Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Electrical activity and development of neural circuits

Abstract

A distinct feature of the nervous system is the intricate network of synaptic connections among neurons of diverse phenotypes. Although initial connections are formed largely through molecular mechanisms that depend on intrinsic developmental programs, spontaneous and experience-driven electrical activities in the developing brain exert critical epigenetic influence on synaptic maturation and refinement of neural circuits. Selective findings discussed here illustrate some of our current understanding of the effects of electrical activity on circuit development and highlight areas that await further study.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Potential cellular effects of electrical activity.

Amy Center

Figure 2: The critical window for activity-dependent modification of developing retinotectal synapses.

Similar content being viewed by others

References

  1. Wiesel, T. N. Postnatal development of the visual cortex and the influence of environment. Nature 299, 583–591 (1982).

    Article  CAS  PubMed  Google Scholar 

  2. Penn, A. A. & Shatz, C. J. Brain waves and brain wiring: the role of endogenous and sensory-driven neural activity in development. Pediatr. Res. 45, 447–458 (1999).

    Article  CAS  PubMed  Google Scholar 

  3. Aamodt, S. M. & Constantine-Paton, M. The role of neural activity in synaptic development and its implications for adult brain function. Adv. Neurol. 79, 133–144 (1999).

    CAS  PubMed  Google Scholar 

  4. Cline, H. T. Dendritic arbor development and synaptogenesis. Curr. Opin. Neurobiol. 11, 118–126 (2001).

    Article  CAS  PubMed  Google Scholar 

  5. Sur, M. & Leamey, C. A. Development and plasticity of cortical areas and networks. Nat. Rev. Neurosci. 2, 251–262 (2001).

    Article  CAS  PubMed  Google Scholar 

  6. Yuste, R. & Bonhoeffer, T. Morphological changes in dendritic spines associated with long-term synaptic plasticity. Annu. Rev. Neurosci. 24, 1071–1089 (2001).

    Article  CAS  PubMed  Google Scholar 

  7. Galli, L. & Maffei, L. Spontaneous impulse activity of rat retinal ganglion cells in prenatal life. Science 242, 90–91 (1988).

    Article  CAS  PubMed  Google Scholar 

  8. Meister, M., Wong, R. O., Baylor, D. A. & Shatz, C. J. Synchronous bursts of action potentials in ganglion cells of the developing mammalian retina. Science 252, 939–943 (1991).

    Article  CAS  PubMed  Google Scholar 

  9. Weliky, M. & Katz, L. C. Correlational structure of spontaneous neuronal activity in the developing lateral geniculate nucleus in vivo. Science 285, 599–604 (1999).

    Article  CAS  PubMed  Google Scholar 

  10. Penn, A. A., Riquelme, P. A., Feller, M. B. & Shatz, C. J. Competition in retinogeniculate patterning driven by spontaneous activity. Science 279, 2108–2112 (1998).

    Article  CAS  PubMed  Google Scholar 

  11. Wiesel, T. N. & Hubel, D. H. Ordered arrangement of orientation columns in monkeys lacking visual experience. J. Comp. Neurol. 158, 307–318 (1974).

    Article  CAS  PubMed  Google Scholar 

  12. Feller, M. B. Spontaneous correlated activity in developing neural circuits. Neuron 22, 653–656 (1999).

    Article  CAS  PubMed  Google Scholar 

  13. O'Donovan, M. J., Chub, N. & Wenner, P. Mechanisms of spontaneous activity in developing spinal networks. J. Neurobiol. 37, 131–145 (1998).

    Article  CAS  PubMed  Google Scholar 

  14. Yuste, R., Peinado, A. & Katz, L. C. Neuronal domains in developing neocortex. Science 257, 665–669 (1992).

    Article  CAS  PubMed  Google Scholar 

  15. Ben Ari, Y., Khazipov, R., Leinekugel, X., Caillard, O. & Gaiarsa, J. L. GABAA, NMDA and AMPA receptors: a developmentally regulated 'menage a trois.' Trends Neurosci. 20, 523–529 (1997).

    Article  CAS  PubMed  Google Scholar 

  16. Zhang, L. I., Tao, H. W. & Poo, M. Visual input induces long-term potentiation of developing retinotectal synapses. Nat. Neurosci. 3, 708–715 (2000).

    Article  CAS  PubMed  Google Scholar 

  17. Tao, H. W., Zhang, L. I., Engert, F. & Poo, M. Emergence of input specificity of ltp during development of retinotectal connections in vivo. Neuron 31, 569–580 (2001).

    Article  CAS  PubMed  Google Scholar 

  18. Garaschuk, O., Linn, J., Eilers, J. & Konnerth, A. Large-scale oscillatory calcium waves in the immature cortex. Nat. Neurosci. 3, 452–459 (2000).

    Article  CAS  PubMed  Google Scholar 

  19. Wong, R. O., Chernjavsky, A., Smith, S. J. & Shatz, C. J. Early functional neural networks in the developing retina. Nature 374, 716–718 (1995).

    Article  CAS  PubMed  Google Scholar 

  20. Spitzer, N. C., Lautermilch, N. J., Smith, R. D. & Gomez, T. M. Coding of neuronal differentiation by calcium transients. Bioessays 22, 811–817 (2000).

    Article  CAS  PubMed  Google Scholar 

  21. Ullian, E. M., Sapperstein, S. K., Christopherson, K. S. & Barres, B. A. Control of synapse number by glia. Science 291, 657–661 (2001).

    Article  CAS  PubMed  Google Scholar 

  22. Ghosh, A. & Greenberg, M. E. Calcium signaling in neurons: molecular mechanisms and cellular consequences. Science 268, 239–247 (1995).

    Article  CAS  PubMed  Google Scholar 

  23. Zucker, R. S. Calcium- and activity-dependent synaptic plasticity. Curr. Opin. Neurobiol. 9, 305–313 (1999).

    Article  CAS  PubMed  Google Scholar 

  24. Ganguly, K., Schinder, A. F., Wong, S. T. & Poo, M. GABA itself promotes the developmental switch of neuronal GABAergic responses from excitation to inhibition. Cell 105, 521–532 (2001).

    Article  CAS  PubMed  Google Scholar 

  25. Shen, K. & Meyer, T. Dynamic control of CaMKII translocation and localization in hippocampal neurons by NMDA receptor stimulation. Science 284, 162–166 (1999).

    Article  CAS  PubMed  Google Scholar 

  26. Shi, S. H. et al. Rapid spine delivery and redistribution of AMPA receptors after synaptic NMDA receptor activation. Science 284, 1811–1816 (1999).

    Article  CAS  PubMed  Google Scholar 

  27. Nedivi, E. Molecular analysis of developmental plasticity in neocortex. J. Neurobiol. 41, 135–147 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Nestler, E. J. & Greengard, P. Protein phosphorylation in the brain. Nature 305, 583–588 (1983).

    Article  CAS  PubMed  Google Scholar 

  29. Reddy, R. et al. Voltage-sensitive adenylyl cyclase activity in cultured neurons. A calcium-independent phenomenon. J. Biol. Chem. 270, 14340–14346 (1995).

    Article  CAS  PubMed  Google Scholar 

  30. Cooper, D. M., Schell, M. J., Thorn, P. & Irvine, R. F. Regulation of adenylyl cyclase by membrane potential. J. Biol. Chem. 273, 27703–27707 (1998).

    Article  CAS  PubMed  Google Scholar 

  31. Boulanger, L. & Poo, M. M. Presynaptic depolarization facilitates neurotrophin-induced synaptic potentiation. Nat. Neurosci. 2, 346–351 (1999).

    Article  CAS  PubMed  Google Scholar 

  32. Poo, M. In situ electrophoresis of membrane components. Annu. Rev. Biophys. Bioeng. 10, 245–276 (1981).

    Article  CAS  PubMed  Google Scholar 

  33. Poo, M. M. & Young, S. H. Diffusional and electrokinetic redistribution at the synapse: a physicochemical basis of synaptic competition. J. Neurobiol. 21, 157–168 (1990).

    Article  CAS  PubMed  Google Scholar 

  34. Ranck, J. B. Synaptic “learning” due to electroosmosis: a theory. Science 144, 187–189 (1964).

    Article  PubMed  Google Scholar 

  35. Sanes, J. R. & Lichtman, J. W. Development of the vertebrate neuromuscular junction. Annu. Rev. Neurosci. 22, 389–442 (1999).

    Article  CAS  PubMed  Google Scholar 

  36. Catalano, S. M. & Shatz, C. J. Activity-dependent cortical target selection by thalamic axons. Science 281, 559–562 (1998).

    Article  CAS  PubMed  Google Scholar 

  37. Dantzker, J. L. & Callaway, E. M. The development of local, layer-specific visual cortical axons in the absence of extrinsic influences and intrinsic activity. J. Neurosci. 18, 4145–4154 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ming, G., Henley, J., Tessier-Lavigne, M., Song, H. & Poo, M. Electrical activity modulates growth cone guidance by diffusible factors. Neuron 29, 441–452 (2001).

    Article  CAS  PubMed  Google Scholar 

  39. Lin, D. M. et al. Formation of precise connections in the olfactory bulb occurs in the absence of odorant-evoked neuronal activity. Neuron 26, 69–80 (2000).

    Article  CAS  PubMed  Google Scholar 

  40. Zheng, C., Feinstein, P., Bozza, T., Rodriguez, I. & Mombaerts, P. Peripheral olfactory projections are differentially affected in mice deficient in a cyclic nucleotide-gated channel subunit. Neuron 26, 81–91 (2000).

    Article  CAS  PubMed  Google Scholar 

  41. Jontes, J. D., Buchanan, J. & Smith, S. J. Growth cone and dendrite dynamics in zebrafish embryos: early events in synaptogenesis imaged in vivo. Nat. Neurosci. 3, 231–237 (2000).

    Article  CAS  PubMed  Google Scholar 

  42. Lendvai, B., Stern, E. A., Chen, B. & Svoboda, K. Experience-dependent plasticity of dendritic spines in the developing rat barrel cortex in vivo. Nature 404, 876–881 (2000).

    Article  CAS  PubMed  Google Scholar 

  43. Wu, G.Y., Deisseroth, K. & Tsien, R. W. Spaced stimuli stabilize MAPK pathway activation and its effects on dendritic morphology. Nat. Neurosci. 4, 151–158 (2001).

    Article  CAS  PubMed  Google Scholar 

  44. McKinney, R. A., Capogna, M., Durr, R., Gahwiler, B. H. & Thompson, S. M. Miniature synaptic events maintain dendritic spines via AMPA receptor activation. Nat. Neurosci. 2, 44–49 (1999).

    Article  CAS  PubMed  Google Scholar 

  45. Xie, Z. P. & Poo, M. M. Initial events in the formation of neuromuscular synapse: rapid induction of acetylcholine release from embryonic neuron. Proc. Natl. Acad. Sci. USA 83, 7069–7073 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lee, S. H. & Sheng, M. Development of neuron-neuron synapses. Curr. Opin. Neurobiol. 10, 125–131 (2000).

    Article  CAS  PubMed  Google Scholar 

  47. Craig, A. M. & Boudin, H. Molecular heterogeneity of central synapses: afferent and target regulation. Nat. Neurosci. 4, 569–578 (2001).

    Article  CAS  PubMed  Google Scholar 

  48. Verhage, M. et al. Synaptic assembly of the brain in the absence of neurotransmitter secretion. Science 287, 864–869 (2000).

    Article  CAS  PubMed  Google Scholar 

  49. Kirsch, J. & Betz, H. Glycine-receptor activation is required for receptor clustering in spinal neurons. Nature 392, 717–720 (1998).

    Article  CAS  PubMed  Google Scholar 

  50. Saitoe, M., Schwarz, T. L., Umbach, J. A., Gundersen, C. B. & Kidokoro, Y. Absence of junctional glutamate receptor clusters in Drosophila mutants lacking spontaneous transmitter release. Science 293, 514–517 (2001).

    Article  CAS  PubMed  Google Scholar 

  51. Carroll, R. C., Lissin, D. V., von Zastrow, M., Nicoll, R. A. & Malenka, R. C. Rapid redistribution of glutamate receptors contributes to long-term depression in hippocampal cultures. Nat. Neurosci. 2, 454–460 (1999).

    Article  CAS  PubMed  Google Scholar 

  52. Wu, G., Malinow, R. & Cline, H. T. Maturation of a central glutamatergic synapse. Science 274, 972–976 (1996).

    Article  CAS  PubMed  Google Scholar 

  53. Isaac, J. T., Crair, M. C., Nicoll, R. A. & Malenka, R. C. Silent synapses during development of thalamocortical inputs. Neuron 18, 269–280 (1997).

    Article  CAS  PubMed  Google Scholar 

  54. Liao, D., Hessler, N. A. & Malinow, R. Activation of postsynaptically silent synapses during pairing-induced LTP in CA1 region of hippocampal slice. Nature 375, 400–404 (1995).

    Article  CAS  PubMed  Google Scholar 

  55. Shi, J., Aamodt, S. M., Townsend, M. & Constantine-Paton, M. Developmental depression of glutamate neurotransmission by chronic low-level activation of NMDA receptors. J. Neurosci. 21, 6233–6244 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Aamodt, S. M., Shi, J., Colonnese, M. T., Veras, W. & Constantine-Paton, M. Chronic NMDA exposure accelerates development of GABAergic inhibition in the superior colliculus. J. Neurophysiol. 83, 1580–1591 (2000).

    Article  CAS  PubMed  Google Scholar 

  57. Lin, S.Y. & Constantine-Paton, M. Suppression of sprouting: an early function of NMDA receptors in the absence of AMPA/kainate receptor activity. J. Neurosci. 18, 3725–3737 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Rivera, C. et al. The K+/Cl co-transporter KCC2 renders GABA hyperpolarizing during neuronal maturation. Nature 397, 251–255 (1999).

    Article  CAS  PubMed  Google Scholar 

  59. Purves, D. & Lichtman, J. W. Elimination of synapses in the developing nervous system. Science 210, 153–157 (1980).

    Article  CAS  PubMed  Google Scholar 

  60. Lohof, A. M., Delhaye-Bouchaud, N. & Mariani, J. Synapse elimination in the central nervous system: functional significance and cellular mechanisms. Rev. Neurosci. 7, 85–101 (1996).

    Article  CAS  PubMed  Google Scholar 

  61. Hebb, D. The Organization of Behavior (Wiley, New York, 1949).

    Google Scholar 

  62. Stent, G. S. A physiological mechanism for Hebb's postulate of learning. Proc. Natl. Acad. Sci. USA 70, 997–1001 (1973).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Miller, K. D., Keller, J. B. & Stryker, M. P. Ocular dominance column development: analysis and simulation. Science 245, 605–615 (1989).

    Article  CAS  PubMed  Google Scholar 

  64. Miller, K. D., Erwin, E. & Kayser, A. Is the development of orientation selectivity instructed by activity? J. Neurobiol. 41, 44–57 (1999).

    Article  CAS  PubMed  Google Scholar 

  65. Dan, Y. & Poo, M. M. Hebbian depression of isolated neuromuscular synapses in vitro. Science 256, 1570–1573 (1992).

    Article  CAS  PubMed  Google Scholar 

  66. Hahm, J. O., Langdon, R. B. & Sur, M. Disruption of retinogeniculate afferent segregation by antagonists to NMDA receptors. Nature 351, 568–570 (1991).

    Article  CAS  PubMed  Google Scholar 

  67. Constantine-Paton, M., Cline, H. T. & Debski, E. Patterned activity, synaptic convergence, and the NMDA receptor in developing visual pathways. Annu. Rev. Neurosci. 13, 129–154 (1990).

    Article  CAS  PubMed  Google Scholar 

  68. Mooney, R., Madison, D. V. & Shatz, C. J. Enhancement of transmission at the developing retinogeniculate synapse. Neuron 10, 815–825 (1993).

    Article  CAS  PubMed  Google Scholar 

  69. Zhang, L. I., Tao, H. W., Holt, C. E., Harris, W. A. & Poo, M. A critical window for cooperation and competition among developing retinotectal synapses. Nature 395, 37–44 (1998).

    Article  CAS  PubMed  Google Scholar 

  70. Philpot, B. D., Sekhar, A. K., Shouval, H. Z. & Bear, M. F. Visual experience and deprivation bidirectionally modify the composition and function of NMDA receptors in visual cortex. Neuron 29, 157–169 (2001).

    Article  CAS  PubMed  Google Scholar 

  71. Kirkwood, A., Rioult, M. C. & Bear, M. F. Experience-dependent modification of synaptic plasticity in visual cortex. Nature 381, 526–528 (1996).

    Article  CAS  PubMed  Google Scholar 

  72. Feldman, D. E. Timing-based LTP and LTD at vertical inputs to layer II/III pyramidal cells in rat barrel cortex. Neuron 27, 45–56 (2000).

    Article  CAS  PubMed  Google Scholar 

  73. Hensch, T. K. et al. Comparison of plasticity in vivo and in vitro in the developing visual cortex of normal and protein kinase A RIβ-deficient mice. J. Neurosci. 18, 2108–2117 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Balice-Gordon, R. J. & Lichtman, J. W. Long-term synapse loss induced by focal blockade of postsynaptic receptors. Nature 372, 519–524 (1994).

    Article  CAS  PubMed  Google Scholar 

  75. Colman, H., Nabekura, J. & Lichtman, J. W. Alterations in synaptic strength preceding axon withdrawal. Science 275, 356–361 (1997).

    Article  CAS  PubMed  Google Scholar 

  76. Schmidt, J. T. & Eisele, L. E. Stroboscopic illumination and dark rearing block the sharpening of the regenerated retinotectal map in goldfish. Neuroscience 14, 535–546 (1985).

    Article  CAS  PubMed  Google Scholar 

  77. Weliky, M. & Katz, L. C. Disruption of orientation tuning in visual cortex by artificially correlated neuronal activity. Nature 386, 680–685 (1997).

    Article  CAS  PubMed  Google Scholar 

  78. Sharma, J., Angelucci, A. & Sur, M. Induction of visual orientation modules in auditory cortex. Nature 404, 841–847 (2000).

    Article  CAS  PubMed  Google Scholar 

  79. Bi, G. & Poo, M. Synaptic modification by correlated activity: Hebb's postulate revisited. Annu. Rev. Neurosci. 24, 139–166 (2001).

    Article  CAS  PubMed  Google Scholar 

  80. Markram, H., Lubke, J., Frotscher, M. & Sakmann, B. Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs. Science 275, 213–215 (1997).

    Article  CAS  PubMed  Google Scholar 

  81. Debanne, D., Gahwiler, B. H. & Thompson, S. M. Long-term synaptic plasticity between pairs of individual CA3 pyramidal cells in rat hippocampal slice cultures. J. Physiol. (Lond.) 507, 237–247 (1998).

    Article  CAS  Google Scholar 

  82. Bi, G. Q. & Poo, M. M. Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type. J. Neurosci. 18, 10464–10472 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Bell, C. C., Han, V. Z., Sugawara, Y. & Grant, K. Synaptic plasticity in a cerebellum-like structure depends on temporal order. Nature 87, 278–281 (1997).

    Article  Google Scholar 

  84. Koester, H. J. & Sakmann, B. Calcium dynamics in single spines during coincident pre- and postsynaptic activity depend on relative timing of back-propagating action potentials and subthreshold excitatory postsynaptic potentials. Proc. Natl. Acad. Sci. USA 95, 9596–9601 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Song, S., Miller, K. D. & Abbott, L. F. Competitive Hebbian learning through spike-timing-dependent synaptic plasticity. Nat. Neurosci. 3, 919–926 (2000).

    Article  CAS  PubMed  Google Scholar 

  86. Rao, R. P. & Sejnowski, T. J. Predictive learning of temporal sequences in recurrent neocortical circuits. Novartis Found. Symp. 239, 208–229 (2001).

    CAS  PubMed  Google Scholar 

  87. Gerstner, W., Kempter, R., van Hemmen, J. L. & Wagner, H. A neuronal learning rule for sub-millisecond temporal coding. Nature 383, 76–81 (1996).

    Article  CAS  PubMed  Google Scholar 

  88. Fagiolini, M. & Hensch, T. K. Inhibitory threshold for critical-period activation in primary visual cortex. Nature 404, 183–186 (2000).

    Article  CAS  PubMed  Google Scholar 

  89. Kempter, R., Leibold, C., Wagner, H. & van Hemmen, J. L. Formation of temporal-feature maps by axonal propagation of synaptic learning. Proc. Natl. Acad. Sci. USA 98, 4166–4171 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Turrigiano, G., Abbott, L. F. & Marder, E. Activity-dependent changes in the intrinsic properties of cultured neurons. Science 264, 974–977 (1994).

    Article  CAS  PubMed  Google Scholar 

  91. Turrigiano, G. G. Homeostatic plasticity in neuronal networks: the more things change, the more they stay the same. Trends Neurosci. 22, 221–227 (1999).

    Article  CAS  PubMed  Google Scholar 

  92. Ganguly, K., Kiss, L. & Poo, M. Enhancement of presynaptic neuronal excitability by correlated presynaptic and postsynaptic spiking. Nat. Neurosci. 3, 1018–1026 (2000).

    Article  CAS  PubMed  Google Scholar 

  93. Bourtchuladze, R. et al. Deficient long-term memory in mice with a targeted mutation of the cAMP-responsive element–binding protein. Cell 79, 59–68 (1994).

    Article  CAS  PubMed  Google Scholar 

  94. Rosen, K. M., McCormack, M. A., Villa-Komaroff, L. & Mower, G. D. Brief visual experience induces immediate early gene expression in the cat visual cortex. Proc. Natl. Acad. Sci. USA 89, 5437–5441 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Corriveau, R. A., Huh, G. S. & Shatz, C. J. Regulation of class I MHC gene expression in the developing and mature CNS by neural activity. Neuron 21, 505–520 (1998).

    Article  CAS  PubMed  Google Scholar 

  96. Huh, G. S. et al. Functional requirement for class I MHC in CNS development and plasticity. Science 290, 2155–2159 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Nedivi, E., Wu, G. Y. & Cline, H. T. Promotion of dendritic growth by CPG15, an activity-induced signaling molecule. Science 281, 1863–1866 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Thoenen, H. Neurotrophins and neuronal plasticity. Science 270, 593–598 (1995).

    Article  CAS  PubMed  Google Scholar 

  99. Bonhoeffer, T. Neurotrophins and activity-dependent development of the neocortex. Curr. Opin. Neurobiol. 6, 119–126 (1996).

    Article  CAS  PubMed  Google Scholar 

  100. Schuman, E. M. Neurotrophin regulation of synaptic transmission. Curr. Opin. Neurobiol. 9, 105–109 (1999).

    Article  CAS  PubMed  Google Scholar 

  101. McAllister, A. K., Katz, L. C. & Lo, D. C. Neurotrophins and synaptic plasticity. Annu. Rev. Neurosci. 22, 295–318 (1999).

    Article  CAS  PubMed  Google Scholar 

  102. Poo, M. M. Neurotrophins as synaptic modulators. Nat. Rev. Neurosci. 2, 24–32 (2001).

    Article  CAS  PubMed  Google Scholar 

  103. Cabelli, R. J., Shelton, D. L., Segal, R. A. & Shatz, C. J. Blockade of endogenous ligands of trkB inhibits formation of ocular dominance columns. Neuron 19, 63–76 (1997).

    Article  CAS  PubMed  Google Scholar 

  104. Wang, X., Berninger, B. & Poo, M. Localized synaptic actions of neurotrophin-4. J. Neurosci. 18, 4985–4992 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Aakalu, G., Smith, W. B., Nguyen, N., Jiang, C. & Schuman, E. M. Dynamic visualization of local protein synthesis in hippocampal neurons. Neuron 30, 489–502 (2001).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank H.W. Tao, K.D. Miller and R. Kempter for discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mu-ming Poo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, L., Poo, Mm. Electrical activity and development of neural circuits. Nat Neurosci 4 (Suppl 11), 1207–1214 (2001). https://doi.org/10.1038/nn753

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn753

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing