Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The biology and therapeutic targeting of the proprotein convertases

Key Points

  • The secretory proprotein convertases comprise a family of nine subtilisin-like serine proteases called proprotein convertase 1 (PC1), PC2, furin, PC4, PC5, paired basic amino acid cleaving enzyme 4 (PACE4), PC7, subtilisin kexin isozyme 1 (SKI-1; also known as S1P) and proprotein convertase subtilisin kexin 9 (PCSK9), and their genes have been named PCSK1 to PCSK9.

  • Knowledge gained from in vitro and ex vivo studies, as well as the characterization of the phenotypes of knockout mice and those associated with human mutations showed that these enzymes can have both redundant and unique physiological roles.

  • Furin and PACE4 have a role in cancer and associated metastasis, in arthritis and in viral infections, which makes them attractive therapeutic targets. Small-molecule inhibitors, biologics or antisense silencing of these proprotein convertases are now being considered as therapeutic options.

  • PC1 is implicated in obesity and type 2 diabetes, PC4 in reproduction and PC7 in the regulation of anxiety; these proprotein convertases are therefore attractive targets in these settings.

  • Although SKI-1 has fundamental functions, such as the regulation of steroid and lipid synthesis, it also enhances viral infectivity, suggesting that the short-term use of pharmacological agents to block its activity could be beneficial.

  • Hepatic PCSK9 is a major circulating protein that regulates the half-life of the low-density lipoprotein receptor (LDLR) as well as the very-low-density lipoprotein receptor (VLDLR). It is upregulated by statins and hence its inhibition (in combination with or without statins) is considered to be one of the most promising new treatment approaches to effectively lower levels of LDL-cholesterol.

  • Multiple strategies are now in clinical trials (Phase I–III) to evaluate the efficacy and safety of blocking the function of PCSK9 and/or decrease its levels in the circulation. These include the use of monoclonal antibodies and adnectins, as well as antisense oligonucleotides and small-molecule inhibitors.

Abstract

The mammalian proprotein convertases constitute a family of nine secretory serine proteases that are related to bacterial subtilisin and yeast kexin. Seven of these (proprotein convertase 1 (PC1), PC2, furin, PC4, PC5, paired basic amino acid cleaving enzyme 4 (PACE4) and PC7) activate cellular and pathogenic precursor proteins by cleavage at single or paired basic residues, whereas subtilisin kexin isozyme 1 (SKI-1) and proprotein convertase subtilisin kexin 9 (PCSK9) regulate cholesterol and/or lipid homeostasis via cleavage at non-basic residues or through induced degradation of receptors. Proprotein convertases are now considered to be attractive targets for the development of powerful novel therapeutics. In this Review, we summarize the physiological functions and pathological implications of the proprotein convertases, and discuss proposed strategies to control some of their activities, including their therapeutic application and validation in selected disease states.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic representation of the primary structures of the human proprotein convertases.
Figure 2: Subcellular localization of proprotein convertases.
Figure 3: Intracellular versus extracellular pathway and dominant negative effect of proPCSK9.

Similar content being viewed by others

References

  1. Puente, X. S., Sanchez, L. M., Overall, C. M. & Lopez-Otin, C. Human and mouse proteases: a comparative genomic approach. Nature Rev. Genet. 4, 544–558 (2003).

    CAS  PubMed  Google Scholar 

  2. Long, J. Z. & Cravatt, B. F. The metabolic serine hydrolases and their functions in mammalian physiology and disease. Chem. Rev. 111, 6022–6063 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Siezen, R. J. & Leunissen, J. A. Subtilases: the superfamily of subtilisin-like serine proteases. Protein Sci. 6, 501–523 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Wright, C. S., Alden, R. A. & Kraut, J. Structure of subtilisin BPN' at 2.5 angstrom resolution. Nature 221, 235–242 (1969).

    CAS  PubMed  Google Scholar 

  5. Rawlings, N. D., Barrett, A. J. & Bateman, A. MEROPS: the peptidase database. Nucleic Acids Res. 38, D227–D233 (2010).

    CAS  PubMed  Google Scholar 

  6. Fuller, R. S., Brake, A. & Thorner, J. Yeast prohormone processing enzyme (KEX2 gene product) is a Ca2+-dependent serine protease. Proc. Natl Acad. Sci. USA 86, 1434–1438 (1989).

    CAS  PubMed  Google Scholar 

  7. Seidah, N. G. The proprotein convertases, 20 years later. Methods Mol. Biol. 768, 23–57 (2011). This is a historical perspective of the proprotein convertases, from the intensive search that led to their discovery to the present-day understanding of their functions.

    CAS  PubMed  Google Scholar 

  8. Artenstein, A. W. & Opal, S. M. Proprotein convertases in health and disease. N. Engl. J. Med. 365, 2507–2518 (2011).

    CAS  PubMed  Google Scholar 

  9. Creemers, J. W. & Khatib, A. M. Knock-out mouse models of proprotein convertases: unique functions or redundancy? Front. Biosci. 13, 4960–4971 (2008).

    CAS  PubMed  Google Scholar 

  10. Seidah, N. G. et al. The activation and physiological functions of the proprotein convertases. Int. J. Biochem. Cell Biol. 40, 1111–1125 (2008).

    CAS  PubMed  Google Scholar 

  11. Seidah, N. G. What lies ahead for the proprotein convertases? Ann. NY Acad. Sci. 1220, 149–161 (2011).

    CAS  PubMed  Google Scholar 

  12. Mesnard, D., Donnison, M., Fuerer, C., Pfeffer, P. L. & Constam, D. B. The microenvironment patterns the pluripotent mouse epiblast through paracrine Furin and Pace4 proteolytic activities. Genes Dev. 25, 1871–1880 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Sakai, J. et al. Molecular identification of the sterol-regulated luminal protease that cleaves SREBPs and controls lipid composition of animal cells. Mol. Cell 2, 505–514 (1998).

    CAS  PubMed  Google Scholar 

  14. Seidah, N. G. et al. Mammalian subtilisin/kexin isozyme SKI-1: a widely expressed proprotein convertase with a unique cleavage specificity and cellular localization. Proc. Natl Acad. Sci. USA 96, 1321–1326 (1999).

    CAS  PubMed  Google Scholar 

  15. Rawson, R. B., Cheng, D., Brown, M. S. & Goldstein, J. L. Isolation of cholesterol-requiring mutant Chinese hamster ovary cells with defects in cleavage of sterol regulatory element-binding proteins at site 1. J. Biol. Chem. 273, 28261–28269 (1998).

    CAS  PubMed  Google Scholar 

  16. Ye, J. et al. ER stress induces cleavage of membrane-bound ATF6 by the same proteases that process SREBPs. Mol. Cell 6, 1355–1364 (2000).

    CAS  PubMed  Google Scholar 

  17. Patra, D. et al. Site-1 protease is essential for endochondral bone formation in mice. J. Cell Biol. 179, 687–700 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Gorski, J. P. et al. Inhibition of proprotein convertase SKI-1 blocks transcription of key extracellular matrix genes regulating osteoblastic mineralization. J. Biol. Chem. 286, 1836–1849 (2011).

    CAS  PubMed  Google Scholar 

  19. Tassew, N. G., Charish, J., Seidah, N. G. & Monnier, P. P. SKI-1 and Furin generate multiple RGMa fragments that regulate axonal growth. Dev. Cell 22, 391–402 (2012).

    CAS  PubMed  Google Scholar 

  20. Marschner, K., Kollmann, K., Schweizer, M., Braulke, T. & Pohl, S. A key enzyme in the biogenesis of lysosomes is a protease that regulates cholesterol metabolism. Science 333, 87–90 (2011).

    CAS  PubMed  Google Scholar 

  21. Lenz, O., ter Meulen, J., Klenk, H. D., Seidah, N. G. & Garten, W. The Lassa virus glycoprotein precursor GP-C is proteolytically processed by subtilase SKI-1/S1P. Proc. Natl Acad. Sci. USA 98, 12701–12705 (2001). This was the first report on the broad implication of SKI-1 in the activation of surface glycoproteins of haemorrhagic fever viruses, including Lassa virus and other arenaviruses.

    CAS  PubMed  Google Scholar 

  22. Maxwell, K. N. & Breslow, J. L. Adenoviral-mediated expression of Pcsk9 in mice results in a low-density lipoprotein receptor knockout phenotype. Proc. Natl Acad. Sci. USA 101, 7100–7105 (2004). This work presented the first evidence that PCSK9 enhances the degradation of the LDLR, thereby rationalizing the effect of PCSK9 on the regulation of circulating LDL-C levels.

    CAS  PubMed  Google Scholar 

  23. Benjannet, S. et al. NARC-1/PCSK9 and its natural mutants: zymogen cleavage and effects on the low density lipoprotein (LDL) receptor and LDL cholesterol. J. Biol. Chem. 279, 48865–48875 (2004).

    CAS  PubMed  Google Scholar 

  24. Park, S. W., Moon, Y. A. & Horton, J. D. Post-transcriptional regulation of low density lipoprotein receptor protein by proprotein convertase subtilisin/kexin type 9a in mouse liver. J. Biol. Chem. 279, 50630–50638 (2004).

    CAS  PubMed  Google Scholar 

  25. Steiner, D. F. The proprotein convertases. Curr. Opin. Chem. Biol. 2, 31–39 (1998).

    CAS  PubMed  Google Scholar 

  26. Seidah, N. G. & Prat, A. The proprotein convertases are potential targets in the treatment of dyslipidemia. J. Mol. Med. 85, 685–696 (2007).

    CAS  PubMed  Google Scholar 

  27. Espenshade, P. J., Cheng, D., Goldstein, J. L. & Brown, M. S. Autocatalytic processing of site-1 protease removes propeptide and permits cleavage of sterol regulatory element-binding proteins. J. Biol. Chem. 274, 22795–22804 (1999).

    CAS  PubMed  Google Scholar 

  28. Seidah, N. G. et al. The secretory proprotein convertase neural apoptosis-regulated convertase 1 (NARC-1): liver regeneration and neuronal differentiation. Proc. Natl Acad. Sci. USA 100, 928–933 (2003). This was the first report on the discovery of PCSK9. Its high expression in the liver and localization on human chromosome 1p33–34.3, close to that of a major locus (the FH3 locus) for ADH (located at 1p34.1–p32), and its upregulation after partial hepatectomy in a coordinated fashion with apolipoprotein B suggested that it may be implicated in cholesterol regulation.

    CAS  PubMed  Google Scholar 

  29. Seidah, N. G. PCSK9 as a therapeutic target of dyslipidemia. Expert Opin. Ther. Targets 13, 19–28 (2009).

    CAS  PubMed  Google Scholar 

  30. Seidah, N. G. & Chretien, M. Proprotein and prohormone convertases: a family of subtilases generating diverse bioactive polypeptides. Brain Res. 848, 45–62 (1999).

    CAS  PubMed  Google Scholar 

  31. Turpeinen, H. et al. Identification of proprotein convertase substrates using genome-wide expression correlation analysis. BMC Genomics 12, 618 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Pasquato, A. et al. The proprotein convertase SKI-1/S1P: in vitro analysis of Lassa virus glycoprotein-derived substrates and ex vivo validation of irreversible peptide inhibitors. J. Biol. Chem. 281, 23471–23481 (2006).

    CAS  PubMed  Google Scholar 

  33. Abifadel, M. et al. Mutations in PCSK9 cause autosomal dominant hypercholesterolemia. Nature Genet. 34, 154–156 (2003). This was the first report on the genetic evidence that PCSK9 represents the third locus of ADH.Single point mutations (S127R and F216L) in two French families were shown to be associated with a gain of function of PCSK9. This was the first indication that targeting PCSK9 may be beneficial for the treatment of dyslipidaemia and associated atherosclerosis.

    CAS  PubMed  Google Scholar 

  34. Naureckiene, S. et al. Functional characterization of Narc 1, a novel proteinase related to proteinase K. Arch. Biochem. Biophys. 420, 55–67 (2003).

    CAS  PubMed  Google Scholar 

  35. McNutt, M. C., Lagace, T. A. & Horton, J. D. Catalytic activity is not required for secreted PCSK9 to reduce low density lipoprotein receptors in HepG2 cells. J. Biol. Chem. 282, 20799–20803 (2007). This was the first evidence that the catalytic activity of PCSK9 is not needed for its functional enhancement of LDLR degradation.

    CAS  PubMed  Google Scholar 

  36. Horton, J. D., Cohen, J. C. & Hobbs, H. H. Molecular biology of PCSK9: its role in LDL metabolism. Trends Biochem. Sci. 32, 71–77 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Horton, J. D., Cohen, J. C. & Hobbs, H. H. PCSK9: a convertase that coordinates LDL catabolism. J. Lipid Res. 50, S172–S177 (2009).

    PubMed  PubMed Central  Google Scholar 

  38. Hsi, K. L., Seidah, N. G., De Serres, G. & Chretien, M. Isolation and NH2-terminal sequence of a novel porcine anterior pituitary polypeptide. Homology to proinsulin, secretin and Rous sarcoma virus transforming protein TVFV60. FEBS Lett. 147, 261–266 (1982).

    CAS  PubMed  Google Scholar 

  39. Mbikay, M., Seidah, N. G. & Chretien, M. Neuroendocrine secretory protein 7B2: structure, expression and functions. Biochem. J. 357, 329–342 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Benjannet, S. et al. Proprotein conversion is determined by a multiplicity of factors including convertase processing, substrate specificity, and intracellular environment. Cell type-specific processing of human prorenin by the convertase PC1. J. Biol. Chem. 267, 11417–11423 (1992).

    CAS  PubMed  Google Scholar 

  41. Elagoz, A., Benjannet, S., Mammarbassi, A., Wickham, L. & Seidah, N. G. Biosynthesis and cellular trafficking of the convertase SKI-1/S1P: ectodomain shedding requires SKI-1 activity. J. Biol. Chem. 277, 11265–11275 (2002).

    CAS  PubMed  Google Scholar 

  42. Feliciangeli, S. F. et al. Identification of a pH sensor in the furin propeptide that regulates enzyme activation. J. Biol. Chem. 281, 16108–16116 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Basak, A. et al. Enzymic characterization in vitro of recombinant proprotein convertase PC4. Biochem. J. 343, 29–37 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Rousselet, E., Benjannet, S., Hamelin, J., Canuel, M. & Seidah, N. G. The proprotein convertase PC7: unique zymogen activation and trafficking pathways. J. Biol. Chem. 286, 2728–2738 (2010).

    PubMed  PubMed Central  Google Scholar 

  45. Mayer, G. et al. The regulated cell surface zymogen activation of the proprotein convertase PC5A directs the processing of its secretory substrates. J. Biol. Chem. 283, 2373–2384 (2008).

    CAS  PubMed  Google Scholar 

  46. Cunningham, D. et al. Structural and biophysical studies of PCSK9 and its mutants linked to familial hypercholesterolemia. Nature Struct. Mol. Biol. 14, 413–419 (2007). This study reported the first crystal structure of PCSK9, which revealed the molecular details of the interaction of the prodomain with the catalytic subunit, as well as the topography of the three repeats of the C-terminal Cys-His-rich domain. This work provided the first clue to explain the gain-of-function D374Y mutation and the pH-dependent interaction of PCSK9 with LDLR.

    CAS  Google Scholar 

  47. Thomas, G. Furin at the cutting edge: from protein traffic to embryogenesis and disease. Nature Rev. Mol. Cell Biol. 3, 753–766 (2002).

    CAS  Google Scholar 

  48. Malide, D., Seidah, N. G., Chretien, M. & Bendayan, M. Electron microscopic immunocytochemical evidence for the involvement of the convertases PC1 and PC2 in the processing of proinsulin in pancreatic β-cells. J. Histochem. Cytochem. 43, 11–19 (1995).

    CAS  PubMed  Google Scholar 

  49. Day, R., Schafer, M. K., Watson, S. J., Chretien, M. & Seidah, N. G. Distribution and regulation of the prohormone convertases PC1 and PC2 in the rat pituitary. Mol. Endocrinol. 6, 485–497 (1992).

    CAS  PubMed  Google Scholar 

  50. Plaimauer, B. et al. 'Shed' furin: mapping of the cleavage determinants and identification of its C-terminus. Biochem. J. 354, 689–695 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Seidah, N. G. et al. Testicular expression of PC4 in the rat: molecular diversity of a novel germ cell-specific Kex2/subtilisin-like proprotein convertase. Mol. Endocrinol. 6, 1559–1570 (1992).

    CAS  PubMed  Google Scholar 

  52. Gyamera-Acheampong, C. et al. Sperm from mice genetically deficient for the PCSK4 proteinase exhibit accelerated capacitation, precocious acrosome reaction, reduced binding to egg zona pellucida, and impaired fertilizing ability. Biol. Reprod. 74, 666–673 (2006).

    CAS  PubMed  Google Scholar 

  53. Gyamera-Acheampong, C. & Mbikay, M. Proprotein convertase subtilisin/kexin type 4 in mammalian fertility: a review. Hum. Reprod. Update 15, 237–247 (2009).

    CAS  PubMed  Google Scholar 

  54. Lusson, J. et al. cDNA structure of the mouse and rat subtilisin/kexin-like PC5: a candidate proprotein convertase expressed in endocrine and nonendocrine cells. Proc. Natl Acad. Sci. USA 90, 6691–6695 (1993).

    CAS  PubMed  Google Scholar 

  55. Essalmani, R. et al. Deletion of the gene encoding proprotein convertase 5/6 causes early embryonic lethality in the mouse. Mol. Cell. Biol. 26, 354–361 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Nakagawa, T. et al. Identification and functional expression of a new member of the mammalian Kex2-like processing endoprotease family: its striking structural similarity to PACE4. J. Biochem. 113, 132–135 (1993).

    CAS  PubMed  Google Scholar 

  57. Nakagawa, T., Murakami, K. & Nakayama, K. Identification of an isoform with an extremely large Cys-rich region of PC6, a Kex2-like processing endoprotease. FEBS Lett. 327, 165–171 (1993).

    CAS  PubMed  Google Scholar 

  58. Dong, W. et al. Distinct mRNA expression of the highly homologous convertases PC5 and PACE4 in the rat brain and pituitary. J. Neurosci. 15, 1778–1796 (1995).

    CAS  PubMed  Google Scholar 

  59. Nour, N. et al. The cysteine-rich domain of the secreted proprotein convertases PC5A and PACE4 functions as a cell surface anchor and interacts with tissue inhibitors of metalloproteinases. Mol. Biol. Cell 16, 5215–5226 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Tsuji, A. et al. Secretory proprotein convertases PACE4 and PC6A are heparin-binding proteins which are localized in the extracellular matrix. Potential role of PACE4 in the activation of proproteins in the extracellular matrix. Biochim. Biophys. Acta 1645, 95–104 (2003).

    CAS  PubMed  Google Scholar 

  61. Sun, X., Essalmani, R., Susan-Resiga, D., Prat, A. & Seidah, N. G. Latent TGF-β binding proteins-2 and -3 inhibit the proprotein convertase 5/6A. J. Biol. Chem. 286, 29063–29073 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Seidah, N. G. et al. cDNA structure, tissue distribution, and chromosomal localization of rat PC7, a novel mammalian proprotein convertase closest to yeast kexin-like proteinases. Proc. Natl Acad. Sci. USA 93, 3388–3393 (1996).

    CAS  PubMed  Google Scholar 

  63. Meerabux, J. et al. A new member of the proprotein convertase gene family (LPC) is located at a chromosome translocation breakpoint in lymphomas. Cancer Res. 56, 448–451 (1996).

    CAS  PubMed  Google Scholar 

  64. Constam, D. B., Calfon, M. & Robertson, E. J. SPC4, SPC6, and the novel protease SPC7 are coexpressed with bone morphogenetic proteins at distinct sites during embryogenesis. J. Cell Biol. 134, 181–191 (1996).

    CAS  PubMed  Google Scholar 

  65. Bruzzaniti, A. et al. PC8 [corrected], a new member of the convertase family. Biochem. J. 314, 727–731 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Rousselet, E., Benjannet, S., Hamelin, J., Canuel, M. & Seidah, N. G. The proprotein convertase PC7: unique zymogen activation and trafficking pathways. J. Biol. Chem. 286, 2728–2738 (2011).

    CAS  PubMed  Google Scholar 

  67. Van de Loo, J. W. et al. Biosynthesis, distinct post-translational modifications, and functional characterization of lymphoma proprotein convertase. J. Biol. Chem. 272, 27116–27123 (1997).

    CAS  PubMed  Google Scholar 

  68. Xiang, Y., Molloy, S. S., Thomas, L. & Thomas, G. The PC6B cytoplasmic domain contains two acidic clusters that direct sorting to distinct trans-Golgi network/endosomal compartments. Mol. Biol. Cell 11, 1257–1273 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Declercq, J., Meulemans, S., Plets, E. & Creemers, J. W. Internalization of the proprotein convertase PC7 from the plasma membrane is mediated by a novel motif. J. Biol. Chem. 287, 9052–9060 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Pullikotil, P., Benjannet, S., Mayne, J. & Seidah, N. G. The proprotein convertase SKI-1/S1P: alternate translation and subcellular localization. J. Biol. Chem. 282, 27402–27413 (2007).

    CAS  PubMed  Google Scholar 

  71. Zaid, A. et al. Proprotein convertase subtilisin/kexin type 9 (PCSK9): hepatocyte-specific low-density lipoprotein receptor degradation and critical role in mouse liver regeneration. Hepatology 48, 646–654 (2008).

    CAS  PubMed  Google Scholar 

  72. Maxwell, K. N., Fisher, E. A. & Breslow, J. L. Overexpression of PCSK9 accelerates the degradation of the LDLR in a post-endoplasmic reticulum compartment. Proc. Natl Acad. Sci. USA 102, 2069–2074 (2005).

    CAS  PubMed  Google Scholar 

  73. Nassoury, N. et al. The cellular trafficking of the secretory proprotein convertase PCSK9 and its dependence on the LDLR. Traffic 8, 718–732 (2007).

    CAS  PubMed  Google Scholar 

  74. Kwon, H. J., Lagace, T. A., McNutt, M. C., Horton, J. D. & Deisenhofer, J. Molecular basis for LDL receptor recognition by PCSK9. Proc. Natl Acad. Sci. USA 105, 1820–1825 (2008).

    CAS  PubMed  Google Scholar 

  75. Surdo, P. L. et al. Mechanistic implications for LDL receptor degradation from the PCSK9/LDLR structure at neutral pH. EMBO Rep. 12, 1300–1305 (2011).

    PubMed  PubMed Central  Google Scholar 

  76. Holla, O. L., Strom, T. B., Cameron, J., Berge, K. E. & Leren, T. P. A chimeric LDL receptor containing the cytoplasmic domain of the transferrin receptor is degraded by PCSK9. Mol. Genet. Metab. 99, 149–156 (2010).

    CAS  PubMed  Google Scholar 

  77. Strom, T. B. et al. Disrupted recycling of the low density lipoprotein receptor by PCSK9 is not mediated by residues of the cytoplasmic domain. Mol. Genet. Metab. 101, 76–80 (2010).

    CAS  PubMed  Google Scholar 

  78. Zhang, D. W., Garuti, R., Tang, W. J., Cohen, J. C. & Hobbs, H. H. Structural requirements for PCSK9-mediated degradation of the low-density lipoprotein receptor. Proc. Natl Acad. Sci. USA 105, 13045–13050 (2008).

    CAS  PubMed  Google Scholar 

  79. Poirier, S. et al. Dissection of the endogenous cellular pathways of PCSK9-induced LDLR degradation: evidence for an intracellular route. J. Biol. Chem. 284, 28856–28864 (2009). This work demonstrated the existence of the intracellular and extracellular pathways used by PCSK9 to enhance the degradation of LDLR.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Zhang, X. et al. Neuropeptidomic analysis establishes a major role for prohormone convertase-2 in neuropeptide biosynthesis. J. Neurochem. 112, 1168–1179 (2010).

    CAS  PubMed  Google Scholar 

  81. Wardman, J. H. et al. Analysis of peptides in prohormone convertase 1/3 null mouse brain using quantitative peptidomics. J. Neurochem. 114, 215–225 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. van den Ouweland, A. M., Van Groningen, J. J., Roebroek, A. J., Onnekink, C. & Van de Ven, W. J. Nucleotide sequence analysis of the human fur gene. Nucleic Acids Res. 17, 7101–7102 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Klenk, H. D. & Garten, W. Host cell proteases controlling virus pathogenicity. Trends Microbiol. 2, 39–43 (1994).

    CAS  PubMed  Google Scholar 

  84. Garten, W. & Klenk, H. D. Understanding influenza virus pathogenicity. Trends Microbiol. 7, 99–100 (1999).

    CAS  PubMed  Google Scholar 

  85. Moulard, M. & Decroly, E. Maturation of HIV envelope glycoprotein precursors by cellular endoproteases. Biochim. Biophys. Acta 1469, 121–132 (2000).

    CAS  PubMed  Google Scholar 

  86. Day, P. M. & Schiller, J. T. The role of furin in papillomavirus infection. Future Microbiol. 4, 1255–1262 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Paquet, L. et al. The neuroendocrine precursor 7B2 is a sulfated protein proteolytically processed by a ubiquitous furin-like convertase. J. Biol. Chem. 269, 19279–19285 (1994).

    CAS  PubMed  Google Scholar 

  88. Young, J. A. & Collier, R. J. Anthrax toxin: receptor binding, internalization, pore formation, and translocation. Annu. Rev. Biochem. 76, 243–265 (2007).

    CAS  Google Scholar 

  89. Sucic, J. F., Moehring, J. M., Inocencio, N. M., Luchini, J. W. & Moehring, T. J. Endoprotease PACE4 is Ca2+-dependent and temperature-sensitive and can partly rescue the phenotype of a furin-deficient cell strain. Biochem. J. 339, 639–647 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Gordon, V. M., Klimpel, K. R., Arora, N., Henderson, M. A. & Leppla, S. H. Proteolytic activation of bacterial toxins by eukaryotic cells is performed by furin and by additional cellular proteases. Infect. Immun. 63, 82–87 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Jin, W. et al. Proprotein convertases are responsible for proteolysis and inactivation of endothelial lipase. J. Biol. Chem. 280, 36551–36559 (2005).

    CAS  PubMed  Google Scholar 

  92. Essalmani, R. et al. In vivo evidence that furin from hepatocytes inactivates PCSK9. J. Biol. Chem. 286, 4257–4263 (2011).

    CAS  PubMed  Google Scholar 

  93. Scamuffa, N. et al. Regulation of prohepcidin processing and activity by the subtilisin-like proprotein convertases furin, PC5, PACE4 and PC7. Gut 57, 1573–1582 (2008).

    CAS  PubMed  Google Scholar 

  94. Benjannet, S., Rhainds, D., Hamelin, J., Nassoury, N. & Seidah, N. G. The proprotein convertase PCSK9 is inactivated by furin and/or PC5/6A: functional consequences of natural mutations and post-translational modifications. J. Biol. Chem. 281, 30561–30572 (2006). This was the first evidence that furin inactivates PCSK9 by cleavage after Arg218↓ and explains the gain-of-function mechanism of the R218S mutant that is resistant to furin.

    CAS  PubMed  Google Scholar 

  95. Henrich, S. et al. The crystal structure of the proprotein processing proteinase furin explains its stringent specificity. Nature Struct. Biol. 10, 520–526 (2003).

    CAS  PubMed  Google Scholar 

  96. Henrich, S., Lindberg, I., Bode, W. & Than, M. E. Proprotein convertase models based on the crystal structures of furin and kexin: explanation of their specificity. J. Mol. Biol. 345, 211–227 (2005). This study reported the first crystal structure of furin, which formed the basis for the development of small-molecule inhibitors of furin-like convertases.

    CAS  PubMed  Google Scholar 

  97. Basak, S., Chretien, M., Mbikay, M. & Basak, A. In vitro elucidation of substrate specificity and bioassay of proprotein convertase 4 using intramolecularly quenched fluorogenic peptides. Biochem. J. 380, 505–514 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Essalmani, R. et al. In vivo functions of the proprotein convertase PC5/6 during mouse development: Gdf11 is a likely substrate. Proc. Natl Acad. Sci. USA 105, 5750–5755 (2008).

    CAS  PubMed  Google Scholar 

  99. Szumska, D. et al. VACTERL/caudal regression/Currarino syndrome-like malformations in mice with mutation in the proprotein convertase Pcsk5. Genes Dev. 22, 1465–1477 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Tortorella, M. D. et al. ADAMTS-4 (aggrecanase-1): N-terminal activation mechanisms. Arch. Biochem. Biophys. 444, 34–44 (2005).

    CAS  PubMed  Google Scholar 

  101. Liu, J., Afroza, H., Rader, D. J. & Jin, W. Angiopoietin-like protein 3 inhibits lipoprotein lipase activity through enhancing its cleavage by proprotein convertases. J. Biol. Chem. 285, 27561–27570 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Xiao, Y. et al. Cell-surface processing of extracellular human immunodeficiency virus type 1 Vpr by proprotein convertases. Virology 372, 384–397 (2008).

    CAS  PubMed  Google Scholar 

  103. Rousselet, E. et al. The proprotein convertase PC7 enhances the activation of the EGF receptor pathway through processing of the EGF precursor. J. Biol. Chem. 286, 9185–9195 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Oexle, K. et al. Novel association to the proprotein convertase PCSK7 gene locus revealed by analysing soluble transferrin receptor (sTfR) levels. Hum. Mol. Genet. 20, 1042–1047 (2011).

    CAS  PubMed  Google Scholar 

  105. Goldstein, J. L., DeBose-Boyd, R. A. & Brown, M. S. Protein sensors for membrane sterols. Cell 124, 35–46 (2006).

    CAS  PubMed  Google Scholar 

  106. Llarena, M., Bailey, D., Curtis, H. & O'Hare, P. Different mechanisms of recognition and ER retention by transmembrane transcription factors CREB-H and ATF6. Traffic 11, 48–69 (2010).

    CAS  PubMed  Google Scholar 

  107. Seidah, N. G. & Prat, A. Precursor convertases in the secretory pathway, cytosol and extracellular milieu. Essays Biochem. 38, 79–94 (2002).

    CAS  PubMed  Google Scholar 

  108. Poirier, S. et al. The proprotein convertase PCSK9 induces the degradation of low density lipoprotein receptor (LDLR) and its closest family members VLDLR and ApoER2. J. Biol. Chem. 283, 2363–2372 (2008).

    CAS  PubMed  Google Scholar 

  109. Labonte, P. et al. PCSK9 impedes hepatitis C virus infection in vitro and modulates liver CD81 expression. Hepatology 50, 17–24 (2009). This study provided the first evidence that PCSK9 can protect the liver against hepatitis C virus infection by enhancing the degradation of two hepatitis C virus receptors:LDLR and CD81.

    CAS  PubMed  Google Scholar 

  110. Dubuc, G. et al. A new method for measurement of total plasma PCSK9: clinical applications. J. Lipid Res. 51, 140–149 (2010).

    PubMed  PubMed Central  Google Scholar 

  111. Scamuffa, N., Calvo, F., Chretien, M., Seidah, N. G. & Khatib, A. M. Proprotein convertases: lessons from knockouts. FASEB J. 20, 1954–1963 (2006).

    CAS  PubMed  Google Scholar 

  112. Seidah, N. G., Khatib, A. M. & Prat, A. The proprotein convertases and their implication in sterol and/or lipid metabolism. Biol. Chem. 387, 871–877 (2006).

    CAS  PubMed  Google Scholar 

  113. Zhu, X. et al. Severe block in processing of proinsulin to insulin accompanied by elevation of des-64,65 proinsulin intermediates in islets of mice lacking prohormone convertase 1/3. Proc. Natl Acad. Sci. USA 99, 10299–10304 (2002).

    CAS  PubMed  Google Scholar 

  114. Furuta, M. et al. Severe defect in proglucagon processing in islet A-cells of prohormone convertase 2 null mice. J. Biol. Chem. 276, 27197–27202 (2001).

    CAS  PubMed  Google Scholar 

  115. Dey, A. et al. Furin and prohormone convertase 1/3 are major convertases in the processing of mouse pro-growth hormone-releasing hormone. Endocrinology 145, 1961–1971 (2004).

    CAS  PubMed  Google Scholar 

  116. Posner, S. F. et al. Stepwise posttranslational processing of progrowth hormone-releasing hormone (proGHRH) polypeptide by furin and PC1. Endocrine 23, 199–213 (2004).

    CAS  PubMed  Google Scholar 

  117. Zhu, X. et al. Disruption of PC1/3 expression in mice causes dwarfism and multiple neuroendocrine peptide processing defects. Proc. Natl Acad. Sci. USA 99, 10293–10298 (2002).

    CAS  PubMed  Google Scholar 

  118. Furuta, M. et al. Defective prohormone processing and altered pancreatic islet morphology in mice lacking active SPC2. Proc. Natl Acad. Sci. USA 94, 6646–6651 (1997).

    CAS  PubMed  Google Scholar 

  119. Berman, Y. et al. Defective prodynorphin processing in mice lacking prohormone convertase PC2. J. Neurochem. 75, 1763–1770 (2000).

    CAS  PubMed  Google Scholar 

  120. Furuta, M. et al. Incomplete processing of proinsulin to insulin accompanied by elevation of Des-31,32 proinsulin intermediates in islets of mice lacking active PC2. J. Biol. Chem. 273, 3431–3437 (1998).

    CAS  PubMed  Google Scholar 

  121. Peinado, J. R. et al. Strain-dependent influences on the hypothalamo–pituitary–adrenal axis profoundly affect the 7B2 and PC2 null phenotypes. Endocrinology 146, 3438–3444 (2005).

    CAS  PubMed  Google Scholar 

  122. Westphal, C. H. et al. The neuroendocrine protein 7B2 is required for peptide hormone processing in vivo and provides a novel mechanism for pituitary Cushing's disease. Cell 96, 689–700 (1999).

    CAS  PubMed  Google Scholar 

  123. Jackson, R. S. et al. Obesity and impaired prohormone processing associated with mutations in the human prohormone convertase 1 gene. Nature Genet. 16, 303–306 (1997). This was the first evidence that loss of function of the PCSK1 geneis associated with the onset of early childhood obesity.

    CAS  PubMed  Google Scholar 

  124. Farooqi, I. S. et al. Hyperphagia and early-onset obesity due to a novel homozygous missense mutation in prohormone convertase 1/3. J. Clin. Endocrinol. Metab. 92, 3369–3373 (2007).

    CAS  PubMed  Google Scholar 

  125. Benzinou, M. et al. Common nonsynonymous variants in PCSK1 confer risk of obesity. Nature Genet. 40, 943–945 (2008).

    CAS  PubMed  Google Scholar 

  126. Corpeleijn, E. et al. Obesity-related polymorphisms and their associations with the ability to regulate fat oxidation in obese Europeans: the NUGENOB study. Obesity 18, 1369–1377 (2010).

    CAS  PubMed  Google Scholar 

  127. Creemers, J. W. et al. Heterozygous mutations causing partial prohormone convertase 1 deficiency contribute to human obesity. Diabetes 61, 383–390 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Lloyd, D. J., Bohan, S. & Gekakis, N. Obesity, hyperphagia and increased metabolic efficiency in Pc1 mutant mice. Hum. Mol. Genet. 15, 1884–1893 (2006).

    CAS  PubMed  Google Scholar 

  129. Roebroek, A. J. et al. Failure of ventral closure and axial rotation in embryos lacking the proprotein convertase Furin. Development 125, 4863–4876 (1998).

    CAS  PubMed  Google Scholar 

  130. Constam, D. B. & Robertson, E. J. Tissue-specific requirements for the proprotein convertase furin/SPC1 during embryonic turning and heart looping. Development 127, 245–254 (2000).

    CAS  PubMed  Google Scholar 

  131. Susan-Resiga, D. et al. Furin is the major processing enzyme of the cardiac-specific growth factor bone morphogenetic protein 10. J. Biol. Chem. 286, 22785–22794 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Chen, H. et al. BMP10 is essential for maintaining cardiac growth during murine cardiogenesis. Development 131, 2219–2231 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Roebroek, A. J. et al. Limited redundancy of the proprotein convertase furin in mouse liver. J. Biol. Chem. 279, 53442–53450 (2004). This was the first genetic evidence that furin exhibits redundant functions in the liver.

    CAS  PubMed  Google Scholar 

  134. Louagie, E. et al. Role of furin in granular acidification in the endocrine pancreas: identification of the V-ATPase subunit Ac45 as a candidate substrate. Proc. Natl Acad. Sci. USA 105, 12319–12324 (2008).

    CAS  PubMed  Google Scholar 

  135. Pesu, M. et al. T-cell-expressed proprotein convertase furin is essential for maintenance of peripheral immune tolerance. Nature 455, 246–250 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. De Vos, L. et al. MMTV-cre-mediated fur inactivation concomitant with PLAG1 proto-oncogene activation delays salivary gland tumorigenesis in mice. Int. J. Oncol. 32, 1073–1083 (2008).

    CAS  PubMed  Google Scholar 

  137. Mbikay, M. et al. Impaired fertility in mice deficient for the testicular germ-cell protease PC4. Proc. Natl Acad. Sci. USA 94, 6842–6846 (1997). This was the first evidence that lack of PC4 results in impaired fertility in male mice, opening the door to the development of contraceptives for males.

    CAS  PubMed  Google Scholar 

  138. Li, M., Mbikay, M., Nakayama, K., Miyata, A. & Arimura, A. Prohormone convertase PC4 processes the precursor of PACAP in the testis. Ann. NY Acad. Sci. 921, 333–339 (2000).

    CAS  PubMed  Google Scholar 

  139. Qiu, Q., Basak, A., Mbikay, M., Tsang, B. K. & Gruslin, A. Role of pro-IGF-II processing by proprotein convertase 4 in human placental development. Proc. Natl Acad. Sci. USA 102, 11047–11052 (2005).

    CAS  PubMed  Google Scholar 

  140. McPherron, A. C., Lawler, A. M. & Lee, S. J. Regulation of anterior/posterior patterning of the axial skeleton by growth/differentiation factor 11. Nature Genet. 22, 260–264 (1999).

    CAS  PubMed  Google Scholar 

  141. Marchesi, C. et al. Inactivation of endothelial proprotein convertase 5/6 decreases collagen deposition in the cardiovascular system: role of fibroblast autophagy. J. Mol. Med. 89, 1103–1111 (2011).

    CAS  PubMed  Google Scholar 

  142. Iatan, I. et al. Genetic variation at the proprotein convertase subtilisin/kexin type 5 gene modulates high-density lipoprotein cholesterol levels. Circ. Cardiovasc. Genet. 2, 467–475 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Sun, X., Essalmani, R., Seidah, N. G. & Prat, A. The proprotein convertase PC5/6 is protective against intestinal tumorigenesis: in vivo mouse model. Mol. Cancer 8, 73 (2009).

    PubMed  PubMed Central  Google Scholar 

  144. Constam, D. B. & Robertson, E. J. SPC4/PACE4 regulates a TGFβ signaling network during axis formation. Genes Dev. 14, 1146–1155 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Blanchet, M. H. et al. Cripto recruits Furin and PACE4 and controls Nodal trafficking during proteolytic maturation. EMBO J. 27, 2580–2591 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Scerri, T. S. et al. PCSK6 is associated with handedness in individuals with dyslexia. Hum. Mol. Genet. 20, 608–614 (2011).

    CAS  PubMed  Google Scholar 

  147. Constam, D. B. Running the gauntlet: an overview of the modalities of travel employed by the putative morphogen Nodal. Curr. Opin. Genet. Dev. 19, 302–307 (2009).

    CAS  PubMed  Google Scholar 

  148. Villeneuve, P. et al. Altered processing of the neurotensin/neuromedin N precursor in PC2 knock down mice: a biochemical and immunohistochemical study. J. Neurochem. 82, 783–793 (2002).

    CAS  PubMed  Google Scholar 

  149. Mitchell, K. J. et al. Functional analysis of secreted and transmembrane proteins critical to mouse development. Nature Genet. 28, 241–249 (2001).

    CAS  PubMed  Google Scholar 

  150. Schlombs, K., Wagner, T. & Scheel, J. Site-1 protease is required for cartilage development in zebrafish. Proc. Natl Acad. Sci. USA 100, 14024–14029 (2003).

    CAS  PubMed  Google Scholar 

  151. Yang, J. et al. Decreased lipid synthesis in livers of mice with disrupted site-1 protease gene. Proc. Natl Acad. Sci. USA 98, 13607–13612 (2001).

    CAS  PubMed  Google Scholar 

  152. Patra, D., DeLassus, E., Hayashi, S. & Sandell, L. J. Site-1 protease is essential to growth plate maintenance and is a critical regulator of chondrocyte hypertrophic differentiation in postnatal mice. J. Biol. Chem. 286, 29227–29240 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Rashid, S. et al. Decreased plasma cholesterol and hypersensitivity to statins in mice lacking Pcsk9. Proc. Natl Acad. Sci. USA 102, 5374–5379 (2005).

    CAS  PubMed  Google Scholar 

  154. Roubtsova, A. et al. Circulating proprotein convertase subtilisin/kexin 9 (PCSK9) regulates VLDLR protein and triglyceride accumulation in visceral adipose tissue. Arterioscler. Thromb. Vasc. Biol. 31, 785–791 (2011). This is the first evidence that lack of circulating PCSK9 originating from hepatocytes results in adipocyte hypertrophy, in part because of increased levels of the cell surface VLDLR protein.

    CAS  PubMed  Google Scholar 

  155. Denis, M. et al. Gene inactivation of proprotein convertase subtilisin/kexin type 9 reduces atherosclerosis in mice. Circulation 125, 894–901 (2012). This is the first evidence that lack of PCSK9 protects against the development of atherosclerosis in mice lacking either apolipoprotein E or LDLR.

    CAS  PubMed  Google Scholar 

  156. Herbert, B. et al. Increased secretion of lipoproteins in transgenic mice expressing human D374Y PCSK9 under physiological genetic control. Arterioscler. Thromb. Vasc. Biol. 30, 1333–1339 (2010).

    CAS  PubMed  Google Scholar 

  157. Timms, K. M. et al. A mutation in PCSK9 causing autosomal-dominant hypercholesterolemia in a Utah pedigree. Hum. Genet. 114, 349–353 (2004).

    CAS  PubMed  Google Scholar 

  158. Cohen, J. et al. Low LDL cholesterol in individuals of African descent resulting from frequent nonsense mutations in PCSK9. Nature Genet. 37, 161–165 (2005). This was the first evidence that lower levels of PCSK9 are associated with hypocholesterolaemia in individuals exhibiting heterozygous or homozygous loss-of-function mutations.

    CAS  PubMed  Google Scholar 

  159. Kotowski, I. K. et al. A spectrum of PCSK9 alleles contributes to plasma levels of low-density lipoprotein cholesterol. Am. J. Hum. Genet. 78, 410–422 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Bassi, D. E., Fu, J., Lopez, D. C. & Klein-Szanto, A. J. Proprotein convertases: “master switches” in the regulation of tumor growth and progression. Mol. Carcinog. 44, 151–161 (2005).

    CAS  PubMed  Google Scholar 

  161. Scamuffa, N. et al. Selective inhibition of proprotein convertases represses the metastatic potential of human colorectal tumor cells. J. Clin. Invest. 118, 352–363 (2008).

    CAS  PubMed  Google Scholar 

  162. Couture, F., D'Anjou, F. & Day R. On the cutting edge of proprotein convertase pharmacology: from molecular concepts to clinical applications. Biomol. Concepts 2, 421–438 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Anderson, E. D., Thomas, L., Hayflick, J. S. & Thomas, G. Inhibition of HIV-1 gp160-dependent membrane fusion by a furin-directed α1-antitrypsin variant. J. Biol. Chem. 268, 24887–24891 (1993).

    CAS  PubMed  Google Scholar 

  164. Zhong, M. et al. The prosegments of furin and PC7 as potent inhibitors of proprotein convertases. In vitro and ex vivo assessment of their efficacy and selectivity. J. Biol. Chem. 274, 33913–33920 (1999).

    CAS  PubMed  Google Scholar 

  165. Khatib, A. M. et al. Inhibition of proprotein convertases is associated with loss of growth and tumorigenicity of HT-29 human colon carcinoma cells: importance of insulin-like growth factor-1 (IGF-1) receptor processing in IGF-1-mediated functions. J. Biol. Chem. 276, 30686–30693 (2001). This study showed that inhibition of furin is associated with lower levels of tumour formation owing to the lack of processing of growth factors such as proIGF1.

    CAS  PubMed  Google Scholar 

  166. Lopez, D. C., Bassi, D. E., Zucker, S., Seidah, N. G. & Klein-Szanto, A. J. Human carcinoma cell growth and invasiveness is impaired by the propeptide of the ubiquitous proprotein convertase furin. Cancer Res. 65, 4162–4171 (2005).

    Google Scholar 

  167. Bassi, D. E. et al. Proprotein convertase inhibition results in decreased skin cell proliferation, tumorigenesis, and metastasis. Neoplasia 12, 516–526 (2010).

    PubMed  PubMed Central  Google Scholar 

  168. Jiao, G. S. et al. Synthetic small molecule furin inhibitors derived from 2,5-dideoxystreptamine. Proc. Natl Acad. Sci. USA 103, 19707–19712 (2006).

    CAS  PubMed  Google Scholar 

  169. Komiyama, T. et al. Inhibition of furin/proprotein convertase-catalyzed surface and intracellular processing by small molecules. J. Biol. Chem. 284, 15729–15738 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Coppola, J. M., Bhojani, M. S., Ross, B. D. & Rehemtulla, A. A small-molecule furin inhibitor inhibits cancer cell motility and invasiveness. Neoplasia 10, 363–370 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Becker, G. L. et al. Potent inhibitors of furin and furin-like proprotein convertases containing decarboxylated P1 arginine mimetics. J. Med. Chem. 53, 1067–1075 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Mercapide, J. et al. Inhibition of furin-mediated processing results in suppression of astrocytoma cell growth and invasiveness. Clin. Cancer Res. 8, 1740–1746 (2002).

    CAS  PubMed  Google Scholar 

  173. Lapierre, M. et al. Opposing function of the proprotein convertases furin and PACE4 on breast cancer cells' malignant phenotypes: role of tissue inhibitors of metalloproteinase-1. Cancer Res. 67, 9030–9034 (2007).

    CAS  PubMed  Google Scholar 

  174. Dragulescu-Andrasi, A., Liang, G. & Rao, J. In vivo bioluminescence imaging of furin activity in breast cancer cells using bioluminogenic substrates. Bioconjug. Chem. 20, 1660–1666 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  175. Mesnard, D. & Constam, D. B. Imaging proprotein convertase activities and their regulation in the implanting mouse blastocyst. J. Cell Biol. 191, 129–139 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  176. Senzer, N. et al. Phase I trial of “bi-shRNAifurin/GMCSF DNA/autologous tumor cell” vaccine (FANG) in advanced cancer. Mol. Ther. 20, 679–686 (2012).

    CAS  PubMed  Google Scholar 

  177. Steinman, R. M. Dendritic cells: understanding immunogenicity. Eur. J. Immunol. 37, S53–S60 (2007). This was the first report of the application of silencing furin (in primary human tumours isolated from patients with the combined expression of GM-CSF), in the production of tumour vaccines that prolonged the life of patients with cancer.

    CAS  PubMed  Google Scholar 

  178. Zou, T., Satake, A., Ojha, P. & Kambayashi, T. Cellular therapies supplement: the role of granulocyte macrophage colony-stimulating factor and dendritic cells in regulatory T-cell homeostasis and expansion. Transfusion 51, 160S–168S (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  179. D'Anjou, F. et al. Molecular validation of PACE4 as a target in prostate cancer. Transl. Oncol. 4, 157–172 (2011).

    PubMed  PubMed Central  Google Scholar 

  180. Komiyama, T., Swanson, J. A. & Fuller, R. S. Protection from anthrax toxin-mediated killing of macrophages by the combined effects of furin inhibitors and chloroquine. Antimicrob. Agents Chemother. 49, 3875–3882 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  181. Ozden, S. et al. Inhibition of Chikungunya virus infection in cultured human muscle cells by furin inhibitors: impairment of the maturation of the E2 surface glycoprotein. J. Biol. Chem. 283, 21899–21908 (2008).

    CAS  PubMed  Google Scholar 

  182. Malfait, A. M. et al. Proprotein convertase activation of aggrecanases in cartilage in situ. Arch. Biochem. Biophys. 478, 43–51 (2008).

    CAS  PubMed  Google Scholar 

  183. Wylie, J. D., Ho, J. C., Singh, S., McCulloch, D. R. & Apte, S. S. Adamts5 (aggrecanase-2) is widely expressed in the mouse musculoskeletal system and is induced in specific regions of knee joint explants by inflammatory cytokines. J. Orthop. Res. 30, 226–233 (2012).

    CAS  PubMed  Google Scholar 

  184. Byun, S. et al. Transport and equilibrium uptake of a peptide inhibitor of PACE4 into articular cartilage is dominated by electrostatic interactions. Arch. Biochem. Biophys. 499, 32–39 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  185. Kowalska, D. et al. Synthetic small-molecule prohormone convertase 2 inhibitors. Mol. Pharmacol. 75, 617–625 (2009).

    CAS  PubMed  Google Scholar 

  186. Vivoli, M. et al. Inhibition of prohormone convertases PC1/3 and PC2 by 2,5-dideoxystreptamine derivatives. Mol. Pharmacol. 81, 440–454 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  187. Majumdar, S. et al. Proprotein convertase inhibitory activities of flavonoids isolated from oroxylum indicum. Curr. Med. Chem. 17, 2049–2058 (2010).

    CAS  PubMed  Google Scholar 

  188. Pullikotil, P., Vincent, M., Nichol, S. T. & Seidah, N. G. Development of protein-based inhibitors of the proprotein of convertase SKI-1/S1P: processing of SREBP-2, ATF6, and a viral glycoprotein. J. Biol. Chem. 279, 17338–17347 (2004).

    CAS  PubMed  Google Scholar 

  189. Hawkins, J. L. et al. Pharmacologic inhibition of site 1 protease activity inhibits sterol regulatory element-binding protein processing and reduces lipogenic enzyme gene expression and lipid synthesis in cultured cells and experimental animals. J. Pharmacol. Exp. Ther. 326, 801–808 (2008).

    CAS  PubMed  Google Scholar 

  190. Urata, S. et al. Antiviral activity of a small-molecule inhibitor of arenavirus glycoprotein processing by the cellular site 1 protease. J. Virol. 85, 795–803 (2011).

    CAS  PubMed  Google Scholar 

  191. De Windt, A. et al. Gene set enrichment analysis reveals several globally affected pathways due to SKI-1/S1P inhibition in HepG2 cells. DNA Cell Biol. 26, 765–772 (2007).

    CAS  PubMed  Google Scholar 

  192. Pasquato, A. et al. Evaluation of the anti-arenaviral activity of the subtilisin kexin isozyme-1/site-1 protease inhibitor PF-429242. Virology 423, 14–22 (2012).

    CAS  PubMed  Google Scholar 

  193. Olmstead, A. D., Knecht, W., Lazarov, I., Dixit, S. B. & Jean, F. Human subtilase SKI-1/S1P is a master regulator of the HCV lifecycle and a potential host cell target for developing indirect-acting antiviral agents. PLoS Pathog. 8, e1002468 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  194. Bastianelli, G. et al. Computational reverse-engineering of a spider-venom derived peptide active against Plasmodium falciparum SUB1. PLoS ONE 6, e21812 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  195. Duff, C. J. & Hooper, N. M. PCSK9: an emerging target for treatment of hypercholesterolemia. Expert Opin. Ther. Targets 15, 157–168 (2011).

    CAS  PubMed  Google Scholar 

  196. Konrad, R. J., Troutt, J. S. & Cao, G. Effects of currently prescribed LDL-C-lowering drugs on PCSK9 and implications for the next generation of LDL-C-lowering agents. Lipids Health Dis. 10, 38 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  197. Cariou, B., Le, M. C. & Costet, P. Clinical aspects of PCSK9. Atherosclerosis 216, 258–265 (2011).

    CAS  PubMed  Google Scholar 

  198. Awan, Z. et al. Rosuvastatin, proprotein convertase subtilisin/kexin type 9 concentrations, and LDL cholesterol response: the JUPITER trial. Clin. Chem. 58, 183–189 (2012).

    CAS  PubMed  Google Scholar 

  199. Crunkhorn, S. Trial watch: PCSK9 antibody reduces LDL cholesterol. Nature Rev. Drug Discov. 11, 11 (2012).

    CAS  Google Scholar 

  200. Davignon, J., Dubuc, G. & Seidah, N. G. The influence of PCSK9 polymorphisms on serum low-density lipoprotein cholesterol and risk of atherosclerosis. Curr. Atheroscler. Rep. 12, 308–315 (2010).

    CAS  PubMed  Google Scholar 

  201. Lakoski, S. G., Lagace, T. A., Cohen, J. C., Horton, J. D. & Hobbs, H. H. Genetic and metabolic determinants of plasma PCSK9 levels. J. Clin. Endocrinol. Metab. 94, 2537–2543 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  202. Briel, M., Nordmann, A. J. & Bucher, H. C. Statin therapy for prevention and treatment of acute and chronic cardiovascular disease: update on recent trials and metaanalyses. Curr. Opin. Lipidol. 16, 601–605 (2005).

    CAS  PubMed  Google Scholar 

  203. Dubuc, G. et al. Statins upregulate PCSK9, the gene encoding the proprotein convertase neural apoptosis-regulated convertase-1 implicated in familial hypercholesterolemia. Arterioscler. Thromb. Vasc. Biol. 24, 1454–1459 (2004). This was the first evidence that statins upregulate levels of PCSK9 mRNA via activation of SREBP2.

    CAS  PubMed  Google Scholar 

  204. Attie, A. D. & Seidah, N. G. Dual regulation of the LDL receptor — some clarity and new questions. Cell Metab. 1, 290–292 (2005).

    CAS  PubMed  Google Scholar 

  205. Thompson, J. F. et al. Comprehensive whole-genome and candidate gene analysis for response to statin therapy in the treating to new targets (TNT) cohort. Circ. Cardiovasc. Genet. 2, 173–181 (2009).

    CAS  PubMed  Google Scholar 

  206. Naoumova, R. P. et al. Severe hypercholesterolemia in four British families with the D374Y mutation in the PCSK9 gene: long-term follow-up and treatment response. Arterioscler. Thromb. Vasc. Biol. 25, 2654–2660 (2005).

    CAS  PubMed  Google Scholar 

  207. Berge, K. E., Ose, L. & Leren, T. P. Missense mutations in the PCSK9 gene are associated with hypocholesterolemia and possibly increased response to statin therapy. Arterioscler. Thromb. Vasc. Biol. 26, 1094–1100 (2006).

    CAS  PubMed  Google Scholar 

  208. Chan, J. C. et al. A proprotein convertase subtilisin/kexin type 9 neutralizing antibody reduces serum cholesterol in mice and nonhuman primates. Proc. Natl Acad. Sci. USA 106, 9820–9825 (2009). This was the first evidence that an injectable inhibitory mAb can reduce the levels of active PCSK9 in circulation, resulting in a substantial reduction in the levels of LDL-C in mice and non-human primates. This seminal manuscript has led to the wider use of biologics to lower PCSK9 levels.

    CAS  PubMed  Google Scholar 

  209. Ni, Y. G. et al. A PCSK9-binding antibody that structurally mimics the EGF(A) domain of LDL-receptor reduces LDL cholesterol in vivo. J. Lipid Res. 52, 78–86 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  210. Liang, H. et al. Proprotein convertase substilisin/kexin type 9 antagonism reduces low-density lipoprotein cholesterol in statin-treated hypercholesterolemic nonhuman primates. J. Pharmacol. Exp. Ther. 340, 228–236 (2012).

    CAS  PubMed  Google Scholar 

  211. Ni, Y. G. et al. A proprotein convertase subtilisin-like/kexin type 9 (PCSK9) C-terminal domain antibody antigen-binding fragment inhibits PCSK9 internalization and restores low density lipoprotein uptake. J. Biol. Chem. 285, 12882–12891 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  212. McNutt, M. C. et al. Antagonism of secreted PCSK9 increases low-density lipoprotein receptor expression in HEPG2 cells. J. Biol. Chem. 284, 10551–10570 (2009).

    Google Scholar 

  213. Frank-Kamenetsky, M. et al. Therapeutic RNAi targeting PCSK9 acutely lowers plasma cholesterol in rodents and LDL cholesterol in nonhuman primates. Proc. Natl Acad. Sci. USA 105, 11915–11920 (2008). This was the first evidence that an injectable RNAi lipidformulation against PCSK9 can reduce the levels of circulating PCSK9 and LDL-C in rodents and non-human primates.

    CAS  PubMed  Google Scholar 

  214. Gupta, N. et al. A locked nucleic acid antisense oligonucleotide (LNA) silences PCSK9 and enhances LDLR expression in vitro and in vivo. PLoS ONE 5, e10682 (2010). This was the first evidence that an injectable antisense LNA against PCSK9 can reduce the levels of circulating PCSK9 and LDL-C in mice.

    PubMed  PubMed Central  Google Scholar 

  215. Lindholm, M. W. et al. PCSK9 LNA antisense oligonucleotides induce sustained reduction of LDL cholesterol in nonhuman primates. Mol. Ther. 20, 376–381 (2012).

    CAS  PubMed  Google Scholar 

  216. Chretien, M., Seidah, N. G., Basak, A. & Mbikay, M. Proprotein convertases as therapeutic targets. Expert Opin. Ther. Targets 12, 1289–1300 (2008).

    CAS  PubMed  Google Scholar 

  217. Mbikay, M., Sirois, F., Yao, J., Seidah, N. G. & Chretien, M. Comparative analysis of expression of the proprotein convertases furin, PACE4, PC1 and PC2 in human lung tumours. Br. J. Cancer 75, 1509–1514 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  218. Khatib, A. M., Siegfried, G., Chretien, M., Metrakos, P. & Seidah, N. G. Proprotein convertases in tumor progression and malignancy: novel targets in cancer therapy. Am. J. Pathol. 160, 1921–1935 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  219. Abifadel, M. et al. Mutations and polymorphisms in the proprotein convertase subtilisin kexin 9 (PCSK9) gene in cholesterol metabolism and disease. Hum. Mutat. 30, 520–529 (2009).

    CAS  PubMed  Google Scholar 

  220. Li, N. et al. Associations between genetic variations in the FURIN gene and hypertension. BMC Med. Genet. 11, 124 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  221. Ehret, G. B. et al. Genetic variants in novel pathways influence blood pressure and cardiovascular disease risk. Nature 478, 103–109 (2011).

    CAS  PubMed  Google Scholar 

  222. Kitamura, K. & Tomita, K. Proteolytic activation of the epithelial sodium channel and therapeutic application of a serine protease inhibitor for the treatment of salt-sensitive hypertension. Clin. Exp. Nephrol. 16, 44–48 (2012).

    CAS  PubMed  Google Scholar 

  223. Croissandeau, G. et al. Increased stress-induced analgesia in mice lacking the proneuropeptide convertase PC2. Neurosci. Lett. 406, 71–75 (2006).

    CAS  PubMed  Google Scholar 

  224. Espinosa, V. P. et al. Differential regulation of prohormone convertase 1/3, prohormone convertase 2 and phosphorylated cyclic-AMP-response element binding protein by short-term and long-term morphine treatment: implications for understanding the “switch” to opiate addiction. Neuroscience 156, 788–799 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  225. Hallenberger, S. et al. Inhibition of furin-mediated cleavage activation of HIV-1 glycoprotein gp160. Nature 360, 358–361 (1992). This was the first evidence that inhibition of furin may lead to the development of a powerful antiviralas it would prevent viral entry (for example, of HIV) by blocking the processing of its surface glycoprotein and hence exposure of its fusiogenic sequence.

    CAS  PubMed  Google Scholar 

  226. Hatta, M., Gao, P., Halfmann, P. & Kawaoka, Y. Molecular basis for high virulence of Hong Kong H5N1 influenza A viruses. Science 293, 1840–1842 (2001).

    CAS  PubMed  Google Scholar 

  227. Gordon, V. M., Rehemtulla, A. & Leppla, S. H. A role for PACE4 in the proteolytic activation of anthrax toxin protective antigen. Infect. Immun. 65, 3370–3375 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  228. Abrami, L. et al. The pore-forming toxin proaerolysin is activated by furin. J. Biol. Chem. 273, 32656–32661 (1998).

    CAS  PubMed  Google Scholar 

  229. Mbikay, M. et al. PCSK9-deficient mice exhibit impaired glucose tolerance and pancreatic islet abnormalities. FEBS Lett. 584, 701–706 (2010).

    CAS  PubMed  Google Scholar 

  230. Seidah, N. G., Day, R., Marcinkiewicz, M., Benjannet, S. & Chretien, M. Mammalian neural and endocrine pro-protein and pro-hormone convertases belonging to the subtilisin family of serine proteinases. Enzyme 45, 271–284 (1991).

    CAS  PubMed  Google Scholar 

  231. Seidah, N. G. & Chretien, M. Pro-protein convertases of subtilisin/kexin family. Methods Enzymol. 244, 175–188 (1994).

    CAS  PubMed  Google Scholar 

  232. Steiner, D. F. On the discovery of precursor processing. Methods Mol. Biol. 768, 3–11 (2011).

    CAS  PubMed  Google Scholar 

  233. Chretien, M. The prohormone theory and the proprotein convertases: it is all about serendipity. Methods Mol. Biol. 768, 13–19 (2011).

    CAS  PubMed  Google Scholar 

  234. Mizuno, K., Nakamura, T., Ohshima, T., Tanaka, S. & Matsuo, H. Yeast KEX2 genes encodes an endopeptidase homologous to subtilisin-like serine proteases. Biochem. Biophys. Res. Commun. 156, 246–254 (1988).

    CAS  PubMed  Google Scholar 

  235. Julius, D., Brake, A., Blair, L., Kunisawa, R. & Thorner, J. Isolation of the putative structural gene for the lysine-arginine-cleaving endopeptidase required for processing of yeast prepro-α-factor. Cell 37, 1075–1089 (1984). This was the first seminal genetic evidence that yeast contains a protease called kexin that can act as a proprotein convertase.

    CAS  PubMed  Google Scholar 

  236. Van de Ven, W. J. et al. Furin is a subtilisin-like proprotein processing enzyme in higher eukaryotes. Mol. Biol. Rep. 14, 265–275 (1990).

    CAS  PubMed  Google Scholar 

  237. Seidah, N. G. et al. cDNA sequence of two distinct pituitary proteins homologous to Kex2 and furin gene products: tissue-specific mRNAs encoding candidates for pro-hormone processing proteinases. DNA Cell Biol. 9, 414–424 (1990).

    Google Scholar 

  238. Smeekens, S. P., Avruch, A. S., LaMendola, J., Chan, S. J. & Steiner, D. F. Identification of a cDNA encoding a second putative prohormone convertase related to PC2 in AtT20 cells and islets of Langerhans. Proc. Natl Acad. Sci. USA 88, 340–344 (1991).

    CAS  PubMed  Google Scholar 

  239. Smeekens, S. P. & Steiner, D. F. Identification of a human insulinoma cDNA encoding a novel mammalian protein structurally related to the yeast dibasic processing protease Kex2. J. Biol. Chem. 265, 2997–3000 (1990).

    CAS  PubMed  Google Scholar 

  240. Nakayama, K., Hosaka, M., Hatsuzawa, K. & Murakami, K. Cloning and functional expression of a novel endoprotease involved in prohormone processing at dibasic sites. J. Biochem. 109, 803–806 (1991).

    CAS  PubMed  Google Scholar 

  241. Kiefer, M. C. et al. Identification of a second human subtilisin-like protease gene in the fes/fps region of chromosome 15. DNA Cell Biol. 10, 757–769 (1991).

    CAS  PubMed  Google Scholar 

  242. Leigh, S. E., Leren, T. P. & Humphries, S. E. Commentary PCSK9 variants: a new database. Atherosclerosis 203, 32–33 (2009).

    CAS  PubMed  Google Scholar 

  243. Zhang, L. et al. An anti-PCSK9 antibody reduces LDL-cholesterol on top of a statin and suppresses hepatocyte SREBP-regulated genes. Int. J. Biol. Sci. 8, 310–327 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  244. Stein, E. A. et al. Effect of a monoclonal antibody to PCSK9 on LDL cholesterol. N. Engl. J. Med. 366, 1108–1118 (2012).

    CAS  PubMed  Google Scholar 

  245. Mayne, J. et al. Novel loss-of-function PCSK9 variant is associated with low plasma LDL cholesterol in a French-Canadian family and with impaired processing and secretion in cell culture. Clin. Chem. 57, 1415–1423 (2011).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by: Canadian Institutes of Health Research grants MOP-44363, MOP-93792 and MOP-102741; CTP-82946; and a Canada Chair grant 216684 (to N.G.S.). We would like to dedicate this article to M. Chretien who has been our mentor and a major driver in the discovery of the prohormone theory. He was the first to report that cleavage at pairs of basic residues of the inactive hormone precursor β-LPH (lipotropin) generates the active secretory products γ-LPH and β-MSH (melanocyte-stimulating hormone).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nabil G. Seidah.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Nabil G. Seidah's homepage

Alnylam Pharmaceuticals website — 4 January 2012 press release

Amgen website — 25 March 2012 press release

MEROPS Peptidase Database

MEROPS Peptidase Database (search results for 'S08.071: furin')

MEROPS Peptidase Database (search results for 'S08.077: PCSK7 peptidase')

Regeneron website — 26 March 2012 press release

Santaris Pharma website — 4 May 2011 press release

Serometrix website

UCL website (PCSK9 database information)

World Intellectual Property Organization (WIPO) website (WO/2011/051961)

Glossary

Proprotein convertases

Mammalian secretory serine proteases related to bacterial subtilases. They process various precursor proteins, mostly resulting in the release of more active products, but sometimes they inactivate some of their substrates.

Subtilisin kexin isozyme 1

(SKI-1). Also called site 1 protease. The eighth member of the proprotein convertase family; SKI-1 is responsible for the activation of various membrane-bound transcription factors (for example, sterol regulatory element-binding proteins, activating transcription factor 6 and cyclic AMP-responsive element binding proteins) and other proteins transiting through the Golgi apparatus.

Proprotein convertase subtilisin kexin 9

The ninth member of the proprotein convertase family, which is mostly implicated in regulating the levels of circulating low-density lipoprotein (LDL) cholesterol via the induction of the intracellular degradation of the LDL receptor in endosomes and lysosomes.

Low-density lipoprotein receptor

(LDLR). The main receptor of circulating LDL-cholesterol.

Prosegment

The aminoterminal inhibitory domain of the proprotein convertases. This domain acts as an intramolecular chaperone assisting the folding of the convertase in the endoplasmic reticulum, and also keeps the enzyme in an inhibited state until it is separated from the active convertase either in the trans-Golgi network, in immature secretory granules or at the cell surface.

Transforming growth factor-β

(TGFβ). A growth factor that regulates multiple physiological functions.

PCSK9–LDLR complex

The complex formed by the binding of the catalytic subunit of proprotein convertase subtilisin kexin 9 (PCSK9) to the epidermal growth factor A domain of low-density lipoprotein receptor (LDLR). The formation of this complex leads to the degradation of the LDLR in endosomes and lysosomes.

Cys-His-rich domain

Carboxy-terminal domain of proprotein convertase subtilisin kexin 9 (PCSK9) that is crucial for the sorting of the PCSK9–LDLR to endosomes and/or lysosomes.

Knockout mice

Gene knockout in mice. The availability of these genetically engineered mice allowed the characterization of some of the physiological functions of the proprotein convertases.

Genome-wide association study

(GWAS). A genome study that allows the identification of genes associated with disease states.

Sterol regulatory element binding proteins

(SREBPs). Membrane-bound transcription factors that are cleaved first by subtilisin kexin isozyme 1 in the cis- and medial-Golgi and then by site 2 protease to release their aminoterminal cytosolic fragment, which acts as a transcription factor activating the production of various proteins and enzymes implicated in cholesterol and fatty acid synthesis. The activated SREBP2 upregulates the transcription of mRNA encoding proprotein convertase subtilisin kexin 9.

Very-low-density lipoprotein receptor

(VLDLR). The main receptor of circulating VLDL-cholesterol.

Pro-opiomelanocortin

(POMC). The precursor of adrenocorticotropic hormone, α-melanocyte-stimulating hormone and β-endorphin. These products produced by proprotein convertase 1 and/or proprotein convertase 2 regulate cortisol and corticosterone production, food intake and skin colour, as well as pain sensitivity.

Autosomal dominant hypercholesterolaemia

(ADH). A single-gene dominant disorder in hypercholesterolemia, where a mutation in one allele is sufficient to cause the disease.

Coronary artery disease

The end result of the accumulation of atheromatous plaques within the walls of the coronary arteries that supply the myocardium (the muscle of the heart) with oxygen and nutrients. Coronary artery disease is the leading cause of death worldwide.

Granulocyte–macrophage colony-stimulating factor

(GM-CSF). A cytokine that functions as an activator of the immune system by acting as a white blood cell growth factor and by stimulating stem cells to produce granulocytes (neutrophils, eosinophils and basophils) and monocytes. Monocytes exit the circulation and migrate into tissues, whereupon they mature into macrophages and dendritic cells.

Familial hypercholesterolaemia

A genetic disorder characterized by high cholesterol levels, specifically very high levels of low-density lipoprotein (LDL; also known as 'bad cholesterol') in the blood, and early cardiovascular disease. Many patients have mutations in the gene that encodes the LDL receptor (LDLR) protein, which normally removes LDL from circulation, or in the gene encoding apolipoprotein B, which is the part of LDL that binds to the receptor; mutations in other genes such as proprotein convertase subtilisin kexin 9 are less common.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seidah, N., Prat, A. The biology and therapeutic targeting of the proprotein convertases. Nat Rev Drug Discov 11, 367–383 (2012). https://doi.org/10.1038/nrd3699

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd3699

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer