Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

RINGs of good and evil: RING finger ubiquitin ligases at the crossroads of tumour suppression and oncogenesis

Key Points

  • RING finger ubiquitin-protein ligases (E3s) are the most abundant class of E3 that mediate protein ubiquitylation (also known as ubiquitination). They regulate crucial cellular functions, such as the cell cycle, DNA repair, cell signalling and responses to hypoxia. Genetic alterations, including activating and inactivating mutations, gene amplifications, translocations and deletions, have been described for many RING finger E3s. RING finger E3s are validated oncogenes (such as MDM2) or tumour suppressor genes (such as BRCA1 and von Hippel–Lindau tumour suppressor (VHL)) because of their role in regulating crucial cell functions.

  • The cell cycle is regulated by the S phase kinase-associated protein 1 (SKP1)–cullin 1 (CUL1)–F-box protein (SCF) and anaphase-promoting complex/cyclosome (APC/C) multisubunit RING finger E3s. These complexes are targeted to specific substrates via interchangeable substrate recognition subunits, including F-box proteins for SCF and cell division cycle 20 (CDC20) and CDH1 for APC/C. These multisubunit E3s have a large number of substrates with oncogenic and tumour suppressive effects. Genetic alterations to components of these E3 complexes that result in loss of function (such as FBW7, CDH1 and CDC20) or gain of function (such as SKP2 and β-transducin repeat-containing protein (β-TrCP)) are implicated in the development of cancer.

  • RING finger E3s have central roles in DNA damage responses and DNA repair. For example, MDM2 targets p53 for degradation. MDM2 is amplified, overexpressed or activated in other ways in cancers and is a means of inactivating the tumour suppressor p53. The BRCA1 and the Fanconi anaemia (FANC) E3s have essential roles in the repair of DNA damage; both E3s function as tumour suppressors.

  • RING finger E3s have important roles in both positively and negatively regulating signal transduction. A prominent example of negative regulation is the CBL family of RING finger E3s that target activated receptor tyrosine kinases (RTKs) for degradation. Mutations that inactivate CBL E3 function have been described in myeloid neoplasms and result in the hyperactivation of RTKs and intracellular signalling pathways.

  • The response to hypoxia is regulated by the multisubunit CRL2VHL RING finger E3 and the single subunit RING finger E3 SIAH. The VHL complex targets the hypoxia-inducible factor-α (HIFα) transcription factors for proteasomal degradation, which prevents the expression of angiogenic and growth-promoting genes under normoxic conditions. Inactivating mutations of VHL are found in familial and sporadic clear cell cancer of the kidney, resulting in the stabilization of the HIFα transcription factor subunits and consequently abnormally high expression of angiogenic and growth genes. By contrast, the SIAH RING finger E3s stabilize HIFα under hypoxic conditions.

  • Targeting RING finger E3s for the treatment of cancer is being actively explored. For example, small-molecule inhibitors have been developed that interfere with the MDM2–p53 interaction or that inhibit MDM2 E3 activity, thus stabilizing p53. These approaches have demonstrated antitumour activity in preclinical studies, but the clinical efficacy of interfering with MDM2 function remains to be determined. Targeting the loss of activity of RING finger E3s that are tumour suppressors will require novel approaches such as the synthetic lethality that is induced by poly(ADP-ribose) polymerase (PARP) inhibition in cells that are deficient in BRCA1 or BRCA2.

Abstract

The ubiquitin-proteasome system has numerous crucial roles in physiology and pathophysiology. Fundamental to the specificity of this system are ubiquitin-protein ligases (E3s). Of these, the majority are RING finger and RING finger-related E3s. Many RING finger E3s have roles in processes that are central to the maintenance of genomic integrity and cellular homeostasis, such as the anaphase promoting complex/cyclosome (APC/C), the SKP1–cullin 1–F-box protein (SCF) E3s, MDM2, BRCA1, Fanconi anaemia proteins, CBL proteins, von Hippel–Lindau tumour suppressor (VHL) and SIAH proteins. As a result, many RING finger E3s are implicated in either the suppression or the progression of cancer. This Review summarizes current knowledge in this area.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: MDM2.
Figure 2: CBL.
Figure 3: Hypoxia.

Similar content being viewed by others

References

  1. Lorick, K. L. et al. RING fingers mediate ubiquitin-conjugating enzyme (E2)-dependent ubiquitination. Proc. Natl Acad. Sci. USA 96, 11364–11369 (1999). This study determined that RING fingers are E2-binding ubiquitin ligase domains and that RING finger-containing proteins, including SIAH and BRCA1, have ubiquitin ligase activity.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).

    Article  CAS  PubMed  Google Scholar 

  3. Nakayama, K. I. & Nakayama, K. Ubiquitin ligases: cell-cycle control and cancer. Nature Rev. Cancer 6, 369–381 (2006).

    Article  CAS  Google Scholar 

  4. Skaar, J. R. & Pagano, M. Control of cell growth by the SCF and APC/C ubiquitin ligases. Curr. Opin. Cell Biol. 21, 816–824 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Frescas, D. & Pagano, M. Deregulated proteolysis by the F-box proteins SKP2 and β-TrCP: tipping the scales of cancer. Nature Rev. Cancer 8, 438–449 (2008).

    Article  CAS  Google Scholar 

  6. Peters, J. M. The anaphase promoting complex/cyclosome: a machine designed to destroy. Nature Rev. Mol. Cell Biol. 7, 644–656 (2006). References 3–6 review the SCF and APC/C family of E3 ubiquitin ligases and their role in cell cycle control and cancer, and cite key primary literature.

    Article  CAS  Google Scholar 

  7. Wang, Q. et al. Alterations of anaphase-promoting complex genes in human colon cancer cells. Oncogene 22, 1486–1490 (2003).

    Article  CAS  PubMed  Google Scholar 

  8. Wasch, R. & Engelbert, D. Anaphase-promoting complex-dependent proteolysis of cell cycle regulators and genomic instability of cancer cells. Oncogene 24, 1–10 (2005).

    Article  PubMed  CAS  Google Scholar 

  9. Garcia-Higuera, I. et al. Genomic stability and tumour suppression by the APC/C cofactor Cdh1. Nature Cell Biol. 10, 802–811 (2008).

    Article  PubMed  CAS  Google Scholar 

  10. Welcker, M. & Clurman, B. E. FBW7 ubiquitin ligase: a tumour suppressor at the crossroads of cell division, growth and differentiation. Nature Rev. Cancer 8, 83–93 (2008).

    Article  CAS  Google Scholar 

  11. Guardavaccaro, D. et al. Control of chromosome stability by the β-TrCP-REST-Mad2 axis. Nature 452, 365–369 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Westbrook, T. F. et al. SCFβ-TRCP controls oncogenic transformation and neural differentiation through REST degradation. Nature 452, 370–374 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wiggins, C. M. et al. BIM(EL), an intrinsically disordered protein, is degraded by 20S proteasomes in the absence of poly-ubiquitylation. J. Cell Sci. 124, 969–977 (2011).

    Article  CAS  PubMed  Google Scholar 

  14. Vousden, K. H. & Prives, C. Blinded by the light: the growing complexity of p53. Cell 137, 413–431 (2009).

    Article  CAS  PubMed  Google Scholar 

  15. Wade, M., Wang, Y. V. & Wahl, G. M. The p53 orchestra: Mdm2 and Mdmx set the tone. Trends Cell Biol. 20, 299–309 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Marine, J. C. & Lozano, G. Mdm2-mediated ubiquitylation: p53 and beyond. Cell Death Differ. 17, 93–102 (2010).

    Article  CAS  PubMed  Google Scholar 

  17. Lee, J. T. & Gu, W. The multiple levels of regulation by p53 ubiquitination. Cell Death Differ. 17, 86–92 (2010). References 14–17 review much of the relevant primary literature on p53, MDM2 and MDMX and their regulation.

    Article  CAS  PubMed  Google Scholar 

  18. Haupt, Y., Maya, R., Kazaz, A. & Oren, M. Mdm2 promotes the rapid degradation of p53. Nature 387, 296–299 (1997).

    Article  CAS  PubMed  Google Scholar 

  19. Kubbutat, M. H., Jones, S. N. & Vousden, K. H. Regulation of p53 stability by Mdm2. Nature 387, 299–303 (1997).

    Article  CAS  PubMed  Google Scholar 

  20. Honda, R., Tanaka, H. & Yasuda, H. Oncoprotein MDM2 is a ubiquitin ligase E3 for tumor suppressor p53. FEBS Lett. 420, 25–27 (1997).

    Article  CAS  PubMed  Google Scholar 

  21. Honda, R. & Yasuda, H. Activity of MDM2, a ubiquitin ligase, toward p53 or itself is dependent on the RING finger domain of the ligase. Oncogene 19, 1473–1476 (2000).

    Article  CAS  PubMed  Google Scholar 

  22. Fang, S., Jensen, J. P., Ludwig, R. L., Vousden, K. H. & Weissman, A. M. Mdm2 is a RING finger-dependent ubiquitin protein ligase for itself and p53. J. Biol. Chem. 275, 8945–8951 (2000). References 18–22 collectively establish that MDM2 is responsible for the degradation of p53 and is a RING finger-dependent E3 ubiquitin ligase for p53 and itself.

    Article  CAS  PubMed  Google Scholar 

  23. Jones, S. N., Roe, A. E., Donehower, L. A. & Bradley, A. Rescue of embryonic lethality in Mdm2-deficient mice by absence of p53. Nature 378, 206–208 (1995).

    Article  CAS  PubMed  Google Scholar 

  24. Montes de Oca Luna, R., Wagner, D. S. & Lozano, G. Rescue of early embryonic lethality in mdm2-deficient mice by deletion of p53. Nature 378, 203–206 (1995).

    Article  CAS  PubMed  Google Scholar 

  25. Mendrysa, S. M. et al. Tumor suppression and normal aging in mice with constitutively high p53 activity. Genes Dev. 20, 16–21 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ringshausen, I., O'Shea, C. C., Finch, A. J., Swigart, L. B. & Evan, G. I. Mdm2 is critically and continuously required to suppress lethal p53 activity in vivo. Cancer Cell 10, 501–514 (2006). References 25 and 26 demonstrate the importance of the p53–MDM2 relationship in cancer and apoptosis using mouse models. They provide evidence supporting the concept that inducing moderate changes in p53 activity may be optimal in cancer therapies.

    Article  CAS  PubMed  Google Scholar 

  27. Uldrijan, S., Pannekoek, W. J. & Vousden, K. H. An essential function of the extreme C-terminus of MDM2 can be provided by MDMX. EMBO J. 26, 102–112 (2007).

    Article  CAS  PubMed  Google Scholar 

  28. Poyurovsky, M. V. et al. The Mdm2 RING domain C-terminus is required for supramolecular assembly and ubiquitin ligase activity. EMBO J. 26, 90–101 (2007).

    Article  CAS  PubMed  Google Scholar 

  29. Linke, K. et al. Structure of the MDM2/MDMX RING domain heterodimer reveals dimerization is required for their ubiquitylation in trans. Cell Death Differ. 15, 841–848 (2008). This paper elucidates the structure of the MDM2–MDMX RING finger dimer and provides important insights into function. The structure bears substantial similarity to the cIAP2 (also known as BIRC3) dimer, which was also solved by the Day laboratory.

    Article  CAS  PubMed  Google Scholar 

  30. Tanimura, S. et al. MDM2 interacts with MDMX through their RING finger domains. FEBS Lett. 447, 5–9 (1999).

    Article  CAS  PubMed  Google Scholar 

  31. Okamoto, K., Taya, Y. & Nakagama, H. Mdmx enhances p53 ubiquitination by altering the substrate preference of the Mdm2 ubiquitin ligase. FEBS Lett. 583, 2710–2714 (2009).

    Article  CAS  PubMed  Google Scholar 

  32. Linares, L. K., Hengstermann, A., Ciechanover, A., Muller, S. & Scheffner, M. HdmX stimulates Hdm2-mediated ubiquitination and degradation of p53. Proc. Natl Acad. Sci. USA 100, 12009–12014 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Stad, R. et al. Mdmx stabilizes p53 and Mdm2 via two distinct mechanisms. EMBO Rep. 2, 1029–1034 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Pomerantz, J. et al. The Ink4a tumor suppressor gene product, p19Arf, interacts with MDM2 and neutralizes MDM2's inhibition of p53. Cell 92, 713–723 (1998).

    Article  CAS  PubMed  Google Scholar 

  35. Weber, J. D., Taylor, L. J., Roussel, M. F., Sherr, C. J. & Bar-Sagi, D. Nucleolar Arf sequesters Mdm2 and activates p53. Nature Cell Biol. 1, 20–26 (1999).

    Article  CAS  PubMed  Google Scholar 

  36. Saporita, A. J., Maggi, L. B. J., Apicelli, A. J. & Weber, J. D. Therapeutic targets in the ARF tumor suppressor pathway. Curr. Med. Chem. 14, 1815–1827 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zhang, Y. & Lu, H. Signaling to p53: ribosomal proteins find their way. Cancer Cell 16, 369–377 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Horn, H. F. & Vousden, K. H. Cooperation between the ribosomal proteins L5 and L11 in the p53 pathway. Oncogene 27, 5774–5784 (2008).

    Article  CAS  PubMed  Google Scholar 

  39. Dai, M. S. & Lu, H. Inhibition of MDM2-mediated p53 ubiquitination and degradation by ribosomal protein L5. J. Biol. Chem. 279, 44475–44482 (2004).

    Article  CAS  PubMed  Google Scholar 

  40. Lohrum, M. A., Ashcroft, M., Kubbutat, M. H. & Vousden, K. H. Identification of a cryptic nucleolar-localization signal in MDM2. Nature Cell Biol. 2, 179–181 (2000).

    Article  CAS  PubMed  Google Scholar 

  41. Issaeva, N. et al. Small molecule RITA binds to p53, blocks p53-HDM-2 interaction and activates p53 function in tumors. Nature Med. 10, 1321–1328 (2004). This paper demonstrates that binding a small molecule to p53 can inhibit its degradation and can activate a p53 response in tumours.

    Article  CAS  PubMed  Google Scholar 

  42. Zhao, C. Y., Szekely, L., Bao, W. & Selivanova, G. Rescue of p53 function by small-molecule RITA in cervical carcinoma by blocking E6-mediated degradation. Cancer Res. 70, 3372–3381 (2010).

    Article  CAS  PubMed  Google Scholar 

  43. Vassilev, L. T. et al. In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science 303, 844–848 (2004). This paper demonstrates that a small molecule that blocks the p53-binding site on MDM2 can activate a p53 response in tumours.

    Article  CAS  PubMed  Google Scholar 

  44. Patterson, D. M. et al. Effect of MDM2 and vascular endothelial growth factor inhibition on tumor angiogenesis and metastasis in neuroblastoma. Angiogenesis 12 Apr 2011 (doi:10.1007/s10456-011-9210-8).

  45. Tovar, C. et al. MDM2 antagonists boost antitumor effect of androgen withdrawal: implications for therapy of prostate cancer. Mol. Cancer 10, 49 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Bernal, F., Tyler, A. F., Korsmeyer, S. J., Walensky, L. D. & Verdine, G. L. Reactivation of the p53 tumor suppressor pathway by a stapled p53 peptide. J. Am. Chem. Soc. 129, 2456–2457 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Lai, Z. et al. Differentiation of Hdm2-mediated p53 ubiquitination and Hdm2 autoubiquitination activity by small molecular weight inhibitors. Proc. Natl Acad. Sci. USA 99, 14734–14739 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Yang, Y. et al. Small molecule inhibitors of HDM2 ubiquitin ligase activity stabilize and activate p53 in cells. Cancer Cell 7, 547–559 (2005). This paper provides proof-of-principle that blocking the ubiquitin ligase activity of MDM2 can activate a p53 response in cells and can kill tumour cells.

    Article  CAS  PubMed  Google Scholar 

  49. Kitagaki, J., Agama, K. K., Pommier, Y., Yang, Y. & Weissman, A. M. Targeting tumor cells expressing p53 with a water-soluble inhibitor of Hdm2. Mol. Cancer Ther. 7, 2445–2454 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Welcsh, P. L. & King, M. C. BRCA1 and BRCA2 and the genetics of breast and ovarian cancer. Hum. Mol. Genet. 10, 705–713 (2001).

    Article  CAS  PubMed  Google Scholar 

  51. Scully, R. et al. Dynamic changes of BRCA1 subnuclear location and phosphorylation state are initiated by DNA damage. Cell 90, 425–435 (1997).

    Article  CAS  PubMed  Google Scholar 

  52. Scully, R. et al. Association of BRCA1 with Rad51 in mitotic and meiotic cells. Cell 88, 265–275 (1997).

    Article  CAS  PubMed  Google Scholar 

  53. Moynahan, M. E., Chiu, J. W., Koller, B. H. & Jasin, M. Brca1 controls homology-directed DNA repair. Mol. Cell 4, 511–518 (1999).

    Article  CAS  PubMed  Google Scholar 

  54. Snouwaert, J. N. et al. BRCA1 deficient embryonic stem cells display a decreased homologous recombination frequency and an increased frequency of non-homologous recombination that is corrected by expression of a brca1 transgene. Oncogene 18, 7900–7907 (1999).

    Article  CAS  PubMed  Google Scholar 

  55. Huen, M. S., Sy, S. M. & Chen, J. BRCA1 and its toolbox for the maintenance of genome integrity. Nature Rev. Mol. Cell Biol. 11, 138–148 (2010). This review summarizes the role of BRCA1 in DNA repair.

    Article  CAS  Google Scholar 

  56. Hashizume, R. et al. The RING heterodimer BRCA1-BARD1 is a ubiquitin ligase inactivated by a breast cancer-derived mutation. J. Biol. Chem. 276, 14537–14540 (2001). This paper establishes the importance of the BRCA1–BARD1 dimer in ubiquitin ligase function and demonstrates that a disease-associated mutation in the BRCA1 RING finger results in loss of activity.

    Article  CAS  PubMed  Google Scholar 

  57. Xia, Y., Pao, G. M., Chen, H. W., Verma, I. M. & Hunter, T. Enhancement of BRCA1 E3 ubiquitin ligase activity through direct interaction with the BARD1 protein. J. Biol. Chem. 278, 5255–5263 (2003).

    Article  CAS  PubMed  Google Scholar 

  58. Joukov, V., Chen, J., Fox, E. A., Green, J. B. & Livingston, D. M. Functional communication between endogenous BRCA1 and its partner, BARD1, during Xenopus laevis development. Proc. Natl Acad. Sci. USA 98, 12078–12083 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Meza, J. E., Brzovic, P. S., King, M. C. & Klevit, R. E. Mapping the functional domains of BRCA1. Interaction of the ring finger domains of BRCA1 and BARD1. J. Biol. Chem. 274, 5659–5665 (1999).

    Article  CAS  PubMed  Google Scholar 

  60. Brzovic, P. S., Rajagopal, P., Hoyt, D. W., King, M. C. & Klevit, R. E. Structure of a BRCA1-BARD1 heterodimeric RING-RING complex. Nature Struct. Biol. 8, 833–837 (2001). This paper elucidates the structure of the BRCA1–BARD1 heterodimer by NMR. This is the first structure of a RING finger dimer.

    Article  CAS  PubMed  Google Scholar 

  61. Morris, J. R. et al. The SUMO modification pathway is involved in the BRCA1 response to genotoxic stress. Nature 462, 886–890 (2009).

    Article  CAS  PubMed  Google Scholar 

  62. Yu, X., Fu, S., Lai, M., Baer, R. & Chen, J. BRCA1 ubiquitinates its phosphorylation-dependent binding partner CtIP. Genes Dev. 20, 1721–1726 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Barber, L. J. & Boulton, S. J. BRCA1 ubiquitylation of CtIP: just the tIP of the iceberg? DNA Repair 5, 1499–1504 (2006).

    Article  CAS  PubMed  Google Scholar 

  64. Ma, Y. et al. The breast cancer susceptibility gene BRCA1 regulates progesterone receptor signaling in mammary epithelial cells. Mol. Endocrinol. 20, 14–34 (2006).

    Article  CAS  PubMed  Google Scholar 

  65. Fan, S. et al. Role of direct interaction in BRCA1 inhibition of estrogen receptor activity. Oncogene 20, 77–87 (2001).

    Article  CAS  PubMed  Google Scholar 

  66. Eakin, C. M., Maccoss, M. J., Finney, G. L. & Klevit, R. E. Estrogen receptor α is a putative substrate for the BRCA1 ubiquitin ligase. Proc. Natl Acad. Sci. USA 104, 5794–5799 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Poole, A. J. et al. Prevention of Brca1-mediated mammary tumorigenesis in mice by a progesterone antagonist. Science 314, 1467–1470 (2006).

    Article  CAS  PubMed  Google Scholar 

  68. Katiyar, P., Ma, Y., Riegel, A., Fan, S. & Rosen, E. M. Mechanism of BRCA1-mediated inhibition of progesterone receptor transcriptional activity. Mol. Endocrinol. 23, 1135–1146 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Ma, Y. et al. BRCA1 regulates acetylation and ubiquitination of estrogen receptor-α. Mol. Endocrinol. 24, 76–90 (2010).

    Article  CAS  PubMed  Google Scholar 

  70. Li, W., Xiao, C., Vonderhaar, B. K. & Deng, C. X. A role of estrogen/ERα signaling in BRCA1-associated tissue-specific tumor formation. Oncogene 26, 7204–7212 (2007).

    Article  CAS  PubMed  Google Scholar 

  71. Jones, L. P. et al. Activation of estrogen signaling pathways collaborates with loss of Brca1 to promote development of ERα-negative and ERα-positive mammary preneoplasia and cancer. Oncogene 27, 794–802 (2008).

    Article  CAS  PubMed  Google Scholar 

  72. Eisen, A. et al. Breast cancer risk following bilateral oophorectomy in BRCA1 and BRCA2 mutation carriers: an international case-control study. J. Clin. Oncol. 23, 7491–7496 (2005).

    Article  PubMed  Google Scholar 

  73. Moldovan, G. L. & D'Andrea, A. D. How the fanconi anemia pathway guards the genome. Annu. Rev. Genet. 43, 223–249 (2009). This review summarizes a large body of work on the FANC ubiquitin ligase and its function.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Vaz, F. et al. Mutation of the RAD51C gene in a Fanconi anemia-like disorder. Nature Genet. 42, 406–409 (2010).

    Article  CAS  PubMed  Google Scholar 

  75. Stoepker, C. et al. SLX4, a coordinator of structure-specific endonucleases, is mutated in a new Fanconi anemia subtype. Nature Genet. 43, 138–141 (2011).

    Article  CAS  PubMed  Google Scholar 

  76. Machida, Y. J. et al. UBE2T is the E2 in the Fanconi anemia pathway and undergoes negative autoregulation. Mol. Cell 23, 589–596 (2006).

    Article  CAS  PubMed  Google Scholar 

  77. Eletr, Z. M., Huang, D. T., Duda, D. M., Schulman, B. A. & Kuhlman, B. E2 conjugating enzymes must disengage from their E1 enzymes before E3-dependent ubiquitin and ubiquitin-like transfer. Nature Struct. Mol. Biol. 12, 933–934 (2005).

    Article  CAS  Google Scholar 

  78. Knipscheer, P. et al. The Fanconi anemia pathway promotes replication-dependent DNA interstrand cross-link repair. Science 326, 1698–1701 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. MacKay, C. et al. Identification of KIAA1018/FAN1, a DNA repair nuclease recruited to DNA damage by monoubiquitinated FANCD2. Cell 142, 65–76 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Smogorzewska, A. et al. A genetic screen identifies FAN1, a Fanconi anemia-associated nuclease necessary for DNA interstrand crosslink repair. Mol. Cell 39, 36–47 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Kratz, K. et al. Deficiency of FANCD2-associated nuclease KIAA1018/FAN1 sensitizes cells to interstrand crosslinking agents. Cell 142, 77–88 (2010).

    Article  CAS  PubMed  Google Scholar 

  82. Kee, Y., Kim, J. M. & D'Andrea, A. D. Regulated degradation of FANCM in the Fanconi anemia pathway during mitosis. Genes Dev. 23, 555–560 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Farmer, H. et al. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature 434, 917–921 (2005).

    Article  CAS  PubMed  Google Scholar 

  84. Bryant, H. E. et al. Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase. Nature 434, 913–917 (2005). References 83 and 84 demonstrate the synthetic lethality of PARP inhibition in cells deficient in BRCA1 or BRCA2, and are the basis of clinical trials using PARP inhibitors in patients with BRCA1 and BRCA2 mutations.

    Article  CAS  PubMed  Google Scholar 

  85. Fong, P. C. et al. Inhibition of poly(ADP-ribose) polymerase in tumors from BRCA mutation carriers. N. Engl. J. Med. 361, 123–134 (2009).

    Article  CAS  PubMed  Google Scholar 

  86. Audeh, M. W. et al. Oral poly(ADP-ribose) polymerase inhibitor olaparib in patients with BRCA1 or BRCA2 mutations and recurrent ovarian cancer: a proof-of-concept trial. Lancet 376, 245–251 (2010).

    Article  CAS  PubMed  Google Scholar 

  87. Tutt, A. et al. Oral poly(ADP-ribose) polymerase inhibitor olaparib in patients with BRCA1 or BRCA2 mutations and advanced breast cancer: a proof-of-concept trial. Lancet 376, 235–244 (2010).

    Article  CAS  PubMed  Google Scholar 

  88. Fujita, Y. et al. Hakai, a c-Cbl-like protein, ubiquitinates and induces endocytosis of the E-cadherin complex. Nature Cell Biol. 4, 222–231 (2002).

    Article  CAS  PubMed  Google Scholar 

  89. Qiu, X. B. & Goldberg, A. L. Nrdp1/FLRF is a ubiquitin ligase promoting ubiquitination and degradation of the epidermal growth factor receptor family member, ErbB3. Proc. Natl Acad. Sci. USA 99, 14843–14848 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Xu, W. et al. Chaperone-dependent E3 ubiquitin ligase CHIP mediates a degradative pathway for c-ErbB2/Neu. Proc. Natl Acad. Sci. USA 99, 12847–12852 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Zhou, P. et al. ErbB2 degradation mediated by the co-chaperone protein CHIP. J. Biol. Chem. 278, 13829–13837 (2003).

    Article  CAS  PubMed  Google Scholar 

  92. Li, Y., Kumar, K. G., Tang, W., Spiegelman, V. S. & Fuchs, S. Y. Negative regulation of prolactin receptor stability and signaling mediated by SCFβ-TrCP E3 ubiquitin ligase. Mol. Cell. Biol. 24, 4038–4048 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. van Kerkhof, P., Putters, J. & Strous, G. J. The ubiquitin ligase SCFβTrCP regulates the degradation of the growth hormone receptor. J. Biol. Chem. 282, 20475–20483 (2007).

    Article  CAS  PubMed  Google Scholar 

  94. Clevers, H. Wnt/β-catenin signaling in development and disease. Cell 127, 469–480 (2006).

    Article  CAS  PubMed  Google Scholar 

  95. Staudt, L. M. Oncogenic activation of NF-κB. Cold Spring Harb. Perspect. Biol. 2, a000109 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Blume-Jensen, P. & Hunter, T. Oncogenic kinase signalling. Nature 411, 355–365 (2001).

    Article  CAS  PubMed  Google Scholar 

  97. Acconcia, F., Sigismund, S. & Polo, S. Ubiquitin in trafficking: the network at work. Exp. Cell Res. 315, 1610–1618 (2009).

    Article  CAS  PubMed  Google Scholar 

  98. Ettenberg, S. A. et al. cbl-b inhibits EGF-receptor-induced apoptosis by enhancing ubiquitination and degradation of activated receptors. Mol. Cell Biol. Res. Commun. 2, 111–118 (1999).

    Article  CAS  PubMed  Google Scholar 

  99. Levkowitz, G. et al. c-Cbl/Sli-1 regulates endocytic sorting and ubiquitination of the epidermal growth factor receptor. Genes Dev. 12, 3663–3674 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Miyake, S., Mullane-Robinson, K. P., Lill, N. L., Douillard, P. & Band, H. Cbl-mediated negative regulation of platelet-derived growth factor receptor-dependent cell proliferation. A critical role for Cbl tyrosine kinase-binding domain. J. Biol. Chem. 274, 16619–16628 (1999).

    Article  CAS  PubMed  Google Scholar 

  101. Joazeiro, C. A. et al. The tyrosine kinase negative regulator c-Cbl as a RING-type, E2-dependent ubiquitin-protein ligase. Science 286, 309–312 (1999).

    Article  CAS  PubMed  Google Scholar 

  102. Levkowitz, G. et al. Ubiquitin ligase activity and tyrosine phosphorylation underlie suppression of growth factor signaling by c-Cbl/Sli-1. Mol. Cell 4, 1029–1040 (1999).

    Article  CAS  PubMed  Google Scholar 

  103. Yokouchi, M. et al. Ligand-induced ubiquitination of the epidermal growth factor receptor involves the interaction of the c-Cbl RING finger and UbcH7. J. Biol. Chem. 274, 31707–31712 (1999). References 100–103 demonstrate that CBL proteins are RING finger ubiquitin ligases that ubiquitylate and target activated RTKs for degradation.

    Article  CAS  PubMed  Google Scholar 

  104. Nau, M. M. & Lipkowitz, S. in Cbl Proteins (ed. Tsygankov, A.) 3–25 (Nova Science Publishers, New York, 2008).

    Google Scholar 

  105. Zheng, N., Wang, P., Jeffrey, P. D. & Pavletich, N. P. Structure of a c-Cbl-UbcH7 complex: RING domain function in ubiquitin-protein ligases. Cell 102, 533–539 (2000). This paper describes the first crystal structure of a RING finger–E2 complex. The sites of RING finger–E2 interaction have held up through subsequent structure and structure–function analyses.

    Article  CAS  PubMed  Google Scholar 

  106. Kassenbrock, C. K. & Anderson, S. M. Regulation of ubiquitin protein ligase activity in c-Cbl by phosphorylation-induced conformational change and constitutive activation by tyrosine to glutamate point mutations. J. Biol. Chem. 279, 28017–28027 (2004).

    Article  CAS  PubMed  Google Scholar 

  107. Ryan, P. E., Sivadasan-Nair, N., Nau, M. M., Nicholas, S. & Lipkowitz, S. The N-terminus of Cbl-c regulates ubiquitin ligase activity by modulating affinity for the ubiquitin conjugating enzyme. J. Biol. Chem. 285, 23687–23698 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Huang, F., Kirkpatrick, D., Jiang, X., Gygi, S. & Sorkin, A. Differential regulation of EGF receptor internalization and degradation by multiubiquitination within the kinase domain. Mol. Cell 21, 737–748 (2006).

    Article  CAS  PubMed  Google Scholar 

  109. Mosesson, Y. et al. Endocytosis of receptor tyrosine kinases is driven by monoubiquitylation, not polyubiquitylation. J. Biol. Chem. 278, 21323–21326 (2003).

    Article  CAS  PubMed  Google Scholar 

  110. Schmidt, M. H. & Dikic, I. The Cbl interactome and its functions. Nature Rev. Mol. Cell Biol. 6, 907–918 (2005).

    Article  CAS  Google Scholar 

  111. Langdon, W. Y., Hartley, J. W., Klinken, S. P., Ruscetti, S. K. & Morse, H. C. v-cbl, an oncogene from a dual-recombinant murine retrovirus that induces early B-lineage lymphomas. Proc. Natl Acad. Sci. USA 86, 1168–1172 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Bonita, D. P., Miyake, S., Lupher, M. L. Jr, Langdon, W. Y. & Band, H. Phosphotyrosine binding domain-dependent upregulation of the platelet-derived growth factor receptor α signaling cascade by transforming mutants of Cbl: implications for Cbl's function and oncogenicity. Mol. Cell. Biol. 17, 4597–4610 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Kales, S. C., Ryan, P. E., Nau, M. M. & Lipkowitz, S. Cbl and human myeloid neoplasms: the Cbl oncogene comes of age. Cancer Res. 70, 4789–4794 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Naramura, M., Nandwani, N., Gu, H., Band, V. & Band, H. Rapidly fatal myeloproliferative disorders in mice with deletion of Casitas B-cell lymphoma (Cbl) and Cbl-b in hematopoietic stem cells. Proc. Natl Acad. Sci. USA 107, 16274–16279 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Reindl, C. et al. CBL exon 8/9 mutants activate the FLT3 pathway and cluster in core binding factor/11q deletion acute myeloid leukemia/myelodysplastic syndrome subtypes. Clin. Cancer Res. 15, 2238–2247 (2009).

    Article  CAS  PubMed  Google Scholar 

  116. Sanada, M. et al. Gain-of-function of mutated C-CBL tumour suppressor in myeloid neoplasms. Nature 460, 904–908 (2009).

    Article  CAS  PubMed  Google Scholar 

  117. Sargin, B. et al. Flt3-dependent transformation by inactivating c-Cbl mutations in AML. Blood 110, 1004–1012 (2007).

    Article  CAS  PubMed  Google Scholar 

  118. Gilliland, D. G. & Griffin, J. D. Role of FLT3 in leukemia. Curr. Opin. Hematol. 9, 274–281 (2002).

    Article  PubMed  Google Scholar 

  119. Grand, F. H. et al. Frequent CBL mutations associated with 11q acquired uniparental disomy in myeloproliferative neoplasms. Blood 113, 6182–6192 (2009).

    Article  CAS  PubMed  Google Scholar 

  120. Rathinam, C., Thien, C. B., Flavell, R. A. & Langdon, W. Y. Myeloid leukemia development in c-Cbl RING finger mutant mice is dependent on FLT3 signaling. Cancer Cell 18, 341–352 (2010).

    Article  CAS  PubMed  Google Scholar 

  121. Tan, Y. H. et al. CBL is frequently altered in lung cancers: its relationship to mutations in MET and EGFR tyrosine kinases. PLoS ONE 5, e8972 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Peschard, P. & Park, M. Escape from Cbl-mediated downregulation: a recurrent theme for oncogenic deregulation of receptor tyrosine kinases. Cancer Cell 3, 519–523 (2003).

    Article  CAS  PubMed  Google Scholar 

  123. Ryan, P. E., Davies, G. C., Nau, M. M. & Lipkowitz, S. Regulating the regulator: negative regulation of Cbl ubiquitin ligases. Trends Biochem. Sci. 31, 79–88 (2006).

    Article  CAS  PubMed  Google Scholar 

  124. Thien, C. B. et al. c-Cbl promotes T cell receptor-induced thymocyte apoptosis by activating the phosphatidylinositol 3-kinase/Akt pathway. J. Biol. Chem. 285, 10969–10981 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Bachmaier, K. et al. Negative regulation of lymphocyte activation and autoimmunity by the molecular adaptor Cbl-b. Nature 403, 211–216 (2000).

    Article  CAS  PubMed  Google Scholar 

  126. Chiang, Y. J. et al. Cbl-b regulates the CD28 dependence of T-cell activation. Nature 403, 216–220 (2000).

    Article  CAS  PubMed  Google Scholar 

  127. Jeon, M. S. et al. Essential role of the E3 ubiquitin ligase Cbl-b in T cell anergy induction. Immunity 21, 167–177 (2004).

    Article  CAS  PubMed  Google Scholar 

  128. Chiang, J. Y., Jang, I. K., Hodes, R. & Gu, H. Ablation of Cbl-b provides protection against transplanted and spontaneous tumors. J. Clin. Invest. 117, 1029–1036 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Loeser, S. et al. Spontaneous tumor rejection by cbl-b-deficient CD8+ T cells. J. Exp. Med. 204, 879–891 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Paolino, M. et al. Essential role of E3 ubiquitin ligase activity in Cbl-b-regulated T cell functions. J. Immunol. 186, 2138–2147 (2011).

    Article  CAS  PubMed  Google Scholar 

  131. Latif, F. et al. Identification of the von Hippel-Lindau disease tumor suppressor gene. Science 260, 1317–1320 (1993).

    Article  CAS  PubMed  Google Scholar 

  132. Gnarra, J. R. et al. Mutations of the VHL tumour suppressor gene in renal carcinoma. Nature Genet. 7, 85–90 (1994).

    Article  CAS  PubMed  Google Scholar 

  133. Herman, J. G., Graff, J. R., Myohanen, S., Nelkin, B. D. & Baylin, S. B. Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands. Proc. Natl Acad. Sci. USA 93, 9821–9826 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Iliopoulos, O., Kibel, A., Gray, S. & Kaelin, W. G. Jr. Tumour suppression by the human von Hippel-Lindau gene product. Nature Med. 1, 822–826 (1995).

    Article  CAS  PubMed  Google Scholar 

  135. Kamura, T. et al. Rbx1, a component of the VHL tumor suppressor complex and SCF ubiquitin ligase. Science 284, 657–661 (1999). This paper demonstrates the importance of the small RING finger protein RBX1 in the activity of the CRL2VHL E3 ubiquitin ligase. Contemporaneous papers from the Deshaies, Elledge, Harper, Pan and Xiong laboratories established the importance of this protein for the SCF family of CRL E3s.

    Article  CAS  PubMed  Google Scholar 

  136. Kibel, A., Iliopoulos, O., DeCaprio, J. A. & Kaelin, W. G. Jr. Binding of the von Hippel-Lindau tumor suppressor protein to Elongin B and C. Science 269, 1444–1446 (1995).

    Article  CAS  PubMed  Google Scholar 

  137. Pause, A. et al. The von Hippel-Lindau tumor-suppressor gene product forms a stable complex with human CUL-2, a member of the Cdc53 family of proteins. Proc. Natl Acad. Sci. USA 94, 2156–2161 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Iwai, K. et al. Identification of the von Hippel-lindau tumor-suppressor protein as part of an active E3 ubiquitin ligase complex. Proc. Natl Acad. Sci. USA 96, 12436–12441 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Lisztwan, J., Imbert, G., Wirbelauer, C., Gstaiger, M. & Krek, W. The von Hippel-Lindau tumor suppressor protein is a component of an E3 ubiquitin-protein ligase activity. Genes Dev. 13, 1822–1833 (1999). References 138 and 139 demonstrate that the VHL complex is an E3 ubiquitin ligase and that disease-associated mutations of the VHL protein abrogate E3 ubiquitin ligase activity.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Maxwell, P. H. et al. The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature 399, 271–275 (1999).

    Article  CAS  PubMed  Google Scholar 

  141. Ohh, M. et al. Ubiquitination of hypoxia-inducible factor requires direct binding to the β-domain of the von Hippel-Lindau protein. Nature Cell Biol. 2, 423–427 (2000).

    Article  CAS  PubMed  Google Scholar 

  142. Gnarra, J. R. et al. Post-transcriptional regulation of vascular endothelial growth factor mRNA by the product of the VHL tumor suppressor gene. Proc. Natl Acad. Sci. USA 93, 10589–10594 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Iliopoulos, O., Levy, A. P., Jiang, C., Kaelin, W. G. Jr & Goldberg, M. A. Negative regulation of hypoxia-inducible genes by the von Hippel-Lindau protein. Proc. Natl Acad. Sci. USA 93, 10595–10599 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Ivan, M. et al. HIFα targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Science 292, 464–468 (2001).

    Article  CAS  PubMed  Google Scholar 

  145. Jaakkola, P. et al. Targeting of HIF-α to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science 292, 468–472 (2001).

    Article  CAS  PubMed  Google Scholar 

  146. Hon, W. C. et al. Structural basis for the recognition of hydroxyproline in HIF-1 α by pVHL. Nature 417, 975–978 (2002).

    Article  CAS  PubMed  Google Scholar 

  147. Epstein, A. C. et al. C. elegans EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation. Cell 107, 43–54 (2001).

    Article  CAS  PubMed  Google Scholar 

  148. Kondo, K., Kim, W. Y., Lechpammer, M. & Kaelin, W. G. Jr. Inhibition of HIF2α is sufficient to suppress pVHL-defective tumor growth. PLoS Biol. 1, e83 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  149. Kondo, K., Klco, J., Nakamura, E., Lechpammer, M. & Kaelin, W. G. Jr. Inhibition of HIF is necessary for tumor suppression by the von Hippel-Lindau protein. Cancer Cell 1, 237–246 (2002).

    Article  CAS  PubMed  Google Scholar 

  150. Maranchie, J. K. et al. The contribution of VHL substrate binding and HIF1-α to the phenotype of VHL loss in renal cell carcinoma. Cancer Cell 1, 247–255 (2002).

    Article  CAS  PubMed  Google Scholar 

  151. Zimmer, M., Doucette, D., Siddiqui, N. & Iliopoulos, O. Inhibition of hypoxia-inducible factor is sufficient for growth suppression of VHL−/− tumors. Mol. Cancer Res. 2, 89–95 (2004).

    CAS  PubMed  Google Scholar 

  152. Nakayama, K. et al. Siah2 regulates stability of prolyl-hydroxylases, controls HIF1α abundance, and modulates physiological responses to hypoxia. Cell 117, 941–952 (2004).

    Article  CAS  PubMed  Google Scholar 

  153. House, C. M., Moller, A. & Bowtell, D. D. Siah proteins: novel drug targets in the Ras and hypoxia pathways. Cancer Res. 69, 8835–8838 (2009).

    Article  CAS  PubMed  Google Scholar 

  154. Crawford, L. J., Walker, B. & Irvine, A. E. Proteasome inhibitors in cancer therapy. J. Cell Commun. Signal. 5, 101–110 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  155. Dominguez, C. et al. Structural model of the UbcH5B/CNOT4 complex revealed by combining NMR, mutagenesis, and docking approaches. Structure 12, 633–644 (2004).

    Article  CAS  PubMed  Google Scholar 

  156. Linehan, W. M., Srinivasan, R. & Schmidt, L. S. The genetic basis of kidney cancer: a metabolic disease. Nature Rev. Urol. 7, 277–285 (2010).

    Article  CAS  Google Scholar 

  157. Isaacs, J. S. et al. HIF overexpression correlates with biallelic loss of fumarate hydratase in renal cancer: novel role of fumarate in regulation of HIF stability. Cancer Cell 8, 143–153 (2005).

    Article  CAS  PubMed  Google Scholar 

  158. Vitari, A. C. et al. COP1 is a tumour suppressor that causes degradation of ETS transcription factors. Nature 474, 403–406 (2011).

    Article  CAS  PubMed  Google Scholar 

  159. Migliorini, D. et al. Cop1 constitutively regulates c-Jun protein stability and functions as a tumor suppressor in mice. J. Clin. Invest. 121, 1329–1343 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Hsu, J. Y., Reimann, J. D., Sorensen, C. S., Lukas, J. & Jackson, P. K. E2F-dependent accumulation of hEmi1 regulates S phase entry by inhibiting APCCdh1. Nature Cell Biol. 4, 358–366 (2002).

    Article  CAS  PubMed  Google Scholar 

  161. Lehman, N. L., Verschuren, E. W., Hsu, J. Y., Cherry, A. M. & Jackson, P. K. Overexpression of the anaphase promoting complex/cyclosome inhibitor Emi1 leads to tetraploidy and genomic instability of p53-deficient cells. Cell Cycle 5, 1569–1573 (2006).

    Article  CAS  PubMed  Google Scholar 

  162. Reimann, J. D. et al. Emi1 is a mitotic regulator that interacts with Cdc20 and inhibits the anaphase promoting complex. Cell 105, 645–655 (2001).

    Article  CAS  PubMed  Google Scholar 

  163. O'Neil, J. et al. FBW7 mutations in leukemic cells mediate NOTCH pathway activation and resistance to γ-secretase inhibitors. J. Exp. Med. 204, 1813–1824 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Bloom, J. & Pagano, M. Deregulated degradation of the cdk inhibitor p27 and malignant transformation. Semin. Cancer Biol. 13, 41–47 (2003).

    Article  CAS  PubMed  Google Scholar 

  165. Gstaiger, M. et al. Skp2 is oncogenic and overexpressed in human cancers. Proc. Natl Acad. Sci. USA 98, 5043–5048 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Latres, E. et al. Role of the F-box protein Skp2 in lymphomagenesis. Proc. Natl Acad. Sci. USA 98, 2515–2520 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. De Brakeleer, S. et al. Cancer predisposing missense and protein truncating BARD1 mutations in non-BRCA1 or BRCA2 breast cancer families. Hum. Mutat. 31, e1175–e1185 (2010).

    Article  CAS  PubMed  Google Scholar 

  168. Ratajska, M. et al. Cancer predisposing BARD1 mutations in breast-ovarian cancer families. Breast Cancer Res. Treat. 23 Feb 2011 (doi:10.1007/s10549-011-1403-8).

  169. Sabatier, R. et al. BARD1 homozygous deletion, a possible alternative to BRCA1 mutation in basal breast cancer. Genes Chromosomes Cancer 49, 1143–1151 (2010).

    Article  CAS  PubMed  Google Scholar 

  170. Ruffner, H., Joazeiro, C. A., Hemmati, D., Hunter, T. & Verma, I. M. Cancer-predisposing mutations within the RING domain of BRCA1: loss of ubiquitin protein ligase activity and protection from radiation hypersensitivity. Proc. Natl Acad. Sci. USA 98, 5134–5139 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Dias, D. C., Dolios, G., Wang, R. & Pan, Z. Q. CUL7: a DOC domain-containing cullin selectively binds Skp1·Fbx29 to form an SCF-like complex. Proc. Natl Acad. Sci. USA 99, 16601–16606 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Skaar, J. R. et al. PARC and CUL7 form atypical cullin RING ligase complexes. Cancer Res. 67, 2006–2014 (2007).

    Article  CAS  PubMed  Google Scholar 

  173. Kim, S. S. et al. CUL7 is a novel antiapoptotic oncogene. Cancer Res. 67, 9616–9622 (2007).

    Article  CAS  PubMed  Google Scholar 

  174. Oliner, J. D., Kinzler, K. W., Meltzer, P. S., George, D. L. & Vogelstein, B. Amplification of a gene encoding a p53-associated protein in human sarcomas. Nature 358, 80–83 (1992).

    Article  CAS  PubMed  Google Scholar 

  175. Bo, M. D. et al. MDM4 (MDMX) is overexpressed in chronic lymphocytic leukaemia (CLL) and marks a subset of p53wild-type CLL with a poor cytotoxic response to Nutlin-3. Br. J. Haematol. 150, 237–239 (2010).

    PubMed  Google Scholar 

  176. Danovi, D. et al. Amplification of Mdmx (or Mdm4) directly contributes to tumor formation by inhibiting p53 tumor suppressor activity. Mol. Cell. Biol. 24, 5835–5843 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Riemenschneider, M. J. et al. Amplification and overexpression of the MDM4 (MDMX) gene from 1q32 in a subset of malignant gliomas without TP53 mutation or MDM2 amplification. Cancer Res. 59, 6091–6096 (1999).

    CAS  PubMed  Google Scholar 

  178. Nikolaev, A. Y., Li, M., Puskas, N., Qin, J. & Gu, W. Parc: a cytoplasmic anchor for p53. Cell 112, 29–40 (2003).

    Article  CAS  PubMed  Google Scholar 

  179. Duan, W. et al. Expression of Pirh2, a newly identified ubiquitin protein ligase, in lung cancer. J. Natl. Cancer Inst. 96, 1718–1721 (2004).

    Article  CAS  PubMed  Google Scholar 

  180. Leng, R. P. et al. Pirh2, a p53-induced ubiquitin-protein ligase, promotes p53 degradation. Cell 112, 779–791 (2003).

    Article  CAS  PubMed  Google Scholar 

  181. Hu, J. et al. WD40 protein FBW5 promotes ubiquitination of tumor suppressor TSC2 by DDB1–CUL4–ROC1 ligase. Genes Dev. 22, 866–871 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Figueroa, A. et al. Novel roles of hakai in cell proliferation and oncogenesis. Mol. Biol. Cell 20, 3533–3542 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Annunziata, C. M. et al. Frequent engagement of the classical and alternative NF-κB pathways by diverse genetic abnormalities in multiple myeloma. Cancer Cell 12, 115–130 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Danson, S., Dean, E., Dive, C. & Ranson, M. IAPs as a target for anticancer therapy. Curr. Cancer Drug Targets 7, 785–794 (2007).

    Article  CAS  PubMed  Google Scholar 

  185. Huang, H. et al. The inhibitor of apoptosis, cIAP2, functions as a ubiquitin-protein ligase and promotes in vitro monoubiquitination of caspases 3 and 7. J. Biol. Chem. 275, 26661–26664 (2000).

    CAS  PubMed  Google Scholar 

  186. Keats, J. J. et al. Promiscuous mutations activate the noncanonical NF-κB pathway in multiple myeloma. Cancer Cell 12, 131–144 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Yang, Y., Fang, S., Jensen, J. P., Weissman, A. M. & Ashwell, J. D. Ubiquitin protein ligase activity of IAPs and their degradation in proteasomes in response to apoptotic stimuli. Science 288, 874–877 (2000).

    Article  CAS  PubMed  Google Scholar 

  188. Compagno, M. et al. Mutations of multiple genes cause deregulation of NF-κB in diffuse large B-cell lymphoma. Nature 459, 717–721 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Gemmill, R. M. et al. The hereditary renal cell carcinoma 3;8 translocation fuses FHIT to a patched-related gene, TRC8. Proc. Natl Acad. Sci. USA 95, 9572–9577 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Gimelli, S. et al. The tumor suppressor gene TRC8/RNF139 is disrupted by a constitutional balanced translocation t(8;22)(q24.13;q11.21) in a young girl with dysgerminoma. Mol. Cancer 8, 52 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  191. Lee, J. P. et al. The TRC8 ubiquitin ligase is sterol regulated and interacts with lipid and protein biosynthetic pathways. Mol. Cancer Res. 8, 93–106 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Tsai, Y. C. et al. The ubiquitin ligase gp78 promotes sarcoma metastasis by targeting KAI1 for degradation. Nature Med. 13, 1504–1509 (2007).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors apologize to the many scientists whose contributions to this extensive and exponentially growing field of research could not be directly cited because of space limitations. They are indebted to their colleagues whose outstanding reviews on individual RING finger E3s and RING finger E3 families summarize and cite much of this important research. The authors thank R. Das (Structural Biophysics Laboratory, National Cancer Institute, USA) for invaluable assistance in generating the RING finger-E2 ribbon diagram. The authors' research programmes are supported by the National Institutes of Health, National Cancer Institute, Center for Cancer Research, USA.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Supplementary information

Supplementary information S1 (table)

Established and Proposed E3s for p53 (PDF 385 kb)

Supplementary information S2 (table)

RING Finger E3s Implicated in Regulating Cell Cycle in Response to DNA Damage (PDF 173 kb)

Supplementary information S3 (table)

RING E3s Implicated in DNA repair* (PDF 187 kb)

Glossary

Oncogenes

Genes with protein products that can promote cancer development. Oncogenes frequently undergo amplification or activating mutations and act in a genetically dominant manner.

Tumour suppressor genes

(TSGs). Genes whose protein products, when lost or mutated, are permissive for the development of cancer. TSGs frequently undergo deletion or inactivating mutations of both alleles and act in a genetically recessive manner.

Aneuploidy

Abnormal number of chromosomes resulting in more or less than the normal diploid number of chromosomes. Cancer cells are frequently aneuploid.

Cyclins

Proteins that control the progression of the cell cycle by activating cyclin-dependent kinases.

Securin

A protein that forms a complex with separase and thereby inhibits separase activity and prevents chromosome separation at anaphase. Securin is dephosphorylated and degraded by APC/CCDC20 at the onset of anaphase.

Haploinsufficient TSG

A gene for which the loss of one allele is sufficient to promote cancer development.

Amplification

Increased copy number of a gene within the genome; this is a common mechanism to increase the activity of oncogenes.

Anergy

When lymphocytes fail to mount an immune response to an antigen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lipkowitz, S., Weissman, A. RINGs of good and evil: RING finger ubiquitin ligases at the crossroads of tumour suppression and oncogenesis. Nat Rev Cancer 11, 629–643 (2011). https://doi.org/10.1038/nrc3120

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc3120

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer