Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Biomolecular coronas provide the biological identity of nanosized materials

Abstract

The search for understanding the interactions of nanosized materials with living organisms is leading to the rapid development of key applications, including improved drug delivery by targeting nanoparticles, and resolution of the potential threat of nanotechnological devices to organisms and the environment. Unless they are specifically designed to avoid it, nanoparticles in contact with biological fluids are rapidly covered by a selected group of biomolecules to form a corona that interacts with biological systems. Here we review the basic concept of the nanoparticle corona and its structure and composition, and highlight how the properties of the corona may be linked to its biological impacts. We conclude with a critical assessment of the key problems that need to be resolved in the near future.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The nanoparticle–corona complex in a biological environment.
Figure 2: The evolution of the nanoparticle corona through the body.
Figure 3: Formation of the biomolecular corona.
Figure 4: Epitope exposure on the nanoparticle/corona interface.

Similar content being viewed by others

References

  1. Cedervall, T. et al. Understanding the nanoparticle–protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles. Proc. Natl Acad. Sci. USA 104, 2050–2055 (2007). Introduction of the concept of 'nanoparticle-corona' and the linking of biomolecular exchange timescale to biological identity.

    CAS  Google Scholar 

  2. Nel, A. E. et al. Understanding biophysicochemical interactions at the nano–bio interface. Nature Mater. 8, 543–557 (2009).

    CAS  Google Scholar 

  3. Lynch, I. & Dawson, K. A. Protein–nanoparticle interactions. Nano Today 3, 40–47 (2008).

    CAS  Google Scholar 

  4. Aggarwal, P., Hall, J. B., McLeland, C. B., Dobrovolskaia, M. A. & McNeil, S. E. Nanoparticle interaction with plasma proteins as it relates to particle biodistribution, biocompatibility and therapeutic efficacy. Adv. Drug Deliv. Rev. 61, 428–437 (2009).

    CAS  Google Scholar 

  5. Tenzer, S. et al. Nanoparticle size is a critical physicochemical determinant of the human blood plasma corona: a comprehensive quantitative proteomic analysis. ACS Nano 5, 7155–7167 (2011). Extensive determination of protein corona composition, and bioinformatics analysis of protein function.

    CAS  Google Scholar 

  6. Ge, C. et al. Binding of blood proteins to carbon nanotubes reduces cytotoxicity. Proc. Natl Acad. Sci. USA 108, 16968–16973 (2011).

    CAS  Google Scholar 

  7. Ang, J. C., Lin, J-M., Yaron, P. N. & White, J. W. Protein trapping of silica nanoparticles. Soft Matter 6, 383–390 (2010).

    CAS  Google Scholar 

  8. Walczyk, D., Baldelli Bombelli, F., Monopoli, M. P., Lynch, I. & Dawson, K. A. What the cell “sees” in bionanoscience. J. Am. Chem. Soc. 132, 5761–5768 (2010).

    CAS  Google Scholar 

  9. Röcker, C., Pötzl, M., Zhang, F., Parak, W. J. & Nienhaus, G. U. A quantitative fluorescence study of protein monolayer formation on colloidal nanoparticles. Nature Nanotech. 4, 577–580 (2009). This is one of the first examples in which the corona lifetime has been determined.

    Google Scholar 

  10. Deng, Z. J., Liang, M., Monteiro, M., Toth, I. & Minchin, R. F. Nanoparticle-induced unfolding of fibrinogen promotes Mac-1 receptor activation and inflammation. Nature Nanotech. 6, 39–44 (2011). Here it is demonstrated that the corona itself can include new (cryptic) epitopes due to unfolding on adsorption on nanoparticle surface, leading to activation of the NF-κB pathway.

    CAS  Google Scholar 

  11. Walkey, C. D. & Chan, W. C. W. Understanding and controlling the interaction of nanomaterials with proteins in a physiological environment. Chem. Soc. Rev. 41, 2780–2799 (2012).

    CAS  Google Scholar 

  12. Casals, E., Pfaller, T., Duschl, A., Oostingh, G. J. & Puntes, V. Time evolution of the nanoparticle protein corona. ACS Nano 4, 3623–3632 (2010). An early paper in which the kinetics of maturation of the protein hard corona is explored.

    CAS  Google Scholar 

  13. Lundqvist, M. et al. Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. Proc. Natl Acad. Sci. USA 105, 14265–14270 (2008).

    CAS  Google Scholar 

  14. Monopoli, M. P. et al. Physical-chemical aspects of protein corona: relevance to in vitro and in vivo biological impacts of nanoparticles. J. Am. Chem. Soc. 133, 2525–2534 (2011). Semi-quantitative determination of hard coronas. Also shows how the corona composition changes as the protein concentration is varied, for instance corresponding to typical in vitro and in vivo protein contents.

    CAS  Google Scholar 

  15. Deng, Z. J. et al. Differential plasma protein binding to metal oxide nanoparticles. Nanotechnology 20, 455101 (2009).

    Google Scholar 

  16. Milani, S., Baldelli Bombelli, F., Pitek, A. S., Dawson, K. A. & Rädler, J. Reversible versus irreversible binding of transferrin to polystyrene nanoparticles: soft and hard corona. ACS Nano 6, 2532–2541 (2012).

    CAS  Google Scholar 

  17. Anderson, N. L. & Anderson, N. G. The human plasma proteome. Mol. Cell. Proteomics 1, 845–867 (2002).

    CAS  Google Scholar 

  18. Zhang, H. et al. Quantitative proteomics analysis of adsorbed plasma proteins classifies nanoparticles with different surface properties and size. Proteomics 11, 4569–4577 (2011).

    CAS  Google Scholar 

  19. Dobrovolskaia, M. A. et al. Interaction of colloidal gold nanoparticles with human blood: effects on particle size and analysis of plasma protein binding profiles. Nanomed. Nanotech. Biol. Med. 5, 106–117 (2009). Here it is shown how particles of different sizes form different coronas in human blood and their effects on complement activation and coagulation.

    CAS  Google Scholar 

  20. Martel, J. et al. Comprehensive proteomic analysis of mineral nanoparticles derived from human body fluids and analyzed by liquid chromatography-tandem mass spectrometry. Anal. Biochem. 418, 111–125 (2011). This is one of the first studies that includes protein corona composition in several human body fluids other than blood serum or plasma.

    CAS  Google Scholar 

  21. Dufort, S., Sancey, L. & Coll, J-L. Physico-chemical parameters that govern nanoparticles fate also dictate rules for their molecular evolution. Adv. Drug Deliv. Rev. 64, 179–189 (2012).

    CAS  Google Scholar 

  22. Maiorano, G. et al. Effects of cell culture media on the dynamic formation of protein-nanoparticle complexes and influence on the cellular response. ACS Nano 4, 7481–7491 (2010).

    CAS  Google Scholar 

  23. Simberg, D. et al. Differential proteomics analysis of the surface heterogeneity of dextran iron oxide nanoparticles and the implications for their in vivo clearance. Biomaterials 30, 3926–3933 (2009).

    CAS  Google Scholar 

  24. Mahmoudi, M. et al. Protein−nanoparticle interactions: opportunities and challenges. Chem. Rev. 111, 5610–5637 (2011).

    CAS  Google Scholar 

  25. Gasser, M. et al. The adsorption of biomolecules to multi-walled carbon nanotubes is influenced by both pulmonary surfactant lipids and surface chemistry. J. Nanobiotechnol. 8, 31 (2010).

    CAS  Google Scholar 

  26. Lundqvist, M. et al. The evolution of the protein corona around nanoparticles: a test study. ACS Nano 5, 7503–7509 (2011).

    CAS  Google Scholar 

  27. Schleh, C. et al. Size and surface charge of gold nanoparticles determine absorption across intestinal barriers and accumulation in secondary target organs after oral administration. Nanotoxicology 6, 36–46 (2012).

    CAS  Google Scholar 

  28. Choi, H. S. et al. Rapid translocation of nanoparticles from the lung airspaces to the body. Nature Biotechnol. 28, 1300–1303 (2010).

    CAS  Google Scholar 

  29. Oberdörster, G., Elder, A. & Rinderknecht, A. Nanoparticles and the brain: cause for concern? J. Nanosci. Nanotechnol. 9, 4996–5007 (2009). Early discussion of how secondary surface coating by molecules at portal of entry and during translocation may affect nanoparticle biodistribution in organisms, including to the brain. Results relevant to those reported in ref. 28.

    Google Scholar 

  30. Gaddum, J. Gaddum's Pharmacology 9th edn (Oxford Univ. Press, 1985).

    Google Scholar 

  31. Ekdahl, K. N. et al. Innate immunity activation on biomaterial surfaces: a mechanistic model and coping strategies. Adv. Drug Deliv. Rev. 63, 1042–1050 (2011).

    CAS  Google Scholar 

  32. Gorbet, M. B. & Sefton, M. V. Biomaterial-associated thrombosis: roles of coagulation factors, complement, platelets and leukocytes. Biomaterials 25, 5681–5703 (2004).

    CAS  Google Scholar 

  33. Rejman, J., Oberle, V., Zuhorn, I. S. & Hoekstra, D. Size-dependent internalization of particles via the pathways of clathrin- and caveolae-mediated endocytosis. Biochem. J. 377, 159–169 (2004).

    CAS  Google Scholar 

  34. Chithrani, B. D., Ghazani, A. A. & Chan, W. C. W. Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett. 6, 662–668 (2006).

    CAS  Google Scholar 

  35. Kim, H. R. et al. Analysis of plasma protein adsorption onto PEGylated nanoparticles by complementary methods: 2-DE, CE and protein lab-on-chip system. Electrophoresis 28, 2252–2261 (2007).

    CAS  Google Scholar 

  36. Prapainop, K., Witter, D. P. & Wentworth, P. A chemical approach for cell-specific targeting of nanomaterials: small-molecule-initiated misfolding of nanoparticle corona proteins. J. Am. Chem. Soc. 134, 4100–4103 (2012).

    CAS  Google Scholar 

  37. Ferrari, M. Cancer nanotechnology: opportunities and challenges. Nature Rev. Cancer 5, 161–171 (2005).

    CAS  Google Scholar 

  38. Stephan, M. T., Moon, J. J., Um, S. H., Bershteyn, A. & Irvine, D. J. Therapeutic cell engineering with surface-conjugated synthetic nanoparticles. Nature Med. 16, 1035–1041 (2010).

    CAS  Google Scholar 

  39. Otsuka, H., Nagasaki, Y. & Kataoka, K. PEGylated nanoparticles for biological and pharmaceutical applications. Adv. Drug Deliv. Rev. 55, 403–419 (2003).

    CAS  Google Scholar 

  40. Hamad, I. et al. Distinct polymer architecture mediates switching of complement activation pathways at the nanosphere–serum interface: implications for stealth nanoparticle engineering. ACS Nano 4, 6629–6638 (2010).

    CAS  Google Scholar 

  41. Hoshino, Y. et al. Recognition, neutralization, and clearance of target peptides in the bloodstream of living mice by molecularly imprinted polymer nanoparticles: a plastic antibody. J. Am. Chem. Soc. 132, 6644–6645 (2010). One of the first efforts to use molecular imprinting to control the protein corona on the nanoparticle surface.

    CAS  Google Scholar 

  42. Lesniak, A. et al. Effects of the presence or absence of a protein corona on silica nanoparticle uptake and impact on cells. ACS Nano 6, 5845–5857 (2012).

    CAS  Google Scholar 

  43. Mercer, J., Schelhaas, M. & Helenius, A. Virus entry by endocytosis. Annu. Rev. Biochem. 79, 803–833 (2010).

    CAS  Google Scholar 

  44. Hu, W. et al. Protein corona-mediated mitigation of cytotoxicity of graphene oxide. ACS Nano 5, 3693–3700 (2011).

    CAS  Google Scholar 

  45. Verma, A. et al. Surface-structure-regulated cell-membrane penetration by monolayer-protected nanoparticles. Nature Mater. 7, 588–595 (2008).

    CAS  Google Scholar 

  46. Salvati, A. et al. Experimental and theoretical comparison of intracellular import of polymeric nanoparticles and small molecules: towards models of uptake kinetics. Nanomed. Nanotechnol. Biol. Med. 7, 816–826 (2011).

    Google Scholar 

  47. Doherty, G. J. & McMahon, H. T. Mechanisms of endocytosis. Annu. Rev. Biochem. 78, 857–902 (2009).

    CAS  Google Scholar 

  48. Dausend, J. et al. Uptake mechanism of oppositely charged fluorescent nanoparticles in HeLa cells. Macromol. Biosci. 8, 1135–1143 (2008).

    CAS  Google Scholar 

  49. Iversen, T. G., Skotland, T. & Sandvig, K. Endocytosis and intracellular transport of nanoparticles: present knowledge and need for future studies. Nano Today 6, 176–185 (2011).

    CAS  Google Scholar 

  50. Shapero, K. et al. Time and space resolved uptake study of silica nanoparticles by human cells. Mol. Biosyst. 7, 371–378 (2011).

    CAS  Google Scholar 

  51. Lesniak, A. et al. Serum heat inactivation affects protein corona composition and nanoparticle uptake. Biomaterials 31, 9511–9518 (2010).

    CAS  Google Scholar 

  52. Ehrenberg, M. S., Friedman, A. E., Finkelstein, J. N., Oberdörster, G. & McGrath, J. L. The influence of protein adsorption on nanoparticle association with cultured endothelial cells. Biomaterials 30, 603–610 (2009).

    CAS  Google Scholar 

  53. Zhu, Y. et al. Effects of serum proteins on intracellular uptake and cytotoxicity of carbon nanoparticles. Carbon 47, 1351–1358 (2009).

    CAS  Google Scholar 

  54. Bajaj, A., Samanta, B., Yan, H., Jerry, D. J. & Rotello, V. M. Stability, toxicity and differential cellular uptake of protein passivated-Fe3O4 nanoparticles. J. Mater. Chem. 19, 6328–6331 (2009).

    CAS  Google Scholar 

  55. Lunov, O. et al. Differential uptake of functionalized polystyrene nanoparticles by human macrophages and a monocytic cell line. ACS Nano 5, 1657–1669 (2011).

    CAS  Google Scholar 

  56. Kapralov, A. A. et al. Adsorption of surfactant lipids by single-walled carbon nanotubes in mouse lung upon pharyngeal aspiration. ACS Nano 6, 4147–4156 (2012).

    CAS  Google Scholar 

  57. Konduru, N. V. et al. Phosphatidylserine targets single-walled carbon nanotubes to professional phagocytes in vitro and in vivo. PLoS ONE 4, e4398 (2009).

    Google Scholar 

  58. Georgieva, J. V. et al. Surface characteristics of nanoparticles determine their intracellular fate in and processing by human blood-brain barrier endothelial cells in vitro. Mol. Ther. 19, 318–325 (2011).

    CAS  Google Scholar 

  59. Kreuter, J. et al. Apolipoprotein-mediated transport of nanoparticle-bound drugs across the blood-brain barrier. J. Drug Target. 10, 317–325 (2002).

    CAS  Google Scholar 

  60. Schleh, C., Rothen-Rutishauser, B. & Kreyling, W. G. The influence of pulmonary surfactant on nanoparticulate drug delivery systems. Eur. J. Pharm. Biopharm. 77, 350–352 (2011).

    CAS  Google Scholar 

  61. Boraschi, D., Costantino, L. & Italiani, P. Interaction of nanoparticles with immunocompetent cells: nanosafety considerations. Nanomedicine 7, 121–131 (2011).

    Google Scholar 

  62. Huo, Q. et al. A facile nanoparticle immunoassay for cancer biomarker discovery. J. Nanobiotechnol. 9, 20 (2011).

    CAS  Google Scholar 

  63. Ghosh, P. et al. Intracellular delivery of a membrane-impermeable enzyme in active form using functionalized gold nanoparticles. J. Am. Chem. Soc. 132, 2642–2645 (2010).

    CAS  Google Scholar 

  64. Doorley, G. W. & Payne, C. K. Cellular binding of nanoparticles in the presence of serum proteins. Chem. Commun. 47, 466–468 (2011).

    CAS  Google Scholar 

  65. Seée, V. et al. Cathepsin L digestion of nanobioconjugates upon endocytosis. ACS Nano 3, 2461–2468 (2009).

    Google Scholar 

  66. Marano, F., Hussain, S., Rodrigues-Lima, F., Baeza-Squiban, A. & Boland, S. Nanoparticles: molecular targets and cell signalling. Arch. Toxicol. 85, 733–741 (2011).

    CAS  Google Scholar 

  67. Wang, J. et al. Soft interactions at nanoparticles alter protein function and conformation in a size dependent manner. Nano Lett. 11, 4985–4991 (2011).

    CAS  Google Scholar 

  68. Gagner, J. E., Lopez, M. D., Dordick, J. S. & Siegel, R. W. Effect of gold nanoparticle morphology on adsorbed protein structure and function. Biomaterials 32, 7241–7252 (2011).

    CAS  Google Scholar 

  69. Roach, P., Farrar, D. & Perry, C. C. Surface tailoring for controlled protein adsorption: effect of topography at the nanometer scale and chemistry. J. Am. Chem. Soc. 128, 3939–3945 (2006).

    CAS  Google Scholar 

  70. Mandal, H. S. & Kraatz, H. B. Effect of the surface curvature on the secondary structure of peptides adsorbed on nanoparticles. J. Am. Chem. Soc. 129, 6356–6357 (2007).

    CAS  Google Scholar 

  71. Brown, D. M., Dickson, C., Duncan, P., Al-Attili, F. & Stone, V. Interaction between nanoparticles and cytokine proteins: impact on protein and particle functionality. Nanotechnology 21, 215104 (2010).

    Google Scholar 

  72. Lacerda, S. H. et al. Interaction of gold nanoparticles with common human blood proteins. ACS Nano 4, 365–379 (2010).

    Google Scholar 

  73. Linse, S. et al. Nucleation of protein fibrillation by nanoparticles. Proc. Natl Acad. Sci. USA 104, 8691–8696 (2007).

    CAS  Google Scholar 

  74. Hubbell, J. A., Thomas, S. N. & Swartz, M. A. Materials engineering for immunomodulation. Nature 462, 449–460 (2009).

    CAS  Google Scholar 

  75. Fadeel, B. & Garcia-Bennett, A. E. Better safe than sorry: understanding the toxicological properties of inorganic nanoparticles manufactured for biomedical applications. Adv. Drug Deliv. Rev. 62, 362–374 (2010).

    CAS  Google Scholar 

  76. Karmali, P. P. & Simberg, D. Interactions of nanoparticles with plasma proteins: implication on clearance and toxicity of drug delivery systems. Expert Opin. Drug Deliv. 8, 343–357 (2011).

    CAS  Google Scholar 

  77. Salvador-Morales, C. et al. Complement activation and protein adsorption by carbon nanotubes. Mol. Immunol. 43, 193–201 (2006).

    CAS  Google Scholar 

  78. Xia, X. R., Monteiro-Riviere, N. A. & Riviere, J. E. An index for characterization of nanomaterials in biological systems. Nature Nanotech. 5, 671–675 (2010).

    CAS  Google Scholar 

  79. Nanda, K. K., Maisels, A., Kruis, F. E., Fissan, H. & Stappert, S. Higher surface energy of free nanoparticles. Phys. Rev. Lett. 91, 106102 (2003).

    CAS  Google Scholar 

  80. Chakraborty, S. et al. Contrasting effect of gold nanoparticles and nanorods with different surface modifications on the structure and activity of bovine serum albumin. Langmuir 27, 7722–7731 (2011).

    CAS  Google Scholar 

  81. Dutta, D. et al. Adsorbed proteins influence the biological activity and molecular targeting of nanomaterials. Toxicol. Sci. 100, 303–315 (2007).

    CAS  Google Scholar 

  82. Caracciolo, G. et al. Evolution of the protein corona of lipid gene vectors as a function of plasma concentration. Langmuir 27, 15048–15053 (2011).

    CAS  Google Scholar 

  83. Gessner, A., Paulke, B. R. & Müller, R. H. Analysis of plasma protein adsorption onto polystyrene particles by two-dimensional electrophoresis: comparison of sample application and isoelectric focusing techniques. Electrophoresis 21, 2438–2442 (2000).

    CAS  Google Scholar 

  84. Sund, J., Alenius, H., Vippola, M., Savolainen, K. & Puustinen, A. Proteomic characterization of engineered nanomaterial–protein interactions in relation to surface reactivity. ACS Nano 5, 4300–4309 (2011).

    CAS  Google Scholar 

  85. Hellstrand, E. et al. Complete high-density lipoproteins in nanoparticle corona. FEBS J. 276, 3372–3381 (2009).

    CAS  Google Scholar 

  86. Zeng, Z. et al. Synthetic polymer nanoparticle-polysaccharide interaction: a systematic study. J. Am. Chem. Soc. 134, 2681–2690 (2012).

    CAS  Google Scholar 

  87. Lartigue, L. et al. Nanomagnetic sensing of blood plasma protein interactions with iron oxide nanoparticles: impact on macrophage uptake. ACS Nano 6, 2665–2678 (2012).

    CAS  Google Scholar 

  88. Hunter, R. J. Foundations of Colloid Science 2nd edn (Oxford Univ. Press, 2001).

    Google Scholar 

  89. Tsai, D. H. et al. Adsorption and conformation of serum albumin protein on gold nanoparticles investigated using dimensional measurements and in situ spectroscopic methods. Langmuir 27, 2464–2477 (2011).

    CAS  Google Scholar 

  90. Turci, F. et al. An integrated approach to the study of the interaction between proteins and nanoparticles. Langmuir 26, 8336–8346 (2010).

    CAS  Google Scholar 

  91. Sapsford, K. E., Tyner, K. M., Dair, B. J., Deschamps, J. R. & Medintz, I. L. Analyzing nanomaterial bioconjugates: a review of current and emerging purification and characterization techniques. Anal. Chem. 83, 4453–4488 (2011).

    CAS  Google Scholar 

  92. Li, L., Mu, Q., Zhang, B. & Yan, B. Analytical strategies for detecting nanoparticle-protein interactions. Analyst 135, 1519–1530 (2010).

    CAS  Google Scholar 

  93. Henzler, K. et al. Interaction strength between proteins and polyelectrolyte brushes: a small angle X-ray scattering study. Phys. Chem. Chem. Phys. 13, 17599–17605 (2011).

    CAS  Google Scholar 

  94. Brewer, S. H., Glomm, W. R., Johnson, M. C., Knag, M. K. & Franzen, S. Probing BSA binding to citrate-coated gold nanoparticles and surfaces. Langmuir 21, 9303–9307 (2005).

    CAS  Google Scholar 

  95. Liu, S. et al. Investigations on the interactions between plasma proteins and magnetic iron oxide nanoparticles with different surface modifications. J. Phys. Chem. C 114, 21270–21276 (2010).

    CAS  Google Scholar 

  96. De Puig, H., Federici, S., Baxamusa, S. H., Bergese, P. & Hamad-Schifferli, K. Quantifying the nanomachinery of the nanoparticle–biomolecule interface. Small 7, 2477–2484 (2011).

    CAS  Google Scholar 

  97. Giri, J. et al. Interactions of poly(amidoamine) dendrimers with human serum albumin: binding constants and mechanisms. ACS Nano 5, 3456–3468 (2011).

    CAS  Google Scholar 

  98. Wu, Z. C., Zhang, B. & Yan, B. Regulation of enzyme activity through interactions with nanoparticles. Int. J. Mol. Sci. 10, 4198–4209 (2009).

    CAS  Google Scholar 

  99. Obata, S. & Honda, K. Dynamic behavior of carbon nanotube and bio-/artificial surfactants complexes in an aqueous environment. J. Phys. Chem. C 115, 19659–19667 (2011).

    CAS  Google Scholar 

  100. Hung, A. et al. Ordering surfaces on the nanoscale: implications for protein adsorption. J. Am. Chem. Soc. 133, 1438–1450 (2011).

    CAS  Google Scholar 

  101. Dell'Orco, D., Lundqvist, M., Oslakovic, C., Cedervall, T. & Linse, S. Modeling the time evolution of the nanoparticle–protein corona in a body fluid. PLoS ONE 5, e10949 (2010).

    Google Scholar 

  102. Gao, J. et al. Dispersion and toxicity of selected manufactured nanomaterials in natural river water samples: effects of water chemical composition. Environ. Sci. Technol. 43, 3322–3328 (2009).

    CAS  Google Scholar 

  103. Keller, A. A. et al. Stability and aggregation of metal oxide nanoparticles in natural aqueous matrices. Environ. Sci. Technol. 44, 1962–1967 (2010).

    CAS  Google Scholar 

  104. Schulze, C., Schaefer, U. F., Ruge, C. A., Wohlleben, W. & Lehr, C. M. Interaction of metal oxide nanoparticles with lung surfactant protein A. Eur. J. Pharm. Biopharm. 77, 376–383 (2011).

    CAS  Google Scholar 

  105. Kreyling, W. G. et al. Size dependence of the translocation of inhaled iridium and carbon nanoparticle aggregates from the lung of rats to the blood and secondary target organs. Inhal. Toxicol. 21, 55–60 (2009).

    CAS  Google Scholar 

  106. Faunce, T. A., White, J. & Matthaei, K. I. Integrated research into the nanoparticle–protein corona: a new focus for safe, sustainable and equitable development of nanomedicines. Nanomedicine 3, 859–866 (2008).

    CAS  Google Scholar 

  107. Salvati, A. et al. Transferrin-functionalized nanoparticles lose their targeting capabilities when a biomolecule corona absorbs on the surface. Nature Nanotech. (in the press).

  108. Sandin, P., Fitzpatrick, L. W., Simpson, J. C. & Dawson, K. A. High-speed imaging of Rab family small GTPases reveals rare events in nanoparticle trafficking in living cells. ACS Nano 6, 1513–1521 (2012).

    CAS  Google Scholar 

  109. Lowry, G. V., Gregory, K. B., Apte, S. C. & Lead, J. R. Transformations of nanomaterials in the environment. Environ. Sci. Technol. 46, 6893–6899 (2012).

    CAS  Google Scholar 

  110. Quik, J. T. et al. Effect of natural organic matter on cerium dioxide nanoparticles settling in model fresh water. Chemosphere 81, 711–715 (2010).

    CAS  Google Scholar 

Download references

Acknowledgements

Funding has been generously provided by the INSPIRE (Integrated NanoScience Platform for Ireland) programme, funded by the Irish Government's Programme for Research in Third Level Institutions, Cycle 4, National Development Plan 2007-2013 (M.P.M. and A.S.), Science Foundation Ireland under Grant No. [09/RFP/MTR2425] (C.Å.) and the EU FP7 small collaborative project NanoTransKinetics under Grant No. NMP4-2010-EU-US-266737 (C.Å.). K.A.D. gratefully acknowledges the support of the European Commission Framework Program via several NMP programs (NanoInteract, Neuronano, NanoTransKinetics) to the development of these ideas.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth A. Dawson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Monopoli, M., Åberg, C., Salvati, A. et al. Biomolecular coronas provide the biological identity of nanosized materials. Nature Nanotech 7, 779–786 (2012). https://doi.org/10.1038/nnano.2012.207

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2012.207

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing