Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Proenkephalin A gene products activate a new family of sensory neuron–specific GPCRs

Abstract

Several peptide fragments are produced by proteolytic cleavage of the opioid peptide precursor proenkephalin A, and among these are a number of enkephalin fragments, in particular bovine adrenal medulla peptide 22 (BAM22). These peptide products have been implicated in diverse biological functions, including analgesia. We have cloned a newly identified family of 'orphan' G protein–coupled receptors (GPCRs) and demonstrate that BAM22 and a number of its fragments bind to and activate these receptors with nanomolar affinities. This family of GPCRs is uniquely localized in the human and rat small sensory neuron, and we called this family the sensory neuron–specific G protein–coupled receptors (SNSRs). Receptors of the SNSR family are distinct from the traditional opioid receptors in their insensitivity to the classical opioid antagonist naloxone and poor activation by opioid ligands. The unique localization of SNSRs and their activation by proenkephalin A peptide fragments indicate a possible function for SNSRs in sensory neuron regulation and in the modulation of nociception.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Sequences of the rat and human SNSRs.
Figure 2: SNSR is expressed in a subset of nociceptive neurons in rat sensory ganglia.
Figure 3: SNSRs are expressed uniquely in a subset of nociceptive neurons in human sensory ganglia.
Figure 4: SNSRs are expressed predominantly in IB4-positive DRG neurons in the rat.
Figure 5: Effect of naloxone on the calcium response mediated by BAM22 in HEK293s cells expressing human SNSRs.
Figure 6: [3H]BAM (8–22) selectively binds to SNSR.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Marinissen, M. J. & Gutkind, J. S. G-protein-coupled receptors and signaling networks: emerging paradigms. Trends Pharmacol. Sci. 22, 368–376 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Stadel, J. M., Wilson, S. & Bergsma, D. J. Orphan G protein–coupled receptors: a neglected opportunity for pioneer drug discovery. Trends Pharmacol. Sci. 18, 430–437 (1997).

    Article  CAS  PubMed  Google Scholar 

  3. Rohrer, D. K. & Kobilka, B. K. G protein–coupled receptors: functional and mechanistic insights through altered gene expression. Physiol. Rev. 78, 35–52 (1998).

    Article  CAS  PubMed  Google Scholar 

  4. Civelli, O. et al. Novel neurotransmitters as natural ligands of orphan G-protein-coupled receptors. Trends Neurosci. 24, 230–237 (2001).

    Article  CAS  PubMed  Google Scholar 

  5. Rang, H. P., Bevan, S. & Dray, A. in Textbook of Pain 3rd ed. (eds. Wall, P. D. & Melzack, R.) 201–215 (Churchill Livingstone, Edinburgh, UK, 1994).

    Google Scholar 

  6. Loh, Y. P., Brownstein, M. J. & Gainer, H. Proteolysis in neuropeptide processing and other neural functions. Annu. Rev. Neurosci. 7, 189–222 (1984).

    Article  CAS  PubMed  Google Scholar 

  7. Henderson, G. & McKnight, A. T. The orphan opioid receptor and its endogenous ligand–nociceptin/orphanin FQ. Trends Pharmacol. Sci. 18, 293–300 (1997).

    Article  CAS  PubMed  Google Scholar 

  8. Mansour, A., Hoversten, M. T., Taylor, L. P., Watson, S. J. & Akil, H. The cloned μ, δ and κ receptors and their endogenous ligands: evidence for two opioid peptide recognition cores. Brain Res. 700, 89–98 (1995).

    Article  CAS  PubMed  Google Scholar 

  9. Hollt, V. et al. Pro-enkephalin intermediates in bovine brain and adrenal medulla: characterization of immunoreactive peptides related to BAM-22P and peptide F. Life Sci. 31, 1883–1886 (1982).

    Article  CAS  PubMed  Google Scholar 

  10. Pittius, C. W., Seizinger, B. R., Pasi, A., Mehraein, P. & Herz, A. Distribution and characterization of opioid peptides derived from proenkephalin A in human and rat central nervous system. Brain Res. 304, 127–136 (1984).

    Article  CAS  PubMed  Google Scholar 

  11. Dores, R. M., McDonald, L. K., Steveson, T. C. & Sei, C. A. The molecular evolution of neuropeptides: prospects for the '90s. Brain Behav. Evol. 36, 80–99 (1990).

    Article  CAS  PubMed  Google Scholar 

  12. Hollt, V., Tulunay, F. C., Woo, S. K., Loh, H. H. & Herz, A. Opioid peptides derived from proenkephalin A but not that from pro-enkephalin B are substantial analgesics after administration into brain of mice. Eur. J. Pharmacol. 85, 355–356 (1982).

    Article  CAS  PubMed  Google Scholar 

  13. Boersma, C. J., Pool, C. W., Van Heerikhuize, J. J. & Van Leeuwen, F. W. Characterization of opioid binding sites in the neural and intermediate lobe of the rat pituitary gland by quantitative receptor autoradiography. J. Neuroendocrinol. 6, 47–56 (1994).

    Article  CAS  PubMed  Google Scholar 

  14. Quirion, R. & Weiss, A. S. Peptide E and other proenkephalin-derived peptides are potent kappa opiate receptor agonists. Peptides 4, 445–449 (1983).

    Article  CAS  PubMed  Google Scholar 

  15. Ahmad, S., Banville, D., Fortin, Y., Lembo, P. & O'Donnell, D. Novel G-protein coupled receptor. WO 99/32519 (1998).

  16. Young, D., Waitches, G., Birchmeier, C., Fasano, O. & Wigler, M. Isolation and characterization of a new cellular oncogene encoding a protein with multiple potential transmembrane domains. Cell 45, 711–719 (1986).

    Article  CAS  PubMed  Google Scholar 

  17. Dong, X., Han, S., Zylka, M. J., Simon, M. I. & Anderson, D. J. A diverse family of gpcrs expressed in specific subsets of nociceptive sensory neurons. Cell 106, 619–632 (2001).

    Article  CAS  PubMed  Google Scholar 

  18. Bockaert, J. & Pin, J. P. Molecular tinkering of G protein–coupled receptors: an evolutionary success. EMBO J. 18, 1723–1729 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Snider, W. D. & McMahon, S. B. Tackling pain at the source: new ideas about nociceptors. Neuron 20, 629–632 (1998).

    Article  CAS  PubMed  Google Scholar 

  20. Coward, P., Chan, S. D., Wada, H. G., Humphries, G. M. & Conklin, B. R. Chimeric G proteins allow a high-throughput signaling assay of Gi-coupled receptors. Anal. Biochem. 270, 242–248 (1999).

    Article  CAS  PubMed  Google Scholar 

  21. Caterina, M. J. & Julius, D. Sense and specificity: a molecular identity for nociceptors. Curr. Opin. Neurobiol. 9, 525–530 (1999).

    Article  CAS  PubMed  Google Scholar 

  22. Harlan, R. E., Shivers, B. D., Romano, G. J., Howells, R. D. & Pfaff, D. W. Localization of preproenkephalin mRNA in the rat brain and spinal cord by in situ hybridization. J. Comp Neurol. 258, 159–184 (1987).

    Article  CAS  PubMed  Google Scholar 

  23. Weihe, E. Neurochemical anatomy of the mammalian spinal cord: functional implications. Anat. Anz. 174, 89–118 (1992).

    Article  CAS  Google Scholar 

  24. Pohl, M. et al. Expression of preproenkephalin A gene and presence of Met-enkephalin in dorsal root ganglia of the adult rat. J. Neurochem. 63, 1226–1234 (1994).

    Article  CAS  PubMed  Google Scholar 

  25. Che, F. Y. et al. Identification of peptides from brain and pituitary of Cpe(fat)/Cpe(fat) mice. Proc. Natl. Acad. Sci. USA 98, 9971–9976 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Goumon, Y. et al. Processing of proenkephalin-A in bovine chromaffin cells. Identification of natural derived fragments by N-terminal sequencing and matrix-assisted laser desorption ionization-time of flight mass spectrometry. J. Biol. Chem. 275, 38355–38362 (2000).

    Article  CAS  PubMed  Google Scholar 

  27. Boarder, M. R., Evans, C., Adams, M., Erdelyi, E. & Barchas, J. D. Peptide E and its products, BAM 18 and Leu-enkephalin, in bovine adrenal medulla and cultured chromaffin cells: release in response to stimulation. J. Neurochem. 49, 1824–1832 (1987).

    Article  CAS  PubMed  Google Scholar 

  28. Davis, T. P., Hoyer, G. L., Davis, P. & Burks, T. F. Proenkephalin A-derived peptide E and its fragments alter opioid contractility in the small intestine. Eur. J. Pharmacol. 191, 253–261 (1990).

    Article  CAS  PubMed  Google Scholar 

  29. Mizuno, K., Minamino, N., Kangawa, K. & Matsuo, H. A new family of endogenous “big” Met-enkephalins from bovine adrenal medulla: purification and structure of docosa- (BAM-22P) and eicosapeptide (BAM-20P) with very potent opiate activity. Biochem. Biophys. Res. Commun. 97, 1283–1290 (1980).

    Article  CAS  PubMed  Google Scholar 

  30. Swain, M. G., MacArthur, L., Vergalla, J. & Jones, E. A. Adrenal secretion of BAM-22P, a potent opioid peptide, is enhanced in rats with acute cholestasis. Am. J. Physiol. 266, G201–G205 (1994).

    CAS  PubMed  Google Scholar 

  31. Baird, A., Klepper, R. & Ling, N. In vitro and in vivo evidence that the C-terminus of preproenkephalin-A circulates as an 8500-dalton molecule. Proc. Soc. Exp. Biol. Med. 175, 304–308 (1984).

    Article  CAS  PubMed  Google Scholar 

  32. Dray, A., Nunan, L. & Wire, W. Proenkephalin A fragments exhibit spinal and supraspinal opioid activity in vivo. J. Pharmacol. Exp. Ther. 235, 670–676 (1985).

    CAS  PubMed  Google Scholar 

  33. Sanchez-Blazquez, P., Garzon, J., Lee, N. M. & Hollt, V. Opiate activity of peptides derived from the three opioid peptide families on the rat vas deferens. Neuropeptides 5, 181–184 (1984).

    Article  CAS  PubMed  Google Scholar 

  34. Sanchez-Blazquez, P. & Garzon, J. Opioid activity of pro-enkephalin-derived peptides in mouse vas deferens and guinea pig ileum. Neurosci. Lett. 61, 267–271 (1985).

    Article  CAS  PubMed  Google Scholar 

  35. Cao, J. et al. Cloning and characterization of a cDNA encoding a novel subtype of rat thyrotropin-releasing hormone receptor. J. Biol. Chem. 273, 32281–32287 (1998).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank R. Panetta, A. Beaudet and M. Perkins for critical review of the manuscript, and M. Valiquette, H.-V. Khang, L. Meury, M. Coupal, J. Butterworth and M. Duchesne for technical expertise.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paola M.C. Lembo.

Ethics declarations

Competing interests

All the authors of this paper are employed by AstraZeneca and the company has a financial interest in the results reported here.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lembo, P., Grazzini, E., Groblewski, T. et al. Proenkephalin A gene products activate a new family of sensory neuron–specific GPCRs. Nat Neurosci 5, 201–209 (2002). https://doi.org/10.1038/nn815

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn815

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing