petralia, R. S., Blahos, J. I. & Niedzielski, A. S. Evidence for multiple AMPA receptor complexes in hippocampal CA1/CA2 neurons. J. Neurosci. 16, 1982–1989 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Leonard, A. S., Davare, M. A., Horne, M. C., Garner, C. C. & Hell, J. W. SAP97 is associated with the alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor GluR1 subunit. J. Biol. Chem. 273, 19518–19524 (1998).

    CAS  PubMed  Google Scholar 

  28. Dong, H. et al. GRIP: a synaptic PDZ domain-containing protein that interacts with AMPA receptors. Nature 386, 279–284 (1997).

    CAS  PubMed  Google Scholar 

  29. Srivastava, S. et al. Novel anchorage of GluR2/3 to the postsynaptic density by the AMPA receptor-binding protein ABP. Neuron 21, 581–591 (1998).

    CAS  PubMed  Google Scholar 

  30. Wyszynski, M. et al. Association of AMPA receptors with a subset of glutamate receptor-interacting protein in vivo. J. Neurosci. 19, 6528–6537 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Sheng, M. & Pak, D. T. S. Ligand-gated ion channel interactions with cytoskeletal and signaling proteins. Annu. Rev. Physiol. 62, 755–778 (2000).

    CAS  PubMed  Google Scholar 

  32. Li, P. et al. AMPA receptor-PDZ interactions in facilitation of spinal sensory synapses. Nat. Neurosci. 2, 972–977 (1999).

    CAS  PubMed  Google Scholar 

  33. Osten, P. et al. Mutagenesis reveals a role for ABP/GRIP binding to GluR2 in synaptic surface accumulation of the AMPA receptor. Neuron 27, 313–325 (2000).

    CAS  PubMed  Google Scholar 

  34. Daw, M. I. et al. PDZ proteins interacting with C-terminal GluR2/3 are involved in a PKC-dependent regulation of AMPA receptors at hippocampal synapses. Neuron 28, 873–886 (2000).

    CAS  PubMed  Google Scholar 

  35. Matsuda, S., Launey, T., Mikawa, S. & Hirai, H. Disruption of AMPA receptor GluR2 clusters following long-term depression induction in cerebellar Purkinje neurons. EMBO J. 19, 2765–2774 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Lu, W. et al. Activation of synaptic NMDA receptors induces membrane insertion of new AMPA receptors and LTP in cultured hippocampal neurons. Neuron 29, 243–254 (2001).

    CAS  PubMed  Google Scholar 

  37. Klausner, R. D., Donaldson, J. G. & Lippincott-Schwartz, J. Brefeldin A: insights into the control of membrane traffic and organelle structure. J. Cell Biol. 116, 1071–1080 (1992).

    CAS  PubMed  Google Scholar 

  38. Chardin, P. & McCormick, F. Brefeldin A: the advantage of being uncompetitive. Cell 97, 153–155 (1999).

    CAS  PubMed  Google Scholar 

  39. Zamanillo, D. et al. Importance of AMPA receptors for hippocampal synaptic plasticity but not for spatial learning. Science 284, 1805–1811 (1999).

    CAS  PubMed  Google Scholar 

  40. Jia, Z. et al. Enhanced LTP in mice deficient in the AMPA receptor GluR2. Neuron 17, 945–956 (1996).

    CAS  PubMed  Google Scholar 

  41. Sheng, M. & Sala, C. Pdz domains and the organization of supramolecular complexes. Annu. Rev. Neurosci. 24, 1–29 (2001).

    CAS  PubMed  Google Scholar 

  42. Zhou, Q., Xiao, M. & Nicoll, R. A. Contribution of cytoskeleton to the internalization of AMPA receptors. Proc. Natl. Acad. Sci. USA 98, 1261–1266 (2001).

    CAS  PubMed  Google Scholar 

  43. Brewer, G. J., Torricelli, J. R., Evege, E. K. & Price, P. J. Optimized survival of hippocampal neurons in B27-supplemented Neurobasal, a new serum-free medium combination. J. Neurosci. Res. 35, 567–576 (1993).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank C. Sala, S. Hyoung Lee, M. Wyszynski and Y. Tian Wang for discussions. This work was supported by NIH grant NS 35050 (M.S.). M.S. is Associate Investigator of the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Morgan Sheng.

Supplementary information

Supplementary Fig.1.

A model for postsynaptic AMPA receptor trafficking.AMPA receptors are represented as heteromers of GluR1/GluR2 or GluR2/GluR3.GluR1 controls the regulated exocytosis of AMPA receptors (acting dominantly in GluR1/GluR2 heteromers).GluR2 mediates the constitutive recycling and regulated endocytosis of AMPA receptors.(See text for details). (GIF 15 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Passafaro, M., Piëch, V. & Sheng, M. Subunit-specific temporal and spatial patterns of AMPA receptor exocytosis in hippocampal neurons. Nat Neurosci 4, 917–926 (2001). https://doi.org/10.1038/nn0901-917

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn0901-917

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing