Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Signalling bias in new drug discovery: detection, quantification and therapeutic impact

Abstract

Agonists of seven-transmembrane receptors, also known as G protein-coupled receptors (GPCRs), do not uniformly activate all cellular signalling pathways linked to a given seven-transmembrane receptor (a phenomenon termed ligand or agonist bias); this discovery has changed how high-throughput screens are designed and how lead compounds are optimized for therapeutic activity. The ability to experimentally detect ligand bias has necessitated the development of methods for quantifying agonist bias in a way that can be used to guide structure–activity studies and the selection of drug candidates. Here, we provide a viewpoint on which methods are appropriate for quantifying bias, based on knowledge of how cellular and intracellular signalling proteins control the conformation of seven-transmembrane receptors. We also discuss possible predictions of how biased molecules may perform in vivo, and what potential therapeutic advantages they may provide.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Trafficking of receptor stimulus by agonists.
Figure 2: Bias plots.
Figure 3: Chemokine activation of CCR5.
Figure 4: Logistical scheme for quantifying signalling bias for agonists in a system-independent manner.
Figure 5: Interplay of tissue sensitivity and ligand bias.
Figure 6: The interaction of the receptor and allosteric vector with cellular signalling components.
Figure 7: The impact of signalling bias on drug screening.
Figure 8: Biased allosteric agonism and modulation.

Similar content being viewed by others

References

  1. Stephenson, R. P. A modification of receptor theory. Br. J. Pharmacol. 11, 379–393 (1956).

    CAS  Google Scholar 

  2. Kenakin, T. P. Agonist-receptor efficacy II: agonist-trafficking of receptor signals. Trends Pharmacol. Sci. 16, 232–238 (1995).

    Article  CAS  PubMed  Google Scholar 

  3. Kenakin, T. P. Perspectives in pharmacology: functional selectivity and biased receptor signaling. J. Pharmacol. Exp. Ther. 336, 296–302 (2010).

    Article  CAS  PubMed  Google Scholar 

  4. Perez, D. M. & Karnick, S. S. Multiple signaling states of G-protein coupled receptors. Pharmacol. Rev. 57, 147–161 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. Kenakin, T. P. & Miller, L. J. Seven transmembrane receptors as shapeshifting proteins: the impact of allosteric modulation and functional selectivity on new drug discovery. Pharmacol. Rev. 62, 265–304 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hermans, E. Biochemical and pharmacological control of the multiplicity of coupling at G-protein coupled receptors. Pharmacol. Ther. 99, 25–44 (2003).

    Article  CAS  PubMed  Google Scholar 

  7. Raehal, K. M., Walker, J. K. L. & Bohn, L. M. Morphine side effects in β-arrestin 2 knockout mice. J. Pharmacol. Exp. Ther. 314, 1195–1201 (2005).

    Article  CAS  PubMed  Google Scholar 

  8. Bohn, L. et al. Enhanced morphine analgesia in mice lacking β-arrestin 2. Science 286, 2495–2498 (1999).

    Article  CAS  PubMed  Google Scholar 

  9. Xu, H. et al. A comparison of noninternalizing (herkinorin) and internalizing (DAMGO) μ-opioid agonists on cellular markers related to opioid tolerance and dependence. Synapse 61, 166–175 (2007).

    Article  CAS  PubMed  Google Scholar 

  10. Groer, C. E. et al. An opioid agonist that does not induce mu opioid receptor-arrestin interactions or receptor internalization. Mol. Pharmacol. 71, 549–557 (2007).

    Article  CAS  PubMed  Google Scholar 

  11. Roth, B. L. & Chuang, D.-M. Multiple mechanisms of serotonergic signal transduction. Life Sci. 41, 1051–1064 (1987).

    Article  CAS  PubMed  Google Scholar 

  12. Spengler, D. et al. Differential signal transduction by five splice variants of the PACAP receptor. Nature 365, 170–175 (1993).

    Article  CAS  PubMed  Google Scholar 

  13. Mottola, D. M. et al. Dihydrexidine, a selective dopamine receptor agonist that may discriminate postsynaptic D2 receptors. Soc. Neurosci. Abstr. 17, 818 (1991).

    Google Scholar 

  14. Roerig, S. C., Loh, H. H. & Law, P. Y. Identification of three separate guanine nucleotide-binding proteins that interact with the δ-opioid receptor in NG108-15 X glioma hybrid cells. Mol. Pharmacol. 41, 822–831 (1992).

    CAS  PubMed  Google Scholar 

  15. Fisher, A. et al. Selective signaling via unique M1 muscarinic agonists. Ann. NY Acad. Sci. 695, 300–303 (1993).

    Article  CAS  PubMed  Google Scholar 

  16. Gurwitz, D. et al. Discrete activation of transduction pathways associated with acetylcholine M1 receptor by several muscarinic ligands. Eur. J. Pharmacol. 267, 21–31 (1994).

    Article  CAS  PubMed  Google Scholar 

  17. Lawler, C. O., Watts, V. J., Booth, R. G., Southerland, S. B. & Mailman, R. B. Discrete functional selectivity of drugs: OPC-14597, a selective antagonist for post-synaptic dopamine D2 receptors. Soc. Neurosci. Abstr. 20, 525 (1994).

    Google Scholar 

  18. Berg, K. A. et al. Effector pathway-dependent relative efficacy at serotonin type 2A and 2C receptors: evidence for agonist-directed trafficking of receptor stimulus. Mol. Pharmacol. 54, 94–104 (1998).

    Article  CAS  PubMed  Google Scholar 

  19. Whistler, J. L., Chuang, H. H., Chu, P., Jan, L. Y. & van Zastrow, M. Functional dissociation of μ opioid receptor signaling and endocytosis: implications for the biology of opiate tolerance and addiction. Neuron 23, 737–746 (1999).

    Article  CAS  PubMed  Google Scholar 

  20. Jarpe, M. B. et al. [D-Arg1,D-Phe5,D-Trp7,9,Leu11]Substance P acts as a biased agonist toward neuropeptide and chemokine receptors. J. Biol. Chem. 273, 3097–3104 (1998).

    Article  CAS  PubMed  Google Scholar 

  21. Kudlacek, O. et al. biased inhibition by a suramin analogue of A1-adenosine receptor/G protein coupling in fused receptor/G protein tandems: the A1 adenosine receptor is predominantly coupled to Goα in human brain. Naunyn Schmiedebergs Arch. Pharmacol. 365, 8–16 (2002).

    Article  CAS  PubMed  Google Scholar 

  22. Manning, D. R. Measures of efficacy using G proteins as endpoints: differential engagement of G proteins through single receptors. Mol. Pharmacol. 62, 451–452 (2002).

    Article  CAS  PubMed  Google Scholar 

  23. Lawler, C. P. et al. Interactions of the novel antipsychotic aripiprazole (OPC-14597) with dopamine and serotonin receptor subtypes. Neuropsychopharmacology 20, 612–627 (1999).

    Article  CAS  PubMed  Google Scholar 

  24. Kilts, J. D. et al. Functional selectivity of dopamine receptor agonists: II actions of dihydrexidine in D2L receptor transfected MN9D cells and pituitary lactotrophs. J. Pharmacol. Exp. Ther. 301, 1179–1189 (2002).

    Article  CAS  PubMed  Google Scholar 

  25. Shapiro, D. A. et al. Aripiprazole, a novel atypical antipsychotic drug with a unique and robust pharmacology. Neuropsychopharmacology 28, 1400–1411 (2003).

    Article  CAS  PubMed  Google Scholar 

  26. Gregory, K. J., Hall, N. E., Tobin, A. B., Sexton, P. M. & Christopoulos, C. A. Identification of orthosteric and allosteric site mutations in M2 muscarinic acetylcholine receptors that contribute to ligand-selective signaling bias. J. Biol. Chem. 285, 7459–7474 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kenakin, T. P., Ambrose, J. R. & Irving, P. E. The relative efficiency of β-adrenoceptor coupling to myocardial inotropy and diastolic relaxation: organ selective treatment for diastolic dysfunction. J. Pharmacol. Exp. Ther. 257, 1189–1197 (1991).

    CAS  PubMed  Google Scholar 

  28. Galandrin, S. & Bouvier, M. Distinct signaling profiles of β1 and β2 adrenergic receptor ligands toward adenylyl cyclase and mitogen-activated protein kinase reveals the pluridimensionality of efficacy. Mol. Pharmacol. 70, 1575–1158 (2006).

    Article  CAS  PubMed  Google Scholar 

  29. Gether, U., Lin, S. & Kobilka, B. K. Fluorescent labeling of purified β2-adrenergic receptor: evidence for ligand specific conformational changes. J. Biol. Chem. 270, 28268–28275 (1995).

    Article  CAS  PubMed  Google Scholar 

  30. Ghanouni, P. et al. Functionally different agonists produce distinct conformations in G-protein coupling domains of the β2-adrenergic receptor. J. Biol. Chem. 276, 24433–24436 (2001).

    Article  CAS  PubMed  Google Scholar 

  31. Kobilka, B. K. & Gether, U. Use of fluorescence spectroscopy to study conformational changes in the β-adrenoceptor. Methods Enzymol. 343, 170–182 (2002).

    Article  PubMed  Google Scholar 

  32. Viladarga, J. P., Steinmeyer, R., Harms, G. S. & Lohse, M. J. Molecular basis of inverse agonism in a G-protein coupled receptor. Nature Chem. Biol. 1, 25–28 (2005).

    Article  CAS  Google Scholar 

  33. Swaminath, G. et al. Probing the β2-adrenoceptor binding site with catechol reveals differences in binding and activation by agonists and partial agonists. J. Biol. Chem. 280, 22165–22171 (2005).

    Article  CAS  PubMed  Google Scholar 

  34. Granier, S. et al. Structure and conformational changes in the C-terminal domain of the β2-adrenoceptor: insights from fluorescence resonance energy transfer studies. J. Biol. Chem. 282, 13895–13905 (2007).

    Article  CAS  PubMed  Google Scholar 

  35. Lohse, M. J. et al. Kinetics of G-protein-coupled receptor signals in intact cells. Br. J. Pharmacol. 153, S125–S132 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zurn, A. et al. Fluorescence resonance energy transfer analysis of α2a-adrenergic receptor activation reveals distinct agonist-specific conformational changes. Mol. Pharmacol. 75, 534–541 (2009).

    Article  CAS  PubMed  Google Scholar 

  37. Hruby, V. J. & Tollin, G. Plasmon-waveguide resonance (PWR) spectroscopy for directly viewing rates of GPCR/G-protein interactions and quantifying affinities. Curr. Opin. Pharmacol. 7, 507–514 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Georgieva, T. et al. Unique agonist-bound cannabinoid CB1 receptor conformations indicate agonist specificity in signaling. Eur. J. Pharmacol. 581, 19–29 (2008).

    Article  CAS  PubMed  Google Scholar 

  39. Galandrin, S. et al. Conformational rearrangements and signaling cascades invovled in ligand-based mitogen-activated protein kinase signaling through the β1-adrenergic recepor. Mol. Pharmacol. 74, 162–172 (2008).

    Article  CAS  PubMed  Google Scholar 

  40. Baneres, J.-L. et al. Molecular characterization of a purified 5-HT4 receptor. J. Biol. Chem. 280, 20253–20260 (2005).

    Article  CAS  PubMed  Google Scholar 

  41. Okada, T. & Palczewski, K. Crystal structure of rhodopsin: implications for vision and beyond. Curr. Opin. Struc. Biol. 11, 420–426 (2001).

    Article  CAS  Google Scholar 

  42. Pellissier, L. P. et al. Conformational toggle switches implicated in basal constitutive and agonist-induced activated states of 5-hysdroxytryptamine-4 receptors. Mol. Pharmacol. 75, 982–990 (2009).

    Article  CAS  PubMed  Google Scholar 

  43. Liu, J. J., Horst, R., Katritch, V., Stevens, R. C. & Wuthrich, K. Biased-signaling pathways in β2-adrenergic receptor characterized by 19F-NMR. Science 335, 1106–1110 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Black, J. W. & Leff, P. Operational models of pharmacological agonist. Proc. R. Soc. Lond. B Biol. Sci. 220, 141–162 (1983).

    Article  CAS  PubMed  Google Scholar 

  45. Kenakin, T. P., Watson, C., Muniz-Medina, V., Christopoulos, A. & Novick, S. A simple method for quantifying functional selectivity and agonist bias. ACS Chem. Neurosci. 3, 193–203 (2012).

    Article  CAS  PubMed  Google Scholar 

  46. Colquhoun, D. Imprecision in presentation of binding studies. Trends Pharmacol. Sci. 6, 197 (1985).

    Article  Google Scholar 

  47. Colquhoun, D. Validity of the operational model. Trends Pharmacol. Sci. 10, 17 (1989).

    Article  Google Scholar 

  48. Strachan, R. T. et al. Genetic deletion of p90 ribosomal kinase 2 alters patterns of 5-hydroxytryptamine2A serotonin receptor functional selectivity. Mol. Pharmacol. 77, 327–338 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. McPherson, J. et al. μ-opioid receptors: correlation of agonist efficacy for signalling with ability to achieve internalization. Mol. Pharmacol. 78, 756–766 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Nijmeijer, S. et al. Analysis of multiple histamine H4 receptor compound classes uncovers Gαi protein- and β-arrestin2-biased ligands. Mol. Pharmacol. 82, 1174–1182 (2012).

    Article  CAS  PubMed  Google Scholar 

  51. Onaran, H. O. & Costa, T. Where have all the active receptor states gone? Nature Chem. Biol. 8, 674–677 (2012).

    Article  CAS  Google Scholar 

  52. Rasmussen, S. G. F. et al. Crystal structure of the β2 adrenergic receptor–Gs protein complex. Nature 477, 549–555 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Rasmussen, S. G. F. et al. Structure of a nanobody-stabilized active state of the β2 adrenoceptor. Nature 469, 175–180 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ehlert, F. J. Analysis of allosterism in functional assays. J. Pharmacol. Exp. Ther. 315, 740–754 (2005).

    Article  CAS  PubMed  Google Scholar 

  55. Tran, J. A., Chang, A., Matsui, M. & Ehlert, F. J. Estimation of relative microscopic affinity constants of agonists for the active state of the receptor in functional studies on μ2 and μ3 muscarinic receptors. Mol. Pharmacol. 75, 381–396 (2009).

    Article  CAS  PubMed  Google Scholar 

  56. Figueroa, K. W., Griffin, M. T. & Ehlert, F. J. Selectivity of agonists for the active state of M1 to M4 muscarinic receptor subtypes. J. Pharmacol. Exp. Ther. 328, 331–342 (2009).

    Article  CAS  PubMed  Google Scholar 

  57. Black, J. W., Leff, P. & Shankley, N. P. An operational model of pharmacological agonism: the effect of E/[A] curve shape on agonist dissociation constant estimation. Br. J. Pharmacol. 84, 561–571 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ehlert, F. J. On the analysis of ligand-directed signalling at G protein-coupled receptors. Naunyn-Schmiedebergs. Arch. Pharmacol. 377, 549–577 (2008).

    Article  CAS  PubMed  Google Scholar 

  59. Barlow, R. B., Scott, K. A. & Stephenson, R. P. An attempt to study the effects of chemical structure on the affintiy and efficacy of compounds related to acetylcholine. Br. J. Pharmacol. 21, 509–522 (1967).

    Google Scholar 

  60. Waud, D. R. On the measurement of the affinity of partial aognists for receptors. J. Pharmacol. Exp. Ther. 170, 117–122 (1969).

    CAS  PubMed  Google Scholar 

  61. Rajagopal, K. et al. Quantifying ligand bias at seven-transmembrane receptors. Mol. Pharmacol. 80, 367–377 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Sato, M., Horinouchi, T., Hutchinson, D. A., Evans, B. A. & Evans, R. J. Ligand-directed signaling at the β3-adrenoceptor produced by 3-(2-ethylphenoxy)-1-[(1,S)-1,2,3,4-tetrahydronapth-1-ylamino]-2S-2-propanol oxalate (SR59230A) relative to receptor agonists. Mol. Pharmacol. 72, 1359–1368 (2007).

    Article  CAS  PubMed  Google Scholar 

  63. Barak, L. S. & Peterson, S. Modeling of bias for the analysis of receptor signaling in biochemical systems. Biochemistry 51, 1114–1125 (2012).

    Article  CAS  PubMed  Google Scholar 

  64. Christmanson, L., Westermark, P. & Betsholtz, C. Islet amyloid polypeptide stimulates cyclic AMP accumulation via the porcine calcitonin receptor. Biochem. Biophys. Res. Commun. 205, 1226–1235 (1994).

    Article  CAS  PubMed  Google Scholar 

  65. Watson, C. et al. The use of stimulus-biased assay systems to detect agonist-specific receptor active states: implications for the trafficking of receptor stimulus by agonists. Mol. Pharmacol. 58, 1230–1238 (2000).

    Article  CAS  PubMed  Google Scholar 

  66. Peters, M. F. et al. Evaluation of cellular dielectric spectroscopy, a whole-cell, label-free technology for drug discovery on Gi-coupled GPCRs. J. Biomol. Screen 12, 312–319 (2007).

    Article  CAS  PubMed  Google Scholar 

  67. Gesty-Palmer, D. et al. Distinct β-arrestin- and G protein-dependent pathways for parathyroid hormone receptor-stimulated ERK1/2 activation. J. Biol. Chem. 281, 10856–10864 (2006).

    Article  CAS  PubMed  Google Scholar 

  68. MacKinnon, A. C. et al. Expression of V1A and GRP receptors leads to cellular transformation and increased sensitivity to substance-P analogue-induced growth inhibition. Br. J. Cancer 92, 522–531 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Sonoda, N. et al. β-arrestin-1 mediates glucagon-like peptide-1 signaling to insulin secretion in cultured pancreatic β cells. Proc. Natl Acad. Sci. USA 105, 6614–6619 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Kenakin, T. P. Biased signaling and allosteric machines: new vistas and challenges for drug discovery. Br. J. Pharmacol. 165, 1659–1669 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Christopoulos, A. & Kenakin, T. P. G-protein coupled receptor allosterism and complexing. Pharmacol. Rev. 54, 323–374 (2002).

    Article  CAS  PubMed  Google Scholar 

  72. Christopoulos, A. Allosteric binding sites on cell-surface receptors: novel targets for drug discovery. Nature Rev. Drug Discov. 1, 198–210 (2002).

    Article  CAS  Google Scholar 

  73. Keov, P., Sexton, P. M. & Christopoulos, A. Allosteric modulation of G protein-coupled receptors: a pharmacological perspective. Neuropharmacol. 60, 24–35 (2011).

    Article  CAS  Google Scholar 

  74. May, L. T., Leach, K., Sexton, P. M. & Christopoulos, A. Allosteric modulation of G protein-coupled receptors. Annu. Rev. Pharmacol. Toxicol. 47, 1–51 (2007).

    Article  CAS  PubMed  Google Scholar 

  75. Kenakin, T. P. New concepts in drug discovery: collateral efficacy and permissive antagonism. Nature Rev. Drug Discov. 4, 919–927 (2005).

    Article  CAS  Google Scholar 

  76. Leach, K., Sexton, P. M. & Christopoulos, A. Allosteric GPCR modulators: taking advantage of permissive receptor pharmacology. Trends Pharmacol. Sci. 28, 382–389 (2007).

    Article  CAS  PubMed  Google Scholar 

  77. Tateyama, M. & Kubo, Y. Dual signaling is differentially activated by different active states of the metabotropic glutamate receptor 1α. Proc. Natl Acad. Sci. USA 103, 1124–1128 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Sachpatzidis, A. et al. Identification of allosteric peptide agonists of CXCR4. J. Biol. Chem. 278, 896–907 (2003).

    Article  CAS  PubMed  Google Scholar 

  79. Valant, C. et al. Synthesis and characterization of novel 2-amino-3-benzoylthiophene derivatives as biased allosteric agonists and modulators of the adenosine A1 receptor. J. Med. Chem. 55, 2367–2375 (2012).

    Article  CAS  PubMed  Google Scholar 

  80. Mathiesen, J. M. et al. Identification of indole derivatives exclusively interfering with a G protein-independent signaling pathway of the prostaglandin D2 receptor CRTH2. Mol. Pharmacol. 68, 393–402 (2005).

    CAS  PubMed  Google Scholar 

  81. Zhang, Y., Rodriguez, A. L. & Conn, P. J. Allosteric potentiators of metabotropic glutamate receptor subtype 5 have differential effects on different signaling pathways in cortical astrocytes. J. Pharmacol. Exp. Ther. 315, 1212–1219 (2005).

    Article  CAS  PubMed  Google Scholar 

  82. Maillet, E. L. et al. A novel, conformation-specific allosteric inhibitor of the tachykinin NK2 receptor (NK2R) with functionally selective properties. FASEB J. 21, 2124–2134 (2007).

    Article  CAS  PubMed  Google Scholar 

  83. Marlo, J. E. et al. Discovery and characterization of novel allosteric potentiators of M1 muscarinic receptors reveals multiple modes of activity. Mol. Pharmacol. 75, 577–588 (2009).

    Article  CAS  PubMed  Google Scholar 

  84. Stewart, G. D., Sexton, P. M. & Christopoulos, A. Prediction of functionally selective allosteric interactions at an M3 muscarinic acetylcholine receptor mutant using Saccharomyces cerevisiae. Mol. Pharmacol. 78, 205–214 (2010).

    Article  CAS  PubMed  Google Scholar 

  85. Goupil, E. et al. A novel biased allosteric compound inhibitor of parturition selectively impedes the prostaglandin F2α-mediated Rho/ROCK signaling pathway. J. Biol. Chem. 285, 25624–25636 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Davey, A. E. et al. Positive and negative allosteric modulators promote biased signaling at the calcium-sensing receptor. Endocrinology 153, 1232–1241 (2012).

    Article  CAS  PubMed  Google Scholar 

  87. Koole, C. et al. Allosteric ligands of the glucagon-like peptide 1 receptor (GLP-1R) differentially modulate endogenous and exogenous peptide responses in a pathway-selective manner: implications for drug screening. Mol. Pharmacol. 78, 456–465 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Wootten, D. et al. Allosteric modulation of endogenous metabolites as an avenue for drug discovery. Mol. Pharmacol. 82, 281–290 (2012).

    Article  CAS  PubMed  Google Scholar 

  89. Rajagopal, K. et al. β-arrestin-2 mediated inotropic effects of the angiotensin II type 1A receptor in isolated cardiac myocytes. Proc. Natl Acad. Sci. USA 103, 16284–16289 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Wei, H. et al. Independent β-arrestin 2 and G protein mediated pathways for angiotensin II activation of extracellular signal-regulated kinases 1 and 2. Proc. Natl Acad. Sci. USA 100, 10782–10787 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Aplin, M., Bonde, M. M. & Hansen, J. L. Molecular determinants of angiotensin II type 1 receptor functional selectivity. J. Mol. Cell. Cardiol. 46, 15–24 (2009).

    Article  CAS  PubMed  Google Scholar 

  92. Violin, J. D. & Lefkowitz, R. J. β-arrestin-biased ligands at seven transmembrane receptors. Trends Pharmacol. Sci. 28, 416–422 (2007).

    Article  CAS  PubMed  Google Scholar 

  93. Zhai, P. et al. Cardiac-specific overexpression of At1 receptor mutant lacking Gαq/Gαi coupling causes hypertrophy and bradycardia in transgenic mice. J. Clin. Invest. 115, 3045–3056 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Violin, J. D. et al. Selectively engaging β-arrestins at the angiotensin II type 1 receptor reduces blood pressure and increases cardiac performance. J. Pharmacol. Exp. Ther. 335, 572–579 (2010).

    Article  CAS  PubMed  Google Scholar 

  95. Boerrigter, G. et al. Cardiorenal actions of TRV120027, a novel β-arrestin-biased ligand at the angiotensin II type 1 receptor, in healthy and heart failure canines: a novel therapeutic strategy for acute heart failure. Circ. Heart Fail. 4, 770–778 (2011).

    Article  CAS  PubMed  Google Scholar 

  96. Boerrigter, G. et al. TRV120027, a novel β-arrestin biased ligand at the angiotensin II type I receptor, unloads the heart and maintains renal function when added to furosemide in experimental heart failure. Circ. Heart Fail. 5, 627–634 (2012).

    Article  CAS  PubMed  Google Scholar 

  97. Shizukuda, Y. & Buttrick, P. M. Subtype specific roles of β-adrenergic receptors in apoptosis of adult rat ventricular myocytes. J. Mol. Cell. Cardiol. 34, 823–831 (2002).

    Article  CAS  PubMed  Google Scholar 

  98. Metra, M., Dei Cas, L., di Lenarda, A. & Poole-Wilson, P. β-blockers in heart failure: are pharmacological differences clinically important? Heart Fail. Rev. 9, 123–130 (2004).

    Article  CAS  PubMed  Google Scholar 

  99. Wisler, J. W. et al. A unique mechanism of β-blocker action: carvedilol stimulates β-arrestin signaling. Proc. Natl Acad. Sci. USA 104, 16657–16662 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Walters, R. W. et al. β-arrestin 1 mediates nicotinic acid-induced flushing, but not its antilipolytic effect, in mice. J. Clin. Invest. 119, 1312–1321 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Richman, J. G. et. al. Nicotinic acid receptor agonists differentially activate downstream effectors. J. Biol. Chem. 283, 6232–6240 (2008).

    Article  CAS  PubMed  Google Scholar 

  102. Cottingham, C., Chen, Y. & Wang, Q. The antidepressant desipramine is an arrestin-biased ligand at the α2A-adrenergic receptor driving receptor downregulation in vitro and in vivo. J. Biol. Chem. 286, 36063–36075 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Galeotti, N., Malmberg-Aiello, P., Bartolini, A., Schunack, W. & Ghelardini, C. H1-receptor stimulation induces hyperalgesia through activation of the phospholipase C-PKC pathway. Neuropharmacology 47, 295–303 (2004).

    Article  CAS  PubMed  Google Scholar 

  104. Vassart, G. & Dumont, J. E. The thyrotropin receptor and the regulation of thyrocyte function and growth. Endocr. Rev. 13, 596–611 (1992).

    CAS  PubMed  Google Scholar 

  105. Mailman, R. B. GPCR functional selectivity has therapeutic impact. Trends Pharmacol. Sci. 28, 390–396 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Grady, M. A., Gasperoni, T. L. & Kirkpatrick, P. Aripiprazole. Nature Rev. Drug Discov. 2, 427–428 (2003).

    Article  CAS  Google Scholar 

  107. Urban, J. D., Vargas, G. A., von Zastrow, M. & Mailman, R. B. Aripirazole has functionally selective action at dopamine D2 receptor-mediated signaling pathways. Neuropsychopharmacology 32, 67–77 (2007).

    Article  CAS  PubMed  Google Scholar 

  108. Gesty-Palmer, D. et al. A β-arrestin–biased agonist of the parathyroid hormone receptor (PTH1R) promotes bone formation independent of G protein activation. Sci. Transl. Med. 1, 1ra1 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Ferrari, S. L. et al. Bone response to intermittent parathyroid hormone is altered in mice bull for β-arrestin2. Endocrinology 146, 1854–1862 (2005).

    Article  CAS  PubMed  Google Scholar 

  110. Ryman-Rasmussen, J. P. et al. Functional selectivity of dopamine D1 receptor agonists in regulating the fate of internalized receptors. Neuropharmacology 52, 562–575 (2007).

    Article  CAS  PubMed  Google Scholar 

  111. Ji, S.-P. et al. Disruption of PTEN coupling with 5-HT2C receptors supporesses behavioral responses induced by drugs of abuse. Nature Med. 12, 324–329 (2006).

    Article  CAS  PubMed  Google Scholar 

  112. Willins, D. L. et al. Clozapine and other 5-hydroxytryptamine-2A receptor antagonists alter the subcellular distribution of 5-hydroxytryptamine-2A receptors in vitro and in vivo. Neuroscience 91, 599–606 (1999).

    Article  CAS  PubMed  Google Scholar 

  113. Schmid, C. L., Raehal, K. M. & Bohn, L. M. Agonist-directed signaling of the serotonin 2A receptor depends on β-arrestin-2 interactions in vivo. Proc. Natl Acad. Sci. USA 105, 1079–1084 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Coureuil, M. et al. Meningococcus hijacks a β2-adrenoceptor/β-arrestin pathway to cross brain microvasculature endothelium. Cell 143, 1149–1160 (2010).

    Article  CAS  PubMed  Google Scholar 

  115. Valant, C., Felder, C. C., Sexton, P. M. & Christopoulos, A. Probe dependence in the allosteric modulation of a G protein-coupled receptor: implications for detection and validation of allosteric ligand effects. Mol. Pharmacol. 81, 41–52 (2012).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Work in A.C.'s laboratory is supported by the Program Grant No. 519461 and Project Grant No. APP1026962 of the National Health and Medical Research Council (NHMRC) of Australia, and Discovery Grant No. DP110100687 of the Australian Research Council. A.C. is an NHMRC Principal Research Fellow.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Terry Kenakin.

Ethics declarations

Competing interests

A.C. has a research contract with Servier (France), and recent consultancies with Johnson and Johnson (USA) and XOMA (USA). He is a Scientific Advisory Board member for Audeo, Australia. T.K. declares no competing financial interests.

Supplementary information

Supplementary information S1 (box)

The Black–Leff Operational Model for Modelling Drug Response (PDF 201 kb)

Supplementary information S2 (box)

Differences in Operational (Functional) Affinity (PDF 277 kb)

Supplementary information S3 (box)

Conditional Affinity of Allosteric Systems: 7 Transmembrane Receptors (PDF 232 kb)

Supplementary information S4 (box)

Fitting the Operational Model (PDF 209 kb)

Supplementary information S5 (box)

Equiactive Concentration Comparison for Pathways: Method of Barlow, Scott and Stephenson (PDF 197 kb)

Supplementary information S6 (box)

The Molecular Determinants of Efficacy within the Allosteric Vector (PDF 220 kb)

Supplementary information S7 (box)

Equating ΔΔLog(τ/KA) and βlig values (PDF 246 kb)

Related links

Related links

FURTHER INFORMATION

Author's homepage

Glossary

[35S]GTPγS

35S-labelled GTP; a non-hydrolysable G protein-activating analogue of GTP that is used to measure interactions between seven-transmembrane receptors (also known as GPCRs) and G proteins.

Allosteric binding site

The site on a seven-transmembrane receptor protein (also known as GPCR) to which modulators bind to affect the subsequent binding and effect of another ligand that interacts with the receptor; this ligand is usually the endogenous agonist binding to its cognate (that is, orthosteric) binding site.

Conditional affinity

The measured affinity of a ligand for a seven-transmembrane receptor (also known as GPCR) when the receptor is bound to an allosteric guest molecule (such as a G protein or β-arrestin). The conditional affinity of the ligand for the receptor will vary with the concentration and type of the guest molecule that is co-bound.

Efficacy

The property of a molecule that causes a change in the behaviour of a seven-transmembrane receptor (also known as GPCR) towards the cell when the molecule is bound to the receptor.

EC50

The concentration of an agonist that produces 50% of the maximal response to the agonist for a defined signalling response pathway.

Full agonists

Agonists that induce the maximum obtainable response that can be produced by a signalling system.

Operational affinity

Also referred to as functional affinity. The apparent equilibrium dissociation constant of the agonist–receptor complex, as determined by fitting the Black–Leff operational model to agonist concentration–response curves.

Orthosteric agonist

An agonist that binds to the same binding site on the seven-transmembrane receptor protein (also known as GPCR) as the endogenous agonist (that is, the orthosteric binding site).

pEC50

Negative logarithm of the EC50 (the concentration of an agonist that produces 50% of the maximal response to the agonist for a defined signalling response pathway).

Receptor coupling efficiencies

A term that describes the degree of seven-transmembrane receptor (also known as GPCR) occupancy by an agonist; receptor coupling efficiency relates to the resulting cellular response. A low receptor occupancy that yields a large cellular response constitutes a high coupling efficiency.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kenakin, T., Christopoulos, A. Signalling bias in new drug discovery: detection, quantification and therapeutic impact. Nat Rev Drug Discov 12, 205–216 (2013). https://doi.org/10.1038/nrd3954

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd3954

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research