Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

TRPC5 is a regulator of hippocampal neurite length and growth cone morphology

Abstract

Growth cone motility is regulated by both fast voltage-dependent Ca2+ channels and by unknown receptor-operated Ca2+ entry mechanisms. Transient receptor potential (TRP) homomeric TRPC5 ion channels are receptor-operated, Ca2+-permeable channels predominantly expressed in the brain. Here we show that TRPC5 is expressed in growth cones of young rat hippocampal neurons. Our results indicate that TRPC5 channel subunits interact with the growth cone–enriched protein stathmin 2, are packaged into vesicles and are carried to newly forming growth cones and synapses. Once in the growth cone, TRPC5 channels regulate neurite extension and growth-cone morphology. Dominant-negative TRPC5 expression allowed significantly longer neurites and filopodia to form. We conclude that TRPC5 channels are important components of the mechanism controlling neurite extension and growth cone morphology.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: TRPC5 in hippocampal neurons.
Figure 2: Endogenous TRPC5 colocalized with cytoplasmic transport packet markers in hippocampal processes.
Figure 3: TRPC5 localized to clusters of pleiomorphic vesicular structures.
Figure 4: An ITRPC5-like current in hippocampal growth cones.
Figure 5: TRPC5 complexes with the stathmin domain of neuron-specific stathmin 2.
Figure 6: Stathmin 2 is required for TRPC5 loading onto packets targeted to growth cones.
Figure 7: Stmn2mut- and DN-TRPC5-transfected hippocampal neurons have longer filopodia and neurites.

Similar content being viewed by others

References

  1. Berridge, M.J. Neuronal calcium signaling. Neuron 21, 13–26 (1998).

    Article  CAS  Google Scholar 

  2. Berridge, M.J., Lipp, P. & Bootman, M.D. The versatility and universality of calcium signalling. Nat. Rev. Mol. Cell. Biol. 1, 11–21 (2000).

    Article  CAS  Google Scholar 

  3. Crabtree, G.R. Calcium, calcineurin, and the control of transcription. J. Biol. Chem. 276, 2313–2316 (2001).

    Article  CAS  Google Scholar 

  4. Gomez, T.M., Robles, E., Poo, M. & Spitzer, N.C. Filopodial calcium transients promote substrate-dependent growth cone turning. Science 291, 1983–1987 (2001).

    Article  CAS  Google Scholar 

  5. Gomez, T.M. & Spitzer, N.C. In vivo regulation of axon extension and pathfinding by growth-cone calcium transients. Nature 397, 350–355 (1999).

    Article  CAS  Google Scholar 

  6. Spitzer, N.C., Lautermilch, N.J., Smith, R.D. & Gomez, T.M. Coding of neuronal differentiation by calcium transients. Bioessays 22, 811–817 (2000).

    Article  CAS  Google Scholar 

  7. Clapham, D.E., Runnels, L.W. & Strübing, C. The TRP ion channel family. Nat. Rev. Neurosci. 2, 387–396 (2001).

    Article  CAS  Google Scholar 

  8. Harteneck, C., Plant, T.D. & Schultz, G. From worm to man: three subfamilies of TRP channels. Trends Neurosci. 23, 159–166 (2000).

    Article  CAS  Google Scholar 

  9. Montell, C., Birnbaumer, L. & Flockerzi, V. The TRP channels, a remarkably functional family. Cell 108, 595–598 (2002).

    Article  CAS  Google Scholar 

  10. Strübing, C., Krapivinsky, G., Krapivinsky, L. & Clapham, D.E. TRPC1 and TRPC5 form a novel cation channel in mammalian brain. Neuron 29, 645–655 (2001).

    Article  Google Scholar 

  11. Schaefer, M. et al. Receptor-mediated regulation of the nonselective cation channels TRPC4 and TRPC5. J. Biol. Chem. 275, 17517–17526 (2000).

    Article  CAS  Google Scholar 

  12. Hofmann, T., Schaefer, M., Schultz, G. & Gudermann, T. Subunit composition of mammalian transient receptor potential channels in living cells. Proc. Natl. Acad. Sci. USA 99, 7461–7466 (2002).

    Article  CAS  Google Scholar 

  13. Okada, T. et al. Molecular cloning and functional characterization of a novel receptor- activated TRP Ca2+ channel from mouse brain. J. Biol. Chem. 273, 10279–10287 (1998).

    Article  CAS  Google Scholar 

  14. Okada, T. et al. Molecular and functional characterization of a novel mouse transient receptor potential protein homologue TRP7. Ca2+-permeable cation channel that is constitutively activated and enhanced by stimulation of G protein-coupled receptor. J. Biol. Chem. 274, 27359–27370 (1999).

    Article  CAS  Google Scholar 

  15. Bartlett, W.P. & Banker, G.A. An electron microscopic study of the development of axons and dendrites by hippocampal neurons in culture. I. Cells which develop without intercellular contacts. J. Neurosci. 4, 1944–1953 (1984).

    Article  CAS  Google Scholar 

  16. Weed, S.A. & Parsons, J.T. Cortactin: coupling membrane dynamics to cortical actin assembly. Oncogene 20, 6418–6434 (2001).

    Article  CAS  Google Scholar 

  17. Weaver, A.M. et al. Cortactin promotes and stabilizes Arp2/3-induced actin filament network formation. Curr. Biol. 11, 370–374 (2001).

    Article  CAS  Google Scholar 

  18. Weed, S.A., Du, Y. & Parsons, J.T. Translocation of cortactin to the cell periphery is mediated by the small GTPase Rac1. J. Cell. Sci. 111, 2433–2443 (1998).

    CAS  PubMed  Google Scholar 

  19. Du, Y., Weed, S.A., Xiong, W.C., Marshall, T.D. & Parsons, J.T. Identification of a novel cortactin SH3 domain-binding protein and its localization to growth cones of cultured neurons. Mol. Cell. Biol. 18, 5838–5851 (1998).

    Article  CAS  Google Scholar 

  20. Martin, T.F. Prime movers of synaptic vesicle exocytosis. Neuron 34, 9–12 (2002).

    Article  CAS  Google Scholar 

  21. Chen, Y.A. & Scheller, R.H. SNARE-mediated membrane fusion. Nat. Rev. Mol. Cell. Biol. 2, 98–106 (2001).

    Article  CAS  Google Scholar 

  22. Ahmari, S.E., Buchanan, J. & Smith, S.J. Assembly of presynaptic active zones from cytoplasmic transport packets. Nat. Neurosci. 3, 445–451 (2000).

    Article  CAS  Google Scholar 

  23. Nakata, T., Terada, S. & Hirokawa, N. Visualization of the dynamics of synaptic vesicle and plasma membrane proteins in living axons. J. Cell Biol. 140, 659–674 (1998).

    Article  CAS  Google Scholar 

  24. Jung, S. et al. Lanthanides potentiate TRPC5 currents by an action at extracellular sites close to the pore mouth. J. Biol. Chem. 278, 3562–3571 (2003).

    Article  CAS  Google Scholar 

  25. Nadler, M.J.S. et al. LTRPC7 is a Mg–ATP-regulated divalent cation channel required for cell viability. Nature 411, 590–595 (2001).

    Article  CAS  Google Scholar 

  26. Runnels, L.W., Yue, L. & Clapham, D.E. TRP-PLIK, a bifunctional protein with kinase and ion channel activities. Science 291, 1043–1047 (2001).

    Article  CAS  Google Scholar 

  27. Ozon, S., Byk, T. & Sobel, A. SCLIP: a novel SCG10-like protein of the stathmin family expressed in the nervous system. J. Neurochem. 70, 2386–2396 (1998).

    Article  CAS  Google Scholar 

  28. Gavet, O. et al. The stathmin phosphoprotein family: intracellular localization and effects on the microtubule network. J. Cell. Sci. 111, 3333–3346 (1998).

    CAS  PubMed  Google Scholar 

  29. Stein, R., Mori, N., Matthews, K., Lo, L.C. & Anderson, D.J. The NGF-inducible SCG10 mRNA encodes a novel membrane-bound protein present in growth cones and abundant in developing neurons. Neuron 1, 463–476 (1988).

    Article  CAS  Google Scholar 

  30. Ozon, S., Maucuer, A. & Sobel, A. The stathmin family—molecular and biological characterization of novel mammalian proteins expressed in the nervous system. Eur. J. Biochem. 248, 794–806 (1997).

    Article  CAS  Google Scholar 

  31. Cassimeris, L. The oncoprotein 18/stathmin family of microtubule destabilizers. Curr. Opin. Cell Biol. 14, 18–24 (2002).

    Article  CAS  Google Scholar 

  32. Antonsson, B. et al. Purification, characterization, and in vitro phosphorylation of the neuron-specific membrane-associated protein SCG10. Protein Expr. Purif. 9, 363–371 (1997).

    Article  CAS  Google Scholar 

  33. Lutjens, R. et al. Localization and targeting of SCG10 to the trans-Golgi apparatus and growth cone vesicles. Eur. J. Neurosci. 12, 2224–2234 (2000).

    Article  CAS  Google Scholar 

  34. Goshima, Y., Nakamura, F., Strittmatter, P. & Strittmatter, S.M. Collapsin-induced growth cone collapse mediated by an intracellular protein related to UNC-33. Nature 376, 509–514 (1995).

    Article  CAS  Google Scholar 

  35. Takahashi, T., Nakamura, F., Jin, Z., Kalb, R.G. & Strittmatter, S.M. Semaphorins A and E act as antagonists of neuropilin-1 and agonists of neuropilin-2 receptors. Nat. Neurosci. 1, 487–493 (1998).

    Article  CAS  Google Scholar 

  36. Belmont, L.D. & Mitchison, T.J. Identification of a protein that interacts with tubulin dimers and increases the catastrophe rate of microtubules. Cell 84, 623–631 (1996).

    Article  CAS  Google Scholar 

  37. Song, H. & Poo, M. The cell biology of neuronal navigation. Nat. Cell Biol. 3, E81–88 (2001).

    Article  CAS  Google Scholar 

  38. Bixby, J.L. & Spitzer, N.C. Early differentiation of vertebrate spinal neurons in the absence of voltage-dependent Ca2+ and Na+ influx. Dev. Biol. 106, 89–96 (1984).

    Article  CAS  Google Scholar 

  39. Gu, X. & Spitzer, N.C. Distinct aspects of neuronal differentiation encoded by frequency of spontaneous Ca2+ transients. Nature 375, 784–787 (1995).

    Article  CAS  Google Scholar 

  40. Kuhn, T.B., Brown, M.D. & Bamburg, J.R. Rac1-dependent actin filament organization in growth cones is necessary for beta1-integrin-mediated advance but not for growth on poly-D-lysine. J. Neurobiol. 37, 524–540 (1998).

    Article  CAS  Google Scholar 

  41. Goslin, K. & Banker, G. Experimental observations on the development of polarity by hippocampal neurons in culture. J. Cell Biol. 108, 1507–1516 (1989).

    Article  CAS  Google Scholar 

  42. Lorenz, E. et al. Evidence for direct physical association between a K+ channel (Kir6.2) and an ATP-binding cassette protein (SUR1) which affects cellular distribution and kinetic behavior of an ATP-sensitive K+ channel. Mol. Cell. Biol. 18, 1652–1659 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank G. Grenningloh (Institut de Biologie Cellulaire, Lausanne, Switzerland), A. Sobel (INSERM, Paris, France) and M. Gullberg (Umea University, Umea, Sweden) for stathmin reagents. We also thank C. Strübing for the DN-TRPC5 construct. We are indebted to M. Ericsson in the HMS Electron Microscopy Facility for technical assistance, and to S. Gapon for assistance with hippocampal cultures. We thank D. Corey, B. Bean and T. Schwarz for discussions and technical advice. This work was supported by a Howard Hughes Medical Institute Predoctoral Fellowship (A.G.), a Kaplan Fellowship (B.N.) and the Howard Hughes Medical Institute (D.E.C.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David E Clapham.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1.

Model of TRPC5 ’s role in growth cone morphology and motility. TRPC5 associates with stathmin 2 on VAMP-and synaptotagmin-containing transport packets. When packets arrive at the growth cone,VAMP and synaptotagmin mediate vesicle docking and fusion,thereby increasing functional TRPC5 channels in the plasma membrane.In response to extracellular growth and motility signals,G-protein-coupled receptors (GPCR)and growth factor receptors (RTK)activate TRPC5 channels in the plasma membrane through PLC-dependent mechanisms.TRPC5-mediated Ca 2+ influx affects growth cone morphology and motility through control of filopodial and neurite extension. (JPG 87 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Greka, A., Navarro, B., Oancea, E. et al. TRPC5 is a regulator of hippocampal neurite length and growth cone morphology. Nat Neurosci 6, 837–845 (2003). https://doi.org/10.1038/nn1092

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1092

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing