Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

New anti-inflammatory targets for chronic obstructive pulmonary disease

Key Points

  • Chronic obstructive pulmonary disease (COPD) is a major and increasing global health problem that results in progressive airway obstruction.

  • Although effective bronchodilators have been developed, there is no safe and effective treatment for the underlying chronic inflammation, which is resistant to corticosteroids.

  • There is an urgent need for the development of safe and effective anti-inflammatory therapies to reduce disease progression, exacerbations and comorbidities of COPD.

  • The discovery of anti-inflammatory treatments has been hampered by the difficulties of undertaking clinical trials in patients with COPD.

  • Promising new approaches include novel antioxidants, multi-kinase inhibitors as well as drugs that target cellular senescence and abnormal repair.

  • Drugs that reverse corticosteroid resistance are also showing promise.

Abstract

Chronic obstructive pulmonary disease (COPD) is associated with chronic inflammation of the peripheral airways and lung parenchyma, which leads to progressive obstruction of the airways. Current management with long-acting bronchodilators does not reduce disease progression, and there are no treatments that effectively suppress chronic inflammation in COPD. An increased understanding of the inflammatory processes that are involved in the pathophysiology of COPD has identified several new therapeutic targets. This Review discusses some of the most promising of these targets, including new antioxidants, kinase inhibitors and drugs that target cellular senescence, microbial colonization, epigenetic regulation of inflammatory gene expression and corticosteroid resistance.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Inflammatory therapeutic targets in chronic obstructive pulmonary disease.
Figure 2: Targeting the inflammasome in COPD.
Figure 3: Targeting oxidative stress in COPD.
Figure 4: Targeting pro-inflammatory kinases in COPD.
Figure 5: Reversing corticosteroid resistance in COPD.

Similar content being viewed by others

References

  1. Barnes, P. J. Chronic obstructive pulmonary disease: a growing but neglected epidemic. PLoS Med. 4, e112 (2007).

    PubMed  PubMed Central  Google Scholar 

  2. Gershon, A. S., Warner, L., Cascagnette, P., Victor, J. C. & To, T. Lifetime risk of developing chronic obstructive pulmonary disease: a longitudinal population study. Lancet 378, 991–996 (2011).

    PubMed  Google Scholar 

  3. Mannino, D. M. & Buist, A. S. Global burden of COPD: risk factors, prevalence, and future trends. Lancet 370, 765–773 (2007).

    PubMed  Google Scholar 

  4. Salvi, S. S. & Barnes, P. J. Chronic obstructive pulmonary disease in non-smokers. Lancet 374, 733–743 (2009).

    PubMed  Google Scholar 

  5. Barnes, P. J. Chronic obstructive pulmonary disease: effects beyond the lungs. PLoS Med. 7, e1000220 (2010).

    PubMed  PubMed Central  Google Scholar 

  6. Vestbo, J. et al. Global strategy for the diagnosis, management and prevention of chronic obstructive pulmonary disease, GOLD Executive Summary. Am. J. Respir. Crit. Care Med. 187, 347–365 (2013).

    CAS  PubMed  Google Scholar 

  7. Matera, M. G., Page, C. P. & Cazzola, M. Novel bronchodilators for the treatment of chronic obstructive pulmonary disease. Trends Pharmacol. Sci. 32, 495–506 (2011).

    CAS  PubMed  Google Scholar 

  8. Barnes, P. J. Inhaled corticosteroids in COPD: a controversy. Respiration 80, 89–95 (2010).

    CAS  PubMed  Google Scholar 

  9. Calverley, P. M. et al. Roflumilast in symptomatic chronic obstructive pulmonary disease: two randomised clinical trials. Lancet 374, 685–694 (2009).

    CAS  PubMed  Google Scholar 

  10. Ito, K. et al. Decreased histone deacetylase activity in chronic obstructive pulmonary disease. N. Engl. J. Med. 352, 1967–1976 (2005).

    CAS  PubMed  Google Scholar 

  11. Hogg, J. C. et al. The nature of small-airway obstruction in chronic obstructive pulmonary disease. N. Engl. J. Med. 350, 2645–2653 (2004).

    CAS  PubMed  Google Scholar 

  12. McDonough, J. E. et al. Small-airway obstruction and emphysema in chronic obstructive pulmonary disease. N. Engl. J. Med. 365, 1567–1575 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Freeman, C. M. et al. Lung CD8+ T cells in COPD have increased expression of bacterial TLRs. Respir. Res. 14, 13 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Nadigel, J. et al. Cigarette smoke increases TLR4 and TLR9 expression and induces cytokine production from CD8+ T cells in chronic obstructive pulmonary disease. Respir. Res. 12, 149 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Vassallo, R. et al. Cigarette smoke promotes dendritic cell accumulation in COPD; a Lung Tissue Research Consortium study. Respir. Res. 11, 45 (2010).

    PubMed  PubMed Central  Google Scholar 

  16. Majo, J. et al. Lymphocyte population and apoptosis in the lungs of smokers and their relation to emphysema. Eur. Respir. J. 17, 946–953 (2001).

    CAS  PubMed  Google Scholar 

  17. Di Stefano, A. et al. Th17-related cytokine expression is increased in the bronchial mucosa of stable COPD patients. Clin. Exp. Immunol. 157, 316–324 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Pridgeon, C. et al. Regulation of IL-17 in chronic inflammation in the human lung. Clin. Sci. 120, 515–524 (2011).

    Google Scholar 

  19. Taylor, A. E. et al. Defective macrophage phagocytosis of bacteria in COPD. Eur. Respir. J. 35, 1039–1047 (2010).

    CAS  PubMed  Google Scholar 

  20. Karayama, M. et al. Antiendothelial cell antibodies in patients with COPD. Chest 138, 1303–1308 (2010).

    PubMed  Google Scholar 

  21. Kirkham, P. A. et al. Oxidative stress-induced antibodies to carbonyl-modified protein correlate with severity of chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 184, 796–802 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Papi, A. et al. Infections and airway inflammation in chronic obstructive pulmonary disease severe exacerbations. Am. J. Respir. Crit. Care Med. 173, 1114–1121 (2006).

    PubMed  Google Scholar 

  23. Nakamaru, Y. et al. A protein deacetylase SIRT1 is a negative regulator of metalloproteinase-9. FASEB J. 23, 2810–2819 (2009).

    CAS  PubMed  Google Scholar 

  24. Rennard, S. I. et al. The safety and efficacy of infliximab in moderate-to-severe chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 175, 926–934 (2007).

    CAS  PubMed  Google Scholar 

  25. Barnes, P. J. The cytokine network in COPD. Am. J. Respir. Cell. Mol. Biol. 41, 631–638 (2009).

    CAS  PubMed  Google Scholar 

  26. Bafadhel, M. et al. Profiling of sputum inflammatory mediators in asthma and chronic obstructive pulmonary disease. Respiration 83, 36–44 (2012).

    CAS  PubMed  Google Scholar 

  27. Strowig, T., Henao-Mejia, J., Elinav, E. & Flavell, R. Inflammasomes in health and disease. Nature 481, 278–286 (2012).

    CAS  PubMed  Google Scholar 

  28. Zhang, H. Anti-IL-1β therapies. Recent Pat. DNA Gene Seq. 5, 126–135 (2011).

    CAS  PubMed  Google Scholar 

  29. Rovina, N. et al. Interleukin-18 in induced sputum: association with lung function in chronic obstructive pulmonary disease. Respir. Med. 103, 1056–1062 (2009).

    PubMed  Google Scholar 

  30. Lommatzsch, M. et al. Extracellular adenosine triphosphate and chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 181, 928–934 (2010).

    CAS  PubMed  Google Scholar 

  31. Boxer, M. B., Shen, M., Auld, D. S., Wells, J. A. & Thomas, C. J. A small molecule inhibitor of caspase 1. Probe Reports from the NIH Molecular Libraries Program [online], (National Center for Biotechnology Information, 2010).

    Google Scholar 

  32. Lucattelli, M. et al. P2X7 receptor signaling in the pathogenesis of smoke-induced lung inflammation and emphysema. Am. J. Respir. Cell. Mol. Biol. 44, 423–429 (2011).

    CAS  PubMed  Google Scholar 

  33. Gonsiorek, W. et al. Pharmacological characterization of Sch527123, a potent allosteric CXCR1/CXCR2 antagonist. J. Pharmacol. Exp. Ther. 322, 477–485 (2007).

    CAS  PubMed  Google Scholar 

  34. Holz, O. et al. SCH527123, a novel CXCR2 antagonist, inhibits ozone-induced neutrophilia in healthy subjects. Eur. Respir. J. 35, 564–570 (2010).

    CAS  PubMed  Google Scholar 

  35. Lazaar, A. L. et al. SB-656933, a novel CXCR2 selective antagonist, inhibits ex vivo neutrophil activation and ozone-induced airway inflammation in humans. Br. J. Clin. Pharmacol. 72, 282–293 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Magnussen, H. et al. Safety and efficacy of SCH527123, a novel CXCR2 antagonist, in patients with COPD. Eur. Resp. J. 36, 38S (2010).

    Google Scholar 

  37. Donnelly, L. E. & Barnes, P. J. Chemokine receptor CXCR2 antagonism to prevent airway inflammation. Drugs Future 36, 465–472 (2011).

    CAS  Google Scholar 

  38. Gaggar, A. et al. A novel proteolytic cascade generates an extracellular matrix-derived chemoattractant in chronic neutrophilic inflammation. J. Immunol. 180, 5662–5669 (2008).

    CAS  PubMed  Google Scholar 

  39. Xu, X. et al. A self-propagating matrix metalloprotease-9 (MMP-9) dependent cycle of chronic neutrophilic inflammation. PLoS ONE 6, e15781 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Traves, S. et al. Elevated levels of the chemokines GROα and MCP-1 in sputum samples from COPD patients. Thorax 57, 590–595 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Costa, C. et al. CXCR3 and CCR5 chemokines in the induced sputum from patients with COPD. Chest 133, 26–33 (2008).

    CAS  PubMed  Google Scholar 

  42. Kerstjens, H. A., Bjermer, L., Eriksson, L., Dahlstrom, K. & Vestbo, J. Tolerability and efficacy of inhaled AZD4818, a CCR1 antagonist, in moderate to severe COPD patients. Respir. Med. 104, 1297–1303 (2010).

    PubMed  Google Scholar 

  43. Groutas, W. C., Dou, D. & Alliston, K. R. Neutrophil elastase inhibitors. Expert Opin. Ther. Pat. 21, 339–354 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Stevens, T. et al. AZD9668: pharmacological characterization of a novel oral inhibitor of neutrophil elastase. J. Pharmacol. Exp. Ther. 339, 313–320 (2011).

    CAS  PubMed  Google Scholar 

  45. Kuna, P., Jenkins, M., O'Brien, C. D. & Fahy, W. A. AZD9668, a neutrophil elastase inhibitor, plus ongoing budesonide/formoterol in patients with COPD. Respir. Med. 106, 531–539 (2011).

    PubMed  Google Scholar 

  46. Vogelmeier, C., Aquino, T. O., O'Brien, C. D., Perrett, J. & Gunawardena, K. A. A randomised, placebo-controlled, dose-finding study of AZD9668, an oral inhibitor of neutrophil elastase, in patients with chronic obstructive pulmonary disease treated with tiotropium. COPD 9, 111–120 (2012).

    PubMed  Google Scholar 

  47. Churg, A. et al. Effect of an MMP-9/MMP-12 inhibitor on smoke-induced emphysema and airway remodelling in guinea pigs. Thorax 62, 706–713 (2007).

    PubMed  PubMed Central  Google Scholar 

  48. Kirkham, P. A. & Barnes, P. J. Oxidative stress in COPD. Chest (in the press).

  49. Montuschi, P. et al. Exhaled 8-isoprostane as an in vivo biomarker of lung oxidative stress in patients with COPD and healthy smokers. Am. J. Respir. Crit. Care Med. 162, 1175–1177 (2000).

    CAS  PubMed  Google Scholar 

  50. Rahman, I. et al. 4-hydroxy-2-nonenal, a specific lipid peroxidation product, is elevated in lungs of patients with chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 166, 490–495 (2002).

    PubMed  Google Scholar 

  51. Caramori, G. et al. Unbalanced oxidant-induced DNA damage and repair in COPD: a link towards lung cancer. Thorax 66, 521–527 (2011).

    PubMed  Google Scholar 

  52. Tomita, K., Barnes, P. J. & Adcock, I. M. The effect of oxidative stress on histone acetylation and IL-8 release. Biochem. Biophys. Res. Comm. 301, 572–577 (2003).

    CAS  PubMed  Google Scholar 

  53. Malhotra, D. et al. Decline in NRF2 regulated antioxidants in COPD lungs due to loss of its positive regulator DJ-1. Am. J. Respir. Crit. Care Med. 178, 592–604 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Mercado, N. et al. Decreased histone deacetylase 2 impairs Nrf2 activation by oxidative stress. Biochem. Biophys. Res. Commun. 406, 292–298 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Malhotra, D. et al. Denitrosylation of HDAC2 by targeting Nrf2 restores glucocorticosteroid sensitivity in macrophages from COPD patients. J. Clin. Invest. 121, 4289–4302 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Sussan, T. E. et al. Targeting Nrf2 with the triterpenoid CDDO-imidazolide attenuates cigarette smoke-induced emphysema and cardiac dysfunction in mice. Proc. Natl Acad. Sci. USA 106, 250–255 (2009).

    CAS  PubMed  Google Scholar 

  57. Rossing, P. Diabetic nephropathy: could problems with bardoxolone methyl have been predicted? Nature Rev. Nephrol. 9, 128–130 (2013).

    CAS  Google Scholar 

  58. Gold, R. et al. Placebo-controlled phase 3 study of oral BG-12 for relapsing multiple sclerosis. N. Engl. J. Med. 367, 1098–1107 (2012).

    CAS  PubMed  Google Scholar 

  59. Keatings, V. M., Jatakanon, A., Worsdell, Y. M. & Barnes, P. J. Effects of inhaled and oral glucocorticoids on inflammatory indices in asthma and COPD. Am. J. Respir. Crit. Care Med. 155, 542–548 (1997).

    CAS  PubMed  Google Scholar 

  60. Culpitt, S. V., Nightingale, J. A. & Barnes, P. J. Effect of high dose inhaled steroid on cells, cytokines and proteases in induced sputum in chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 160, 1635–1639 (1999).

    CAS  PubMed  Google Scholar 

  61. Loppow, D. et al. In patients with chronic bronchitis a four week trial with inhaled steroids does not attenuate airway inflammation. Respir. Med. 95, 115–121 (2001).

    CAS  PubMed  Google Scholar 

  62. Francis, S. H., Houslay, M. D. & Conti, M. Phosphodiesterase inhibitors: factors that influence potency, selectivity, and action. Handb. Exp. Pharmacol. 47–84 (2011).

  63. Hatzelmann, A. et al. The preclinical pharmacology of roflumilast — a selective, oral phosphodiesterase 4 inhibitor in development for chronic obstructive pulmonary disease. Pulm. Pharmacol. Ther. 23, 235–256 (2010).

    CAS  PubMed  Google Scholar 

  64. Vestbo, J., Tan, L., Atkinson, G. & Ward, J. A controlled trial of 6-weeks' treatment with a novel inhaled phosphodiesterase type-4 inhibitor in COPD. Eur. Respir. J. 33, 1039–1044 (2009).

    CAS  PubMed  Google Scholar 

  65. Nials, A. T. et al. In vivo characterization of GSK256066, a high-affinity inhaled phosphodiesterase 4 inhibitor. J. Pharmacol. Exp. Ther. 337, 137–144 (2011).

    CAS  PubMed  Google Scholar 

  66. Naganuma, K. et al. Discovery of selective PDE4B inhibitors. Bioorg. Med. Chem. Lett. 19, 3174–3176 (2009).

    CAS  PubMed  Google Scholar 

  67. Smith, S. J. et al. Discovery of BRL 50481, a selective inhibitor of phosphodiesterase 7: in vitro studies in human monocytes, lung macrophages and CD8+ T-lymphocytes. Mol. Pharmacol. 66, 1679–1689 (2004).

    CAS  PubMed  Google Scholar 

  68. Fortin, M. et al. A multi-target antisense approach against PDE4 and PDE7 reduces smoke-induced lung inflammation in mice. Respir. Res. 10, 39 (2009).

    PubMed  PubMed Central  Google Scholar 

  69. Boswell-Smith, V. et al. The pharmacology of two novel long-acting phosphodiesterase 3/4 inhibitors, RPL554 [9,10-dimethoxy-2(2,4,6-trimethylphenylimino)-3-(n-carbamoyl-2-aminoethyl)-3,4,6, 7-tetrahydro-2H-pyrimido[6,1-a]isoquinolin-4-one] and RPL565 [6,7-dihydro-2-(2,6-diisopropylphenoxy)-9,10-dimethoxy-4H-pyrimido[6,1-a]isoquino lin-4-one]. J. Pharmacol. Exp. Ther. 318, 840–848 (2006).

    CAS  PubMed  Google Scholar 

  70. Belkina, A. C., Nikolajczyk, B. S. & Denis, G. V. BET protein function is required for inflammation: Brd2 genetic disruption and BET inhibitor JQ1 impair mouse macrophage inflammatory responses. J. Immunol. 190, 3670–3678 (2013).

    CAS  PubMed  Google Scholar 

  71. Kruidenier, L. et al. A selective jumonji H3K27 demethylase inhibitor modulates the proinflammatory macrophage response. Nature 488, 404–408 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Renda, T. et al. Increased activation of p38 MAPK in COPD. Eur. Respir. J. 31, 62–69 (2008).

    CAS  PubMed  Google Scholar 

  73. Smith, S. J. et al. Inhibitory effect of p38 mitogen-activated protein kinase inhibitors on cytokine release from human macrophages. Br. J. Pharmacol. 149, 393–404 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Medicherla, S. et al. p38a selective MAP kinase inhibitor, SD-282, reduces inflammation in a sub-chronic model of tobacco smoke-induced airway inflammation. J. Pharmacol. Exp.Ther. 324, 921–929 (2007).

    PubMed  Google Scholar 

  75. Hammaker, D. & Firestein, G. S. “Go upstream, young man”: lessons learned from the p38 saga. Ann. Rheum. Dis. 69 (Suppl. 1), i77–i82 (2010).

    CAS  PubMed  Google Scholar 

  76. Lomas, D. A. et al. An oral inhibitor of p38 MAP kinase reduces plasma fibrinogen in patients with chronic obstructive pulmonary disease. J. Clin. Pharmacol. 52, 416–424 (2011).

    PubMed  Google Scholar 

  77. Duan, W. et al. Inhaled p38α mitogen-activated protein kinase antisense oligonucleotide attenuates asthma in mice. Am. J. Respir. Crit. Care Med. 171, 571–578 (2005).

    PubMed  Google Scholar 

  78. Millan, D. S. et al. Design and synthesis of inhaled p38 inhibitors for the treatment of chronic obstructive pulmonary disease. J. Med. Chem. 54, 7797–7814 (2011).

    CAS  PubMed  Google Scholar 

  79. Lee, Y. C. et al. TRX-ASK1-JNK signaling regulation of cell density-dependent cytotoxicity in cigarette smoke-exposed human bronchial epithelial cells. Am. J. Physiol. Lung Cell. Mol. Physiol. 294, L921–L931 (2008).

    CAS  PubMed  Google Scholar 

  80. Marwick, J. A., Chung, K. F. & Adcock, I. M. Phosphatidylinositol 3-kinase isoforms as targets in respiratory disease. Ther. Adv. Respir. Dis. 4, 19–34 (2010).

    PubMed  Google Scholar 

  81. To, Y. et al. Targeting phosphoinositide-3-kinase-δ with theophylline reverses corticosteroid insensitivity in COPD. Am. J. Resp. Crit. Care Med. 182, 897–904 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Gustafson, A. M. et al. Airway PI3K pathway activation is an early and reversible event in lung cancer development. Sci. Transl. Med. 2, 26ra25 (2010).

    PubMed  PubMed Central  Google Scholar 

  83. Medina-Tato, D. A., Ward, S. G. & Watson, M. L. Phosphoinositide 3-kinase signalling in lung disease: leucocytes and beyond. Immunology 121, 448–461 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Doukas, J. et al. Aerosolized phosphoinositide 3-kinase γ/δ inhibitor TG100-115 [3-[2,4-diamino-6-(3-hydroxyphenyl)pteridin-7-yl]phenol] as a therapeutic candidate for asthma and chronic obstructive pulmonary disease. J. Pharmacol. Exp. Ther. 328, 758–765 (2009).

    CAS  PubMed  Google Scholar 

  85. Marwick, J. A. et al. Inhibition of PI3Kδ restores glucocorticoid function in smoking-induced airway inflammation in mice. Am. J. Respir. Crit. Care Med. 179, 542–548 (2009).

    CAS  PubMed  Google Scholar 

  86. Culpitt, S. V. et al. Impaired inhibition by dexamethasone of cytokine release by alveolar macrophages from patients with chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 167, 24–31 (2003).

    PubMed  Google Scholar 

  87. Ito, K. et al. Histone deacetylase 2-mediated deacetylation of the glucocorticoid receptor enables NF-κB suppression. J. Exp. Med. 203, 7–13 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Cosio, B. G. et al. Theophylline restores histone deacetylase activity and steroid responses in COPD macrophages. J. Exp. Med. 200, 689–695 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Ford, P. A. et al. Treatment effects of low dose theophylline combined with an inhaled corticosteroid in COPD. Chest 137, 1338–1344 (2010).

    CAS  PubMed  Google Scholar 

  90. Mercado, N., To, Y., Ito, K. & Barnes, P. J. Nortriptyline reverses corticosteroid insensitivity by inhibition of PI3K-δ. J. Pharmacol. Exp. Ther. 337, 465–470 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Meja, K. K. et al. Curcumin restores corticosteroid function in monocytes exposed to oxidants by maintaining HDAC2. Am. J. Respir. Cell. Mol. Biol. 39, 312–323 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Kobayashi, H. et al. A novel macrolide/fluoroketolide, solithromycin (CEM-101), reverses corticosteroid insensitivity via phosphoinositide 3-kinase pathway inhibition. Br. J. Pharmacol. 21 Mar 2013 (doi:10.1111/bph.12187).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Garcha, D. S. et al. Changes in prevalence and load of airway bacteria using quantitative PCR in stable and exacerbated COPD. Thorax 67, 1075–1080 (2012).

    PubMed  Google Scholar 

  94. Sethi, S. et al. Pulsed moxifloxacin for the prevention of exacerbations of chronic obstructive pulmonary disease: a randomized controlled trial. Respir. Res. 11, 10 (2010).

    PubMed  PubMed Central  Google Scholar 

  95. Wilson, R. et al. Ciprofloxacin DPI in non-cystic fibrosis bronchiectasis: a Phase II randomised study. Eur. Respir. J. 41, 1107–1115 (2012).

    PubMed  PubMed Central  Google Scholar 

  96. OngH, X. et al. Liposomal nanoparticles control the uptake of ciprofloxacin across respiratory epithelia. Pharm. Res. 29, 3335–3346 (2012).

    Google Scholar 

  97. Seemungal, T. A. et al. Long-term erythromycin therapy is associated with decreased chronic obstructive pulmonary disease exacerbations. Am. J. Respir. Crit. Care Med. 178, 1139–1147 (2008).

    CAS  PubMed  Google Scholar 

  98. Albert, R. K. et al. Azithromycin for prevention of exacerbations of COPD. N. Engl. J. Med. 365, 689–698 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Kobayashi, Y. H. et al. A novel macrolide solithromycin exerts superior anti-inflammatory effect via NF-κB inhibition. J. Pharmacol. Exp. Ther. 345, 76–84 (2013).

    CAS  PubMed  Google Scholar 

  100. Sugawara, A. et al. Novel 12-membered non-antibiotic macrolides from erythromycin A; EM900 series as novel leads for anti-inflammatory and/or immunomodulatory agents. Bioorg. Med. Chem. Lett. 21, 3373–3376 (2011).

    CAS  PubMed  Google Scholar 

  101. Richens, T. R. et al. Cigarette smoke impairs clearance of apoptotic cells through oxidant-dependent activation of RhoA. Am. J. Respir. Crit. Care Med. 179, 1011–1021 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Hodge, S. & Reynolds, P. N. Low-dose azithromycin improves phagocytosis of bacteria by both alveolar and monocyte-derived macrophages in chronic obstructive pulmonary disease subjects. Respirology 17, 802–807 (2012).

    PubMed  Google Scholar 

  103. Serhan, C. N. Novel lipid mediators and resolution mechanisms in acute inflammation: to resolve or not? Am. J. Pathol. 177, 1576–1591 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Serhan, C. N. Macrophage proresolving mediator maresin 1 stimulates tissue regeneration and controls pain. FASEB J. 26, 1755–1765 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Hind, M., Gilthorpe, A., Stinchcombe, S. & Maden, M. Retinoid induction of alveolar regeneration: from mice to man? Thorax 64, 451–457 (2009).

    CAS  PubMed  Google Scholar 

  106. Roth, M. D. et al. Feasibility of retinoids for the treatment of emphysema study. Chest 130, 1334–1345 (2006).

    CAS  PubMed  Google Scholar 

  107. Stolk, J. et al. Randomized controlled trial for emphysema with a selective agonist of the gamma type retinoic acid receptor. Eur. Respir. J. 40, 306–312 (2012).

    CAS  PubMed  Google Scholar 

  108. Hegab, A. E. et al. Intranasal HGF administration ameliorates the physiologic and morphologic changes in lung emphysema. Mol. Ther. 16, 1417–1426 (2008).

    CAS  PubMed  Google Scholar 

  109. Wilkinson, J. E. et al. Rapamycin slows aging in mice. Aging Cell 11, 675–682 (2012).

    CAS  PubMed  Google Scholar 

  110. Anisimov, L. M. et al. Metformin slows down aging and extends life span of female SHR mice. Cell Cycle 7, 2769–2773 (2008).

    CAS  PubMed  Google Scholar 

  111. Donnelly, L. E. et al. Anti-inflammatory effects of resveratrol in lung epithelial cells: molecular mechanisms. Am. J. Physiol. Lung Cell Mol. Physiol. 287, L774–L783 (2004).

    CAS  PubMed  Google Scholar 

  112. de Boer, W. I. et al. Transforming growth factor β1 and recruitment of macrophages and mast cells in airways in chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 158, 1951–1957 (1998).

    CAS  PubMed  Google Scholar 

  113. Sime, P. J. The antifibrogenic potential of PPARγ ligands in pulmonary fibrosis. J. Investig. Med. 56, 534–538 (2008).

    CAS  PubMed  Google Scholar 

  114. Fonseca, C., Abraham, D. & Renzoni, E. A. Endothelin in pulmonary fibrosis. Am. J. Respir. Cell. Mol. Biol. 44, 1–10 (2011).

    CAS  PubMed  Google Scholar 

  115. D'Alessandro-Gabazza, C. N. et al. Development and preclinical efficacy of novel transforming growth factor-beta1 short interfering RNAs for pulmonary fibrosis. Am. J. Respir. Cell Mol. Biol. 46, 397–406 (2012).

    CAS  PubMed  Google Scholar 

  116. Siedlinski, M. et al. Dissecting direct and indirect genetic effects on chronic obstructive pulmonary disease (COPD) susceptibility. Hum. Genet. 132, 431–441 (2011).

    Google Scholar 

  117. Hansel, T. T. & Barnes, P. J. New drugs for exacerbations of chronic obstructive pulmonary disease. Lancet 374, 744–755 (2009).

    CAS  PubMed  Google Scholar 

  118. Galban, CJ et al. Computed tomography-based biomarker provides unique signature for diagnosis of COPD phenotypes and disease progression. Nature Med. 18, 1711–1715 (2012).

    CAS  PubMed  Google Scholar 

  119. Agusti, A. et al. Persistent systemic inflammation is associated with poor clinical outcomes in COPD: a novel phenotype. PLoS ONE 7, e37483 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Lee, J. H. et al. Simvastatin inhibits cigarette smoking-induced emphysema and pulmonary hypertension in rat lungs. Am. J. Respir. Crit. Care Med. 172, 987–993 (2005).

    PubMed  Google Scholar 

  121. Burgel, P. R. et al. Two distinct chronic obstructive pulmonary disease (COPD) phenotypes are associated with high risk of mortality. PLoS ONE 7, e51048 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Siva, R. et al. Eosinophilic airway inflammation and exacerbations of COPD: a randomised controlled trial. Eur. Respir. J. 29, 906–913 (2007).

    CAS  PubMed  Google Scholar 

  123. Celli, B. R. et al. Inflammatory biomarkers improve clinical prediction of mortality in chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 185, 1065–1072 (2012).

    CAS  PubMed  Google Scholar 

  124. Mancini, G. B. et al. Reduction of morbidity and mortality by statins, angiotensin-converting enzyme inhibitors, and angiotensin receptor blockers in patients with chronic obstructive pulmonary disease. J. Am. Coll. Cardiol. 47, 2554–2560 (2006).

    CAS  PubMed  Google Scholar 

  125. Bauer, C. M. et al. Treating viral exacerbations of chronic obstructive pulmonary disease: insights from a mouse model of cigarette smoke and H1N1 influenza infection. PLoS ONE 5, e13251 (2010).

    PubMed  PubMed Central  Google Scholar 

  126. Hicks, A., Monkarsh, S. P., Hoffman, A. F. & Goodnow, R. Jr. Leukotriene B4 receptor antagonists as therapeutics for inflammatory disease: preclinical and clinical developments. Expert Opin. Investig. Drugs 16, 1909–1920 (2007).

    CAS  PubMed  Google Scholar 

  127. Barnes, P. J. et al. Pulmonary biomarkers in chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 174, 6–14 (2006).

    CAS  PubMed  Google Scholar 

  128. Woodruff, P. G. et al. Randomized trial of zileuton for treatment of COPD exacerbations requiring hospitalization. COPD 8, 21–29 (2011).

    PubMed  Google Scholar 

  129. Gronke, L. et al. Effect of the oral leukotriene B4 receptor antagonist LTB019 on inflammatory sputum markers in patients with chronic obstructive pulmonary disease. Pulm. Pharmacol. Ther. 21, 409–417 (2008).

    CAS  PubMed  Google Scholar 

  130. Bernstein, J. A. et al. MK-0633, a potent 5-lipoxygenase inhibitor, in chronic obstructive pulmonary disease. Respir. Med. 105, 392–401 (2011).

    PubMed  Google Scholar 

  131. Dentener, M. A. et al. Effect of infliximab on local and systemic inflammation in chronic obstructive pulmonary disease: a pilot study. Respiration 76, 275–282 (2008).

    CAS  PubMed  Google Scholar 

  132. Dhimolea, E. Canakinumab. MAbs 2, 3–13 (2010).

    PubMed  PubMed Central  Google Scholar 

  133. Strand, V. et al. Improvements in health-related quality of life after treatment with tocilizumab in patients with rheumatoid arthritis refractory to tumour necrosis factor inhibitors: results from the 24-week randomized controlled RADIATE study. Rheumatology 51, 1860–1869 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Mahler, D. A., Huang, S., Tabrizi, M. & Bell, G. M. Efficacy and safety of a monoclonal antibody recognizing interleukin-8 in COPD: a pilot study. Chest 126, 926–934 (2004).

    CAS  PubMed  Google Scholar 

  135. Doe, C. et al. Expression of the T helper 17-associated cytokines IL-17A and IL-17F in asthma and COPD. Chest 138, 1140–1147 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Leonardi, C. et al. Anti-interleukin-17 monoclonal antibody ixekizumab in chronic plaque psoriasis. N. Engl. J. Med. 366, 1190–1199 (2012).

    CAS  PubMed  Google Scholar 

  137. Papp, K. A. et al. Brodalumab, an anti-interleukin-17-receptor antibody for psoriasis. N. Engl. J. Med. 366, 1181–1189 (2012).

    CAS  PubMed  Google Scholar 

  138. Benson, J. M. et al. Therapeutic targeting of the IL-12/23 pathways: generation and characterization of ustekinumab. Nature Biotech. 29, 615–624 (2011).

    CAS  Google Scholar 

  139. Vlahos, R. et al. Neutralizing granulocyte/macrophage colony-stimulating factor inhibits cigarette smoke-induced lung inflammation. Am. J. Respir. Crit. Care Med. 182, 34–40 (2010).

    CAS  PubMed  Google Scholar 

  140. Koli, K., Myllarniemi, M., Keski-Oja, J. & Kinnula, V. L. Transforming growth factor-β activation in the lung: focus on fibrosis and reactive oxygen species. Antioxid. Redox. Signal. 10, 333–342 (2008).

    CAS  PubMed  Google Scholar 

  141. Soltani, A. et al. Vessel-associated transforming growth factor-β1 (TGF-β1) is increased in the bronchial reticular basement membrane in COPD and normal smokers. PLoS ONE 7, e39736 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Leung, S. Y. et al. Effect of transforming growth factor-β receptor I kinase inhibitor 2,4-disubstituted pteridine (SD-208) in chronic allergic airway inflammation and remodeling. J. Pharmacol. Exp. Ther. 319, 586–594 (2006).

    CAS  PubMed  Google Scholar 

  143. Woodruff, P. G. et al. Safety and efficacy of an inhaled epidermal growth factor receptor inhibitor (BIBW 2948BS) in chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 181, 438–445 (2010).

    CAS  PubMed  Google Scholar 

  144. Chang, L. Y. et al. A catalytic antioxidant attenuates alveolar structural remodeling in bronchopulmonary dysplasia. Am. J. Respir. Crit. Care Med. 167, 57–64 (2003).

    PubMed  Google Scholar 

  145. Cheng, Y. F. et al. Pharmacokinetics of 8-hour intravenous infusion of NXY-059: a phase I, randomized, double-blind (within dose panels), placebo-controlled study in healthy Chinese volunteers. Clin. Ther. 30, 2342–2353 (2008).

    CAS  PubMed  Google Scholar 

  146. Borbely, G. et al. Small-molecule inhibitors of NADPH oxidase 4. J. Med. Chem. 53, 6758–6762 (2010).

    CAS  PubMed  Google Scholar 

  147. Churg, A. et al. Late intervention with a myeloperoxidase inhibitor stops progression of experimental COPD. Am. J. Respir. Crit. Care Med. 185, 34–43 (2012).

    CAS  PubMed  Google Scholar 

  148. Pergola, P. E. et al. Bardoxolone methyl and kidney function in CKD with type 2 diabetes. N. Engl. J. Med. 365, 327–336 (2011).

    CAS  PubMed  Google Scholar 

  149. Kappos, L. et al. Efficacy and safety of oral fumarate in patients with relapsing-remitting multiple sclerosis: a multicentre, randomised, double-blind, placebo-controlled phase IIb study. Lancet 372, 1463–1472 (2008).

    CAS  PubMed  Google Scholar 

  150. Tudhope, S. J. et al. Different mitogen-activated protein kinase-dependent cytokine responses in cells of the monocyte lineage. J. Pharmacol. Exp. Ther. 324, 306–312 (2008).

    CAS  PubMed  Google Scholar 

  151. Di Stefano, A. et al. STAT4 activation in smokers and patients with chronic obstructive pulmonary disease. Eur. Resp. J. 24, 78–85 (2004).

    CAS  Google Scholar 

  152. Qu, P. et al. Stat3 downstream genes serve as biomarkers in human lung carcinomas and chronic obstructive pulmonary disease. Lung Cancer 63, 341–347 (2009).

    PubMed  Google Scholar 

  153. Verstovsek, S. et al. A double-blind, placebo-controlled trial of ruxolitinib for myelofibrosis. N. Engl. J. Med. 366, 799–807 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Sandborn, W. J. et al. Tofacitinib, an oral Janus kinase inhibitor, in active ulcerative colitis. N. Engl. J. Med. 367, 616–624 (2012).

    CAS  PubMed  Google Scholar 

  155. van Vollenhoven, R. F. et al. Tofacitinib or adalimumab versus placebo in rheumatoid arthritis. N. Engl. J. Med. 367, 508–519 (2012).

    CAS  PubMed  Google Scholar 

  156. Caramori, G. et al. Nuclear localisation of p65 in sputum macrophages but not in sputum neutrophils during COPD exacerbations. Thorax 58, 348–351 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Weinblatt, M. E. et al. An oral spleen tyrosine kinase (Syk) inhibitor for rheumatoid arthritis. N. Engl. J. Med. 363, 1303–1312 (2010).

    CAS  PubMed  Google Scholar 

  158. de Rooij, M. F. et al. The clinically active BTK inhibitor PCI-32765 targets B-cell receptor- and chemokine-controlled adhesion and migration in chronic lymphocytic leukemia. Blood 119, 2590–2594 (2012).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter J. Barnes.

Ethics declarations

Competing interests

The author has served on Scientific Advisory Boards of AstraZeneca, Boehringer-Ingelheim, Chiesi, Daiichi-Sankyo, GlaxoSmithKline, Glenmark, Novartis, Nycomed, Pfizer, Sun Pharmaceuticals, Teva and UCB and has received research funding from Aquinox Pharmaceuticals, AstraZeneca, Boehringer-Ingelheim, Chiesi, Daiichi-Sankyo, GlaxoSmithKline, Novartis, Pfizer, Prosonix and Takeda. He is also a cofounder of RespiVert (now part of Johnson & Johnson), which has discovered novel inhaled anti-inflammatory treatments for COPD.

Related links

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barnes, P. New anti-inflammatory targets for chronic obstructive pulmonary disease. Nat Rev Drug Discov 12, 543–559 (2013). https://doi.org/10.1038/nrd4025

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd4025

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research