Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Activation of estrogen receptor-β regulates hippocampal synaptic plasticity and improves memory

Abstract

Estrogens have long been implicated in influencing cognitive processes, yet the molecular mechanisms underlying these effects and the roles of the estrogen receptors alpha (ERα) and beta (ERβ) remain unclear. Using pharmacological, biochemical and behavioral techniques, we demonstrate that the effects of estrogen on hippocampal synaptic plasticity and memory are mediated through ERβ. Selective ERβ agonists increased key synaptic proteins in vivo, including PSD-95, synaptophysin and the AMPA-receptor subunit GluR1. These effects were absent in ERβ knockout mice. In hippocampal slices, ERβ activation enhanced long-term potentiation, an effect that was absent in slices from ERβ knockout mice. ERβ activation induced morphological changes in hippocampal neurons in vivo, including increased dendritic branching and increased density of mushroom-type spines. An ERβ agonist, but not an ERα agonist, also improved performance in hippocampus-dependent memory tasks. Our data suggest that activation of ERβ can regulate hippocampal synaptic plasticity and improve hippocampus-dependent cognition.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Hippocampus-dependent spatial memory is enhanced by estradiol in OVX WT and Esr1−/− mice but not in OVX Esr2−/− mice.
Figure 2: ERβ activation induces estrogen receptor translocation to the nucleus and increases pCREB level in rats and βWT mice, but not in Esr2−/− mice.
Figure 3: ERβ activation increases AMPAR GluR1 and PSD-95 expression levels in rat and mouse hippocampus.
Figure 4: ERβ activation increases GluR1 and synaptophysin expression in CA1 and dentate gyrus regions.
Figure 5: ERβ activation increases the surface expression of GluR1 and phosphorylation at residue Ser845.
Figure 6: ERβ activation potentiates LTP induced in area CA1 by theta burst stimulation (TBS) of the Schaffer collateral pathway in hippocampal slices from WT mice but not Esr2−/−.
Figure 7: ERβ activation increases dendritic branching and density of mushroom spines in the hippocampus.
Figure 8: The ERβ agonist WAY-200070, but not the ERα agonist PPT, improves performance on a hippocampus-dependent radial arm maze task.

Similar content being viewed by others

References

  1. McEwen, B. Estrogen actions throughout the brain. Recent Prog. Horm. Res. 57, 357–384 (2002).

    Article  CAS  Google Scholar 

  2. Pfaff, D.W. et al. Estrogens, brain and behavior: studies in fundamental neurobiology and observations related to women's health. J. Steroid Biochem. Mol. Biol. 74, 365–373 (2000).

    Article  CAS  Google Scholar 

  3. Gruber, C.J., Tschugguel, W., Schneeberger, C. & Huber, J.C. Production and actions of estrogens. N. Engl. J. Med. 346, 340–352 (2002).

    Article  CAS  Google Scholar 

  4. Rissman, E.F., Wersinger, S.R., Taylor, J.A. & Lubahn, D.B. Estrogen receptor function as revealed by knockout studies: neuroendocrine and behavioral aspects. Horm. Behav. 31, 232–243 (1997).

    Article  CAS  Google Scholar 

  5. Krege, J.H. et al. Generation and reproductive phenotypes of mice lacking estrogen receptor beta. Proc. Natl. Acad. Sci. USA 95, 15677–15682 (1998).

    Article  CAS  Google Scholar 

  6. Shughrue, P.J., Lane, M.V. & Merchenthaler, I. Comparative distribution of estrogen receptor-alpha and -beta mRNA in the rat central nervous system. J. Comp. Neurol. 388, 507–525 (1997).

    Article  CAS  Google Scholar 

  7. Bliss, T.V. & Collingridge, G.L. A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361, 31–39 (1993).

    CAS  Google Scholar 

  8. Mitra, S.W. et al. Immunolocalization of estrogen receptor beta in the mouse brain: comparison with estrogen receptor alpha. Endocrinology 144, 2055–2067 (2003).

    Article  CAS  Google Scholar 

  9. Herrick, S.P., Waters, E.M., Drake, C.T., McEwen, B.S. & Milner, T.A. Extranuclear estrogen receptor beta immunoreactivity is on doublecortin-containing cells in the adult and neonatal rat dentate gyrus. Brain Res. 1121, 46–58 (2006).

    Article  CAS  Google Scholar 

  10. Milner, T.A. et al. Ultrastructural localization of estrogen receptor beta immunoreactivity in the rat hippocampal formation. J. Comp. Neurol. 491, 81–95 (2005).

    Article  CAS  Google Scholar 

  11. Yaffe, K. et al. Cognitive decline in women in relation to non-protein-bound oestradiol concentrations. Lancet 356, 708–712 (2000).

    Article  CAS  Google Scholar 

  12. Maki, P.M., Rich, J.B. & Rosenbaum, R.S. Implicit memory varies across the menstrual cycle: estrogen effects in young women. Neuropsychologia 40, 518–529 (2002).

    Article  Google Scholar 

  13. Savonenko, A.V. & Markowska, A.L. The cognitive effects of ovariectomy and estrogen replacement are modulated by aging. Neuroscience 119, 821–830 (2003).

    Article  CAS  Google Scholar 

  14. Frye, C.A. & Rhodes, M.E. Enhancing effects of estrogen on inhibitory avoidance performance may be in part independent of intracellular estrogen receptors in the hippocampus. Brain Res. 956, 285–293 (2002).

    Article  CAS  Google Scholar 

  15. Sandstrom, N.J. & Williams, C.L. Memory retention is modulated by acute estradiol and progesterone replacement. Behav. Neurosci. 115, 384–393 (2001).

    Article  CAS  Google Scholar 

  16. Woolley, C.S. & McEwen, B.S. Estradiol mediates fluctuation in hippocampal synapse density during the estrous cycle in the adult rat. J. Neurosci. 12, 2549–2554 (1992).

    Article  CAS  Google Scholar 

  17. Li, C. et al. Estrogen alters hippocampal dendritic spine shape and enhances synaptic protein immunoreactivity and spatial memory in female mice. Proc. Natl. Acad. Sci. USA 101, 2185–2190 (2004).

    Article  CAS  Google Scholar 

  18. Adams, M.M., Fink, S.E., Janssen, W.G., Shah, R.A. & Morrison, J.H. Estrogen modulates synaptic N-methyl-D-aspartate receptor subunit distribution in the aged hippocampus. J. Comp. Neurol. 474, 419–426 (2004).

    Article  CAS  Google Scholar 

  19. Woolley, C.S., Weiland, N.G., McEwen, B.S. & Schwartzkroin, P.A. Estradiol increases the sensitivity of hippocampal CA1 pyramidal cells to NMDA receptor–mediated synaptic input: correlation with dendritic spine density. J. Neurosci. 17, 1848–1859 (1997).

    Article  CAS  Google Scholar 

  20. Smith, C.C. & McMahon, L.L. Estradiol-induced increase in the magnitude of long-term potentiation is prevented by blocking NR2B-containing receptors. J. Neurosci. 26, 8517–8522 (2006).

    Article  CAS  Google Scholar 

  21. Zhou, Y., Watters, J.J. & Dorsa, D.M. Estrogen rapidly induces the phosphorylation of the cAMP response element binding protein in rat brain. Endocrinology 137, 2163–2166 (1996).

    Article  CAS  Google Scholar 

  22. Rissman, E.F., Heck, A.L., Leonard, J.E., Shupnik, M.A. & Gustafsson, J.A. Disruption of estrogen receptor beta gene impairs spatial learning in female mice. Proc. Natl. Acad. Sci. USA 99, 3996–4001 (2002).

    Article  CAS  Google Scholar 

  23. Day, M., Sung, A., Logue, S., Bowlby, M. & Arias, R. Beta estrogen receptor knockout (BERKO) mice present attenuated hippocampal CA1 long-term potentiation and related memory deficits in contextual fear conditioning. Behav. Brain Res. 164, 128–131 (2005).

    Article  CAS  Google Scholar 

  24. Rhodes, M.E. & Frye, C.A. ERβ-selective SERMs produce mnemonic-enhancing effects in the inhibitory avoidance and water maze tasks. Neurobiol. Learn. Mem. 85, 183–191 (2006).

    Article  CAS  Google Scholar 

  25. Rudick, C.N. & Woolley, C.S. Selective estrogen receptor modulators regulate phasic activation of hippocampal CA1 pyramidal cells by estrogen. Endocrinology 144, 179–187 (2003).

    Article  CAS  Google Scholar 

  26. Malinow, R. & Malenka, R.C. AMPA receptor trafficking and synaptic plasticity. Annu. Rev. Neurosci. 25, 103–126 (2002).

    Article  CAS  Google Scholar 

  27. Beique, J.C. et al. Synapse-specific regulation of AMPA receptor function by PSD-95. Proc. Natl. Acad. Sci. USA 103, 19535–19540 (2006).

    Article  CAS  Google Scholar 

  28. Ehrlich, I., Klein, M., Rumpel, S. & Malinow, R. PSD-95 is required for activity-driven synapse stabilization. Proc. Natl. Acad. Sci. USA 104, 4176–4181 (2007).

    Article  CAS  Google Scholar 

  29. Malenka, R.C. & Bear, M.F. LTP and LTD: an embarrassment of riches. Neuron 44, 5–21 (2004).

    Article  CAS  Google Scholar 

  30. Shi, S., Hayashi, Y., Esteban, J.A. & Malinow, R. Subunit-specific rules governing AMPA receptor trafficking to synapses in hippocampal pyramidal neurons. Cell 105, 331–343 (2001).

    Article  CAS  Google Scholar 

  31. Man, H.Y., Sekine-Aizawa, Y. & Huganir, R.L. Regulation of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor trafficking through PKA phosphorylation of the Glu receptor 1 subunit. Proc. Natl. Acad. Sci. USA 104, 3579–3584 (2007).

    Article  Google Scholar 

  32. Kasai, H., Matsuzaki, M., Noguchi, J., Yasumatsu, N. & Nakahara, H. Structure-stability-function relationships of dendritic spines. Trends Neurosci. 26, 360–368 (2003).

    Article  CAS  Google Scholar 

  33. Moriarty, K., Kim, K.H. & Bender, J.R. Minireview: estrogen receptor–mediated rapid signaling. Endocrinology 147, 5557–5563 (2006).

    Article  CAS  Google Scholar 

  34. Barco, A., Pittenger, C. & Kandel, E.R. CREB, memory enhancement and the treatment of memory disorders: promises, pitfalls and prospects. Expert Opin. Ther. Targets 7, 101–114 (2003).

    Article  CAS  Google Scholar 

  35. Lee, S.J. et al. Estrogen induces phosphorylation of cyclic AMP response element binding (pCREB) in primary hippocampal cells in a time-dependent manner. Neuroscience 124, 549–560 (2004).

    Article  CAS  Google Scholar 

  36. Boulware, M.I. et al. Estradiol activates group I and II metabotropic glutamate receptor signaling, leading to opposing influences on cAMP response element–binding protein. J. Neurosci. 25, 5066–5078 (2005).

    Article  CAS  Google Scholar 

  37. Zamanillo, D. et al. Importance of AMPA receptors for hippocampal synaptic plasticity but not for spatial learning. Science 284, 1805–1811 (1999).

    Article  CAS  Google Scholar 

  38. Reisel, D. et al. Spatial memory dissociations in mice lacking GluR1. Nat. Neurosci. 5, 868–873 (2002).

    Article  CAS  Google Scholar 

  39. Gazzaley, A.H., Weiland, N.G., McEwen, B.S. & Morrison, J.H. Differential regulation of NMDAR1 mRNA and protein by estradiol in the rat hippocampus. J. Neurosci. 16, 6830–6838 (1996).

    Article  CAS  Google Scholar 

  40. Cyr, M., Thibault, C., Morissette, M., Landry, M. & Di Paolo, T. Estrogen-like activity of tamoxifen and raloxifene on NMDA receptor binding and expression of its subunits in rat brain. Neuropsychopharmacology 25, 242–257 (2001).

    Article  CAS  Google Scholar 

  41. Kopec, C.D., Real, E., Kessels, H.W. & Malinow, R. GluR1 links structural and functional plasticity at excitatory synapses. J. Neurosci. 27, 13706–13718 (2007).

    Article  CAS  Google Scholar 

  42. MacLennan, A.H. et al. Hormone therapy, timing of initiation, and cognition in women aged older than 60 years: the REMEMBER pilot study. Menopause 13, 28–36 (2006).

    Article  Google Scholar 

  43. Morrison, J.H. & Hof, P.R. Selective vulnerability of corticocortical and hippocampal circuits in aging and Alzheimer's disease. Prog. Brain Res. 136, 467–486 (2002).

    Article  CAS  Google Scholar 

  44. Ostlund, H., Keller, E. & Hurd, Y.L. Estrogen receptor gene expression in relation to neuropsychiatric disorders. Ann. NY Acad. Sci. 1007, 54–63 (2003).

    Article  Google Scholar 

  45. Kuramoto, N. et al. Phospho-dependent functional modulation of GABAB receptors by the metabolic sensor AMP-dependent protein kinase. Neuron 53, 233–247 (2007).

    Article  CAS  Google Scholar 

  46. Wang, S.X., Ikeda, M. & Guggino, W.B. The cytoplasmic tail of large conductance, voltage- and Ca2.-activated K. (MaxiK) channel is necessary for its cell surface expression. J. Biol. Chem. 278, 2713–2722 (2003).

    Article  CAS  Google Scholar 

  47. Roy, E.J. & McEwen, B.S. An exchange assay for estrogen receptors in cell nuclei of the adult rat brain. Steroids 30, 657–669 (1977).

    Article  CAS  Google Scholar 

  48. Lein, P.J. et al. Ontogenetic alterations in molecular and structural correlates of dendritic growth after developmental exposure to polychlorinated biphenyls. Environ. Health Perspect. 115, 556–563 (2007).

    Article  CAS  Google Scholar 

  49. Neigh, G.N. et al. Cardiac arrest with cardiopulmonary resuscitation reduces dendritic spine density in CA1 pyramidal cells and selectively alters acquisition of spatial memory. Eur. J. Neurosci. 20, 1865–1872 (2004).

    Article  Google Scholar 

  50. Harris, H.A. et al. Evaluation of an estrogen receptor-beta agonist in animal models of human disease. Endocrinology 144, 4241–4249 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank T. Comery, M. Hayoun and M. Sharma for their technical assistance. We are also grateful to A. Randall, E. Trybulski and H. Harris for their critical comments on this manuscript. S.J.M. is supported by US National Institutes of Health/National Institute of Neurological Disorders and Stroke grants NS 046478, 048045, 051195 056359, P01NS054900 and the UK Medical Research Council.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Feng Liu or Mark Day.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–3 (PDF 204 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, F., Day, M., Muñiz, L. et al. Activation of estrogen receptor-β regulates hippocampal synaptic plasticity and improves memory. Nat Neurosci 11, 334–343 (2008). https://doi.org/10.1038/nn2057

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn2057

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing