Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A new function for the fragile X mental retardation protein in regulation of PSD-95 mRNA stability

Abstract

Fragile X syndrome (FXS) results from the loss of the fragile X mental retardation protein (FMRP), an RNA-binding protein that regulates a variety of cytoplasmic mRNAs. FMRP regulates mRNA translation and may be important in mRNA localization to dendrites. We report a third cytoplasmic regulatory function for FMRP: control of mRNA stability. In mice, we found that FMRP binds, in vivo, the mRNA encoding PSD-95, a key molecule that regulates neuronal synaptic signaling and learning. This interaction occurs through the 3′ untranslated region of the PSD-95 (also known as Dlg4) mRNA, increasing message stability. Moreover, stabilization is further increased by mGluR activation. Although we also found that the PSD-95 mRNA is synaptically localized in vivo, localization occurs independently of FMRP. Through our functional analysis of this FMRP target we provide evidence that dysregulation of mRNA stability may contribute to the cognitive impairments in individuals with FXS.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: FMRP interacts directly with the 3′ UTR of PSD-95 mRNA.
Figure 2: The C-terminal domain of FMRP is able to specifically interact with the PSD-95 mRNA 3′ UTR.
Figure 3: A G-rich region in the PSD-95 3′ UTR is responsible for FMRP C-terminus binding.
Figure 4: The PSD-95 mRNA polysomal profile is similar in wild-type and FMR1 knockout mice.
Figure 5: PSD-95 mRNA is dendritically localized in neuronal cell cultures.
Figure 6: PSD-95 mRNA is dendritically localized in vivo.
Figure 7: PSD-95 mRNA and protein levels are altered in the FMR1 knockout mice.
Figure 8: FMRP regulates the stability of PSD-95 mRNA in hippocampal cells through an activity-dependent mechanism.

Similar content being viewed by others

References

  1. Bagni, C. & Greenough, W.T. From mRNP trafficking to spine dysmorphogenesis: the roots of fragile X syndrome. Nat. Rev. Neurosci. 6, 376–387 (2005).

    Article  CAS  Google Scholar 

  2. Darnell, J.C., Mostovetsky, O. & Darnell, R.B. FMRP RNA targets: identification and validation. Genes Brain Behav. 4, 341–349 (2005).

    Article  CAS  Google Scholar 

  3. Zalfa, F., Achsel, T. & Bagni, C. mRNPs, polysomes or granules: FMRP in neuronal protein synthesis. Curr. Opin. Neurobiol. 16, 265–269 (2006).

    Article  CAS  Google Scholar 

  4. Darnell, J.C. et al. Fragile X mental retardation protein targets G-quartet mRNAs important for neuronal function. Cell 107, 489–499 (2001).

    Article  CAS  Google Scholar 

  5. Schaeffer, C. et al. The fragile X mental retardation protein binds specifically to its mRNA via a purine quartet motif. EMBO J. 20, 4803–4813 (2001).

    Article  CAS  Google Scholar 

  6. Ramos, A., Hollingworth, D. & Pastore, A. G-quartet–dependent recognition between the FMRP RGG box and RNA. RNA 9, 1198–1207 (2003).

    Article  CAS  Google Scholar 

  7. Chen, L., Yun, S.W., Seto, J., Liu, W. & Toth, M. The fragile X mental retardation protein binds and regulates a novel class of mRNAs containing U-rich target sequences. Neuroscience 120, 1005–1017 (2003).

    Article  CAS  Google Scholar 

  8. Zalfa, F. et al. The fragile X syndrome protein FMRP associates with BC1 RNA and regulates the translation of specific mRNAs at synapses. Cell 112, 317–327 (2003).

    Article  CAS  Google Scholar 

  9. Gabus, C., Mazroui, R., Tremblay, S., Khandjian, E.W. & Darlix, J.L. The fragile X mental retardation protein has nucleic acid chaperone properties. Nucleic Acids Res. 32, 2129–2137 (2004).

    Article  CAS  Google Scholar 

  10. Zalfa, F. et al. Fragile X mental retardation protein (FMRP) binds specifically to the brain cytoplasmic RNAs BC1/BC200 via a novel RNA-binding motif. J. Biol. Chem. 280, 33403–33410 (2005).

    Article  CAS  Google Scholar 

  11. Johnson, E.M. et al. Role of Pur alpha in targeting mRNA to sites of translation in hippocampal neuronal dendrites. J. Neurosci. Res. 83, 929–943 (2006).

    Article  CAS  Google Scholar 

  12. Jin, P., Alisch, R.S. & Warren, S.T. RNA and microRNAs in fragile X mental retardation. Nat. Cell Biol. 6, 1048–1053 (2004).

    Article  CAS  Google Scholar 

  13. Darnell, J.C. et al. Kissing complex RNAs mediate interaction between the fragile X mental retardation protein KH2 domain and brain polyribosomes. Genes Dev. 19, 903–918 (2005).

    Article  CAS  Google Scholar 

  14. Kanai, Y., Dohmae, N. & Hirokawa, N. Kinesin transports RNA: isolation and characterization of an RNA-transporting granule. Neuron 43, 513–525 (2004).

    Article  CAS  Google Scholar 

  15. Zhong, N., Ju, W., Nelson, D., Dobkin, C. & Brown, W.T. Reduced mRNA for G3BP in fragile X cells: evidence of FMR1 gene regulation. Am. J. Med. Genet. 84, 268–271 (1999).

    Article  CAS  Google Scholar 

  16. Brown, V. et al. Microarray identification of FMRP-associated brain mRNAs and altered mRNA translational profiles in fragile X syndrome. Cell 107, 477–487 (2001).

    Article  CAS  Google Scholar 

  17. Miyashiro, K.Y. et al. RNA cargoes associating with FMRP reveal deficits in cellular functioning in Fmr1 null mice. Neuron 37, 417–431 (2003).

    Article  CAS  Google Scholar 

  18. Huber, K.M., Gallagher, S.M., Warren, S.T. & Bear, M.F. Altered synaptic plasticity in a mouse model of fragile X mental retardation. Proc. Natl. Acad. Sci. USA 99, 7746–7750 (2002).

    Article  CAS  Google Scholar 

  19. Tonegawa, S. et al. Hippocampal CA1–region–restricted knockout of NMDAR1 gene disrupts synaptic plasticity, place fields and spatial learning. Cold Spring Harb. Symp. Quant. Biol. 61, 225–238 (1996).

    Article  CAS  Google Scholar 

  20. Migaud, M. et al. Enhanced long-term potentiation and impaired learning in mice with mutant postsynaptic density–95 protein. Nature 396, 433–439 (1998).

    Article  CAS  Google Scholar 

  21. Fagiolini, M. et al. Separable features of visual cortical plasticity revealed by N-methyl-D-aspartate receptor 2A signaling. Proc. Natl. Acad. Sci. USA 100, 2854–2859 (2003).

    Article  CAS  Google Scholar 

  22. Silva, A.J., Paylor, R., Wehner, J.M. & Tonegawa, S. Impaired spatial learning in α-calcium-calmodulin kinase II mutant mice. Science 257, 206–211 (1992).

    Article  CAS  Google Scholar 

  23. Husi, H., Ward, M.A., Choudhary, J.S., Blackstock, W.P. & Grant, S.G. Proteomic analysis of NMDA receptor–adhesion protein signaling complexes. Nat. Neurosci. 3, 661–669 (2000).

    Article  CAS  Google Scholar 

  24. Sheng, M. & Kim, M.J. Postsynaptic signaling and plasticity mechanisms. Science 298, 776–780 (2002).

    Article  CAS  Google Scholar 

  25. Cuthbert, P.C. et al. SAP102/dlgh3 couples the NMDA receptor to specific plasticity pathways and learning strategies. J. Neurosci. 27, 2673–2682 (2007).

    Article  CAS  Google Scholar 

  26. Tarpey, P. et al. Mutations in the DLG3 gene cause nonsyndromic X-linked mental retardation. Am. J. Hum. Genet. 75, 318–324 (2004).

    Article  CAS  Google Scholar 

  27. Vickers, C.A. et al. Neurone specific regulation of dendritic spines in vivo by post synaptic density–95 protein (PSD-95). Brain Res (2006).

  28. Reiss, A.L., Lee, J. & Freund, L. Neuroanatomy of fragile X syndrome: the temporal lobe. Neurology 44, 1317–1324 (1994).

    Article  CAS  Google Scholar 

  29. Todd, P.K., Mack, K.J. & Malter, J.S. The fragile X mental retardation protein is required for type-I metabotropic glutamate receptor–dependent translation of PSD-95. Proc. Natl. Acad. Sci. USA 100, 14374–14378 (2003).

    Article  CAS  Google Scholar 

  30. Zhang, Y.Q. et al. Drosophila fragile X–related gene regulates the MAP1B homolog Futsch to control synaptic structure and function. Cell 107, 591–603 (2001).

    Article  CAS  Google Scholar 

  31. Lu, R. et al. The fragile X protein controls microtubule-associated protein 1B translation and microtubule stability in brain neuron development. Proc. Natl. Acad. Sci. USA 101, 15201–15206 (2004).

    Article  CAS  Google Scholar 

  32. Niranjanakumari, S., Lasda, E., Brazas, R. & Garcia-Blanco, M.A. Reversible crosslinking combined with immunoprecipitation to study RNA-protein interactions in vivo. Methods 26, 182–190 (2002).

    Article  CAS  Google Scholar 

  33. Bence, M., Arbuckle, M.I., Dickson, K.S. & Grant, S.G. Analyses of murine postsynaptic density–95 identify novel isoforms and potential translational control elements. Brain Res. Mol. Brain Res. 133, 143–152 (2005).

    Article  CAS  Google Scholar 

  34. Adinolfi, S. et al. Dissecting FMR1, the protein responsible for fragile X syndrome, in its structural and functional domains. RNA 5, 1248–1258 (1999).

    Article  CAS  Google Scholar 

  35. Williamson, J.R., Raghuraman, M.K. & Cech, T.R. Monovalent cation–induced structure of telomeric DNA: the G-quartet model. Cell 59, 871–880 (1989).

    Article  CAS  Google Scholar 

  36. Klann, E. & Dever, T.E. Biochemical mechanisms for translational regulation in synaptic plasticity. Nat. Rev. Neurosci. 5, 931–942 (2004).

    Article  CAS  Google Scholar 

  37. Pillai, R.S., Bhattacharyya, S.N. & Filipowicz, W. Repression of protein synthesis by miRNAs: how many mechanisms? Trends Cell Biol. 17, 118–126 (2007).

    Article  CAS  Google Scholar 

  38. Steward, O. & Schuman, E.M. Compartmentalized synthesis and degradation of proteins in neurons. Neuron 40, 347–359 (2003).

    Article  CAS  Google Scholar 

  39. Lein, E.S. et al. Genome-wide atlas of gene expression in the adult mouse brain. Nature 445, 168–176 (2007).

    Article  CAS  Google Scholar 

  40. Loesch, D.Z., Huggins, R.M. & Hagerman, R.J. Phenotypic variation and FMRP levels in fragile X. Ment. Retard. Dev. Disabil. Res. Rev. 10, 31–41 (2004).

    Article  Google Scholar 

  41. Wang, H. et al. Developmentally-programmed FMRP expression in oligodendrocytes: a potential role of FMRP in regulating translation in oligodendroglia progenitors. Hum. Mol. Genet. 13, 79–89 (2003).

    Article  Google Scholar 

  42. Weiler, I.J. et al. Fragile X mental retardation protein is translated near synapses in response to neurotransmitter activation. Proc. Natl. Acad. Sci. USA 94, 5395–5400 (1997).

    Article  CAS  Google Scholar 

  43. Antar, L.N., Afroz, R., Dictenberg, J.B., Carroll, R.C. & Bassell, G.J. Metabotropic glutamate receptor activation regulates fragile X mental retardation protein and FMR1 mRNA localization differentially in dendrites and at synapses. J. Neurosci. 24, 2648–2655 (2004).

    Article  CAS  Google Scholar 

  44. Barreau, C., Paillard, L. & Osborne, H.B. AU-rich elements and associated factors: are there unifying principles? Nucleic Acids Res. 33, 7138–7150 (2005).

    Article  CAS  Google Scholar 

  45. Smith, C.L. et al. GAP-43 mRNA in growth cones is associated with HuD and ribosomes. J. Neurobiol. 61, 222–235 (2004).

    Article  CAS  Google Scholar 

  46. Singh, R. & Valcarcel, J. Building specificity with nonspecific RNA-binding proteins. Nat. Struct. Mol. Biol. 12, 645–653 (2005).

    Article  CAS  Google Scholar 

  47. Ule, J. & Darnell, R.B. RNA binding proteins and the regulation of neuronal synaptic plasticity. Curr. Opin. Neurobiol. 16, 102–110 (2006).

    Article  CAS  Google Scholar 

  48. Plath, N. et al. Arc/Arg3.1 is essential for the consolidation of synaptic plasticity and memories. Neuron 52, 437–444 (2006).

    Article  CAS  Google Scholar 

  49. Gylys, K.H. et al. Synaptic changes in Alzheimer's disease: increased amyloid-beta and gliosis in surviving terminals is accompanied by decreased PSD-95 fluorescence. Am. J. Pathol. 165, 1809–1817 (2004).

    Article  CAS  Google Scholar 

  50. Toro, C. & Deakin, J.F. NMDA receptor subunit NRI and postsynaptic protein PSD-95 in hippocampus and orbitofrontal cortex in schizophrenia and mood disorder. Schizophr. Res. 80, 323–330 (2005).

    Article  Google Scholar 

Download references

Acknowledgements

We thank B.A. Oostra for the FMR1 knockout mice, N.K. Gray and T. Achsel for their critical evaluation of the manuscript, and O. Steward for precious suggestions and reagents. We thank M.A. Kiebler for advice on the neuronal transfection protocol. This research was funded by a European Molecular Biology Organization short-term fellowship, a Royal Society of Edinburgh Scottish Executive Enterprise and Lifelong Learning Department fellowship and a Biotechnology and Biological Sciences Research Council grant (C19143) to K.S.D., by Telethon (GGP05269), Ministero della Salute, Ministero della Università (FIRB) to C.B. and by Wellcome Trust grant number 056523 and the Wellcome Trust Genes to Cognition Programe to S.G.N.G. F.Z. was supported by the Associazione Italiana Sindrome dell'X Fragile.

Author information

Authors and Affiliations

Authors

Contributions

F.Z. contributed to the conclusions drawn in Figures 1,4,6,7 and 8. B.E. contributed to the conclusions drawn from Figures 5,6,7,8. K.S.D. provided intellectual input, contributed to the conclusions drawn from Figures 1,2,3 and 8, contributed a portion of the funding and contributed to the writing of this manuscript. V.M. contributed to the conclusions drawn from Figures 5,6,7. S.D.R. contributed to the conclusions drawn from Figures 2,3 and 7. A.D.P. contributed to the conclusions drawn from Figures 1 and 7. E.T. and P.C. contributed to the conclusions drawn from Figures 7 and 8. G.N. contributed with intellectual inputs. S.G.N.G. contributed some initial funding for this work and intellectual inputs. C.B. provided intellectual input, funding, coordination of the project and contributed to the writing of this manuscript.

Corresponding authors

Correspondence to Kirsten S Dickson or Claudia Bagni.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

G-quartet consensus and similarities to PSD-95 mRNA. (PDF 710 kb)

Supplementary Fig. 2

PSD-95 mRNA localizes in synaptoneurosomes from total brain. (PDF 964 kb)

Supplementary Fig. 3

PSD-95 mRNA is specifically detected by in situ hybridization. (PDF 1507 kb)

Supplementary Fig. 4

PSD-95 mRNA is dendritcally localized in vivo. (PDF 752 kb)

Supplementary Fig. 5

FMRP regulates the stability of PSD-95 mRNA in hippocampal cells. (PDF 319 kb)

Supplementary Fig. 6

FMRP doesn't regulate the stability of PSD-95 mRNA in cortical cells. (PDF 275 kb)

Supplementary Fig. 7

Viability of WT and FMR1 KO hippocampal neurons during actinomycin D treatments. (PDF 731 kb)

Supplementary Fig. 8

HuD and HuR protein levels in mouse hippocampus, cerebellum and cortex. (PDF 421 kb)

Supplementary Table 1

Stability assay of other FMRP target mRNAs. (PDF 65 kb)

Supplementary Methods (PDF 145 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zalfa, F., Eleuteri, B., Dickson, K. et al. A new function for the fragile X mental retardation protein in regulation of PSD-95 mRNA stability. Nat Neurosci 10, 578–587 (2007). https://doi.org/10.1038/nn1893

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1893

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing