Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Neurosteroids as regenerative agents in the brain: therapeutic implications

Abstract

Regenerative therapeutics hold the promise of self-renewal and repair. Ageing and age-associated neurodegenerative diseases are marked by a decline in self-renewal and repair, but a capacity for regeneration is retained. The challenge faced by researchers developing molecular therapeutics to promote self-renewal in the nervous system is to activate regenerative and repair pathways often in the context of progressive degeneration. Neurosteroids regulate both regeneration and repair systems in the brain, and among this class of molecules, allopregnanolone has been broadly investigated for its role to promote regeneration in both the central and peripheral nervous systems. In the brain, allopregnanolone induced generation and survival of new neurons in the hippocampus of both aged mice and mice with Alzheimer disease, accompanied by restoration of associative learning and memory function. In the brain of mice with Alzheimer disease, allopregnanolone increased liver X receptor and pregnane X receptor expression, reduced amyloid-β and microglial activation, and increased markers of myelin and white matter generation. Therapeutic windows for efficacy of allopregnanolone were evident in the brains of mice with both normal ageing and Alzheimer disease. Allopregnanolone dose and a regenerative treatment regimen of intermittent allopregnanolone exposure were determining factors regulating therapeutic efficacy. Allopregnanolone serves as proof of concept for therapeutics that target endogenous regeneration, windows of therapeutic opportunity for regeneration, and critical system biology factors that will determine the efficacy of regeneration.

Key Points

  • The neurosteroid allopregnanolone promotes regeneration in the brain, recovery of learning and memory function, and reduces Alzheimer disease pathology in preclinical studies of efficacy

  • Therapeutic windows of allopregnanolone preclinical efficacy are defined by age and Alzheimer disease burden

  • Allopregnanolone administered intermittently to synergize with temporal cycles of endogenous regeneration promoted renewal and repair, whereas continuous infusions of allopregnanolone were antiregenerative in mouse models of Alzheimer disease

  • Allopregnanolone is poised to become the first endogenous regenerative therapeutic to be clinically developed for the prevention, delay or treatment of Alzheimer disease

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mechanism of allopregnanolone-induced neural stem cell and oligodendrocyte precursor progenitor mitosis.
Figure 2: Paradigm of allopregnanolone treatment, behavioural assessments and survival of newly generated neurons in wild-type mice and in the 3×TgAD mice across the life course.
Figure 3: Targeting regeneration and disease mechanisms promotes therapeutic efficacy.
Figure 4: Optimization of allopregnanolone treatment regimens for regeneration and repair.
Figure 5: Theoretical window of opportunity for therapeutic efficacy to promote endogenous regeneration of neural stem cells versus stem-cell-based therapies.

Similar content being viewed by others

References

  1. Baulieu, E. E. Neurosteroids: of the nervous system, by the nervous system, for the nervous system. Recent Prog. Horm. Res. 52, 1–32 (1997).

    CAS  PubMed  Google Scholar 

  2. Baulieu, E. E. & Schumacher, M. Neurosteroids, with special reference to the effect of progesterone on myelination in peripheral nerves. Mult. Scler. 3, 105–112 (1997).

    Article  CAS  PubMed  Google Scholar 

  3. Melcangi, R. C. & Panzica, G. Neuroactive steroids: an update of their roles in central and peripheral nervous system. Psychoneuroendocrinology 34 (Suppl 1), S1–S8 (2009).

    Article  CAS  PubMed  Google Scholar 

  4. Mellon, S. H. & Griffin, L. D. Neurosteroids: biochemistry and clinical significance. Trends Endocrinol. Metab. 13, 35–43 (2002).

    Article  CAS  PubMed  Google Scholar 

  5. Bishop, N. A., Lu, T. & Yankner, B. A. Neural mechanisms of ageing and cognitive decline. Nature 464, 529–535 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Skovronsky, D. M., Lee, V. M. & Trojanowski, J. Q. Neurodegenerative diseases: new concepts of pathogenesis and their therapeutic implications. Annu. Rev. Pathol. 1, 151–170 (2006).

    Article  CAS  PubMed  Google Scholar 

  7. Encinas, J. M. et al. Division-coupled astrocytic differentiation and age-related depletion of neural stem cells in the adult hippocampus. Cell Stem Cell 8, 566–579 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kuhn, H. G., Dickinson-Anson, H. & Gage, F. H. Neurogenesis in the dentate gyrus of the adult rat: age-related decrease of neuronal progenitor proliferation. J. Neurosci. 16, 2027–2033 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lazarov, O., Mattson, M. P., Peterson, D. A., Pimplikar, S. W. & van Praag, H. When neurogenesis encounters aging and disease. Trends Neurosci. 33, 569–579 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lugert, S. et al. Quiescent and active hippocampal neural stem cells with distinct morphologies respond selectively to physiological and pathological stimuli and aging. Cell Stem Cell 6, 445–456 (2010).

    Article  CAS  PubMed  Google Scholar 

  11. Lugert, S. & Taylor, V. Neural stem cells: disposable, end-state glia? Cell Stem Cell 8, 464–465 (2011).

    Article  CAS  PubMed  Google Scholar 

  12. Singh, C. et al. Allopregnanolone restores hippocampal-dependent learning and memory and neural progenitor survival in aging 3×TgAD and nonTg mice. Neurobiol. Aging 33, 1493–1506 (2012).

    Article  CAS  PubMed  Google Scholar 

  13. Wang, J. M. et al. Allopregnanolone reverses neurogenic and cognitive deficits in mouse model of Alzheimer's disease. Proc. Natl Acad. Sci. USA 107, 6498–6503 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Rodriguez, J. J. et al. Impaired adult neurogenesis in the dentate gyrus of a triple transgenic mouse model of Alzheimer's disease. PLoS ONE 3, e2935 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Brinton, R. D. The healthy cell bias of estrogen action: mitochondrial bioenergetics and neurological implications. Trends Neurosci. 31, 529–537 (2008).

    Article  CAS  PubMed  Google Scholar 

  16. Brinton, R. D. Estrogen-induced plasticity from cells to circuits: predictions for cognitive function. Trends Pharmacol. Sci. 30, 212–222 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Naylor, J. C. et al. Allopregnanolone levels are reduced in temporal cortex in patients with Alzheimer's disease compared to cognitively intact control subjects. Biochim. Biophys. Acta 1801, 951–959 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Yang, S. Y., He, X. Y. & Schulz, H. Multiple functions of type 10 17beta-hydroxysteroid dehydrogenase. Trends Endocrinol. Metab. 16, 167–175 (2005).

    Article  CAS  PubMed  Google Scholar 

  19. Herrup, K. & Yang, Y. Cell cycle regulation in the postmitotic neuron: oxymoron or new biology? Nat. Rev. Neurosci. 8, 368–378 (2007).

    Article  CAS  PubMed  Google Scholar 

  20. Schumacher, M. et al. Progesterone synthesis in the nervous system: implications for myelination and myelin repair. Front. Neurosci. 6, 10 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Sun, C. et al. Allopregnanolone increases the number of dopaminergic neurons in substantia nigra of a triple transgenic mouse model of Alzheimer's disease. Curr. Alzheimer Res. 9, 473–480 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wang, J. M., Johnston, P. B., Ball, B. G. & Brinton, R. D. The neurosteroid allopregnanolone promotes proliferation of rodent and human neural progenitor cells and regulates cell-cycle gene and protein expression. J. Neurosci. 25, 4706–4718 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Melcangi, R. C. et al. Role of neuroactive steroids in the peripheral nervous system. Front. Endocrinol. (Lausanne) 2, 104 (2011).

    Article  Google Scholar 

  24. Deng, W., Saxe, M. D., Gallina, I. S. & Gage, F. H. Adult-born hippocampal dentate granule cells undergoing maturation modulate learning and memory in the brain. J. Neurosci. 29, 13532–13542 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Rodriguez, J. J., Jones, V. C. & Verkhratsky, A. Impaired cell proliferation in the subventricular zone in an Alzheimer's disease model. Neuroreport 20, 907–912 (2009).

    Article  CAS  PubMed  Google Scholar 

  26. Haughey, N. J. et al. Disruption of neurogenesis in the subventricular zone of adult mice, and in human cortical neuronal precursor cells in culture, by amyloid beta-peptide: implications for the pathogenesis of Alzheimer's disease. Neuromolecular Med. 1, 125–135 (2002).

    Article  CAS  PubMed  Google Scholar 

  27. Aimone, J. B., Deng, W. & Gage, F. H. Resolving new memories: a critical look at the dentate gyrus, adult neurogenesis, and pattern separation. Neuron 70, 589–596 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Deng, W., Aimone, J. B. & Gage, F. H. New neurons and new memories: how does adult hippocampal neurogenesis affect learning and memory? Nat. Rev. Neurosci. 11, 339–350 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Shors, T. J., Townsend, D. A., Zhao, M., Kozorovitskiy, Y. & Gould, E. Neurogenesis may relate to some but not all types of hippocampal-dependent learning. Hippocampus 12, 578–584 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Shors, T. J. et al. Neurogenesis in the adult is involved in the formation of trace memories. Nature 410, 372–376 (2001).

    Article  CAS  PubMed  Google Scholar 

  31. Bartzokis, G. Alzheimer's disease as homeostatic responses to age-related myelin breakdown. Neurobiol. Aging 32, 1341–1371 (2011).

    Article  CAS  PubMed  Google Scholar 

  32. Kuczynski, B. et al. White matter integrity and cortical metabolic associations in aging and dementia. Alzheimers Dement. 6, 54–62 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Ringman, J. M. et al. Diffusion tensor imaging in preclinical and presymptomatic carriers of familial Alzheimer's disease mutations. Brain 130, 1767–1776 (2007).

    Article  PubMed  Google Scholar 

  34. Yao, J., Rettberg, J. R., Klosinski, L. P., Cadenas, E. & Brinton, R. D. Shift in brain metabolism in late onset Alzheimer's disease: implications for biomarkers and therapeutic interventions. Mol. Aspects Med. 32, 247–257 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Chen, S. et al. Allopregnanolone promotes regeneration and reduces beta-amyloid burden in a preclinical model of Alzheimer's disease. PLoS ONE 6, e24293 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Desai, M. K. et al. Triple-transgenic Alzheimer's disease mice exhibit region-specific abnormalities in brain myelination patterns prior to appearance of amyloid and tau pathology. Glia 57, 54–65 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Saher, G. et al. High cholesterol level is essential for myelin membrane growth. Nat. Neurosci. 8, 468–475 (2005).

    Article  CAS  PubMed  Google Scholar 

  38. Rupprecht, R. et al. Translocator protein (18 kDa) (TSPO) as a therapeutic target for neurological and psychiatric disorders. Nat. Rev. Drug Discov. 9, 971–988 (2010).

    Article  CAS  PubMed  Google Scholar 

  39. Bateman, R. J. et al. Clinical and biomarker changes in dominantly inherited Alzheimer's disease. N. Engl. J. Med. 367, 795–804 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Reitz, C., Brayne, C. & Mayeux, R. Epidemiology of Alzheimer disease. Nat. Rev. Neurol. 7, 137–152 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Jack, C. R. Jr. et al. Hypothetical model of dynamic biomarkers of the Alzheimer's pathological cascade. Lancet Neurol. 9, 119–128 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Reiman, E. M. & Jagust, W. J. Brain imaging in the study of Alzheimer's disease. Neuroimage 61, 505–516 (2012).

    Article  PubMed  Google Scholar 

  43. Weiner, M. W. et al. The Alzheimer's Disease Neuroimaging Initiative: a review of papers published since its inception. Alzheimers. Dement. 8 (Suppl 1) S1–68 (2012).

    Article  PubMed  Google Scholar 

  44. Lesne, S. et al. A specific amyloid-beta protein assembly in the brain impairs memory. Nature 440, 352–357 (2006).

    Article  CAS  PubMed  Google Scholar 

  45. De Strooper, B., Vassar, R. & Golde, T. The secretases: enzymes with therapeutic potential in Alzheimer disease. Nat. Rev. Neurol. 6, 99–107 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Irwin, R. W., Wang, J. M., Chen, S. & Brinton, R. D. Neuroregenerative mechanisms of allopregnanolone in Alzheimer's disease. Front. Endocrinol. (Lausanne) 2, 117 (2011).

    Google Scholar 

  47. Kang, J. & Rivest, S. Lipid metabolism and neuroinflammation in Alzheimer's disease: a role for liver X receptors. Endocr. Rev. 33, 2011–1049 (2012).

    Article  Google Scholar 

  48. Mandrekar-Colucci, S., Karlo, J. C. & Landreth, G. E. Mechanisms underlying the rapid peroxisome proliferator-activated receptor-gamma-mediated amyloid clearance and reversal of cognitive deficits in a murine model of Alzheimer's disease. J. Neurosci. 32, 10117–10128 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Repa, J. J. et al. Liver X receptor activation enhances cholesterol loss from the brain, decreases neuroinflammation, and increases survival of the NPC1 mouse. J. Neurosci. 27, 14470–14480 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Cramer, P. E. et al. ApoE-directed therapeutics rapidly clear beta-amyloid and reverse deficits in AD mouse models. Science 335, 1503–1506 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Riddell, D. R. et al. The LXR agonist TO901317 selectively lowers hippocampal Abeta42 and improves memory in the Tg2576 mouse model of Alzheimer's disease. Mol. Cell Neurosci. 34 621–628 (2007).

    Article  CAS  PubMed  Google Scholar 

  52. Langmade, S. J. et al. Pregnane X receptor (PXR) activation: a mechanism for neuroprotection in a mouse model of Niemann-Pick C disease. Proc. Natl Acad. Sci. USA 103, 13807–13812 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kliewer, S. A. & Willson, T. M. Regulation of xenobiotic and bile acid metabolism by the nuclear pregnane X receptor. J. Lipid Res. 43, 359–364 (2002).

    CAS  PubMed  Google Scholar 

  54. Willson, T. M. & Kliewer, S. A. PXR, CAR and drug metabolism. Nat. Rev. Drug Discov. 1, 259–266 (2002).

    Article  CAS  PubMed  Google Scholar 

  55. Porter, F. D. et al. Cholesterol oxidation products are sensitive and specific blood-based biomarkers for Niemann-Pick C1 disease. Sci. Transl. Med. 2, 56ra81 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Hagemeyer, C. E., Rosenbrock, H., Ditter, M., Knoth, R. & Volk, B. Predominantly neuronal expression of cytochrome P450 isoforms CYP3A11 and CYP3A13 in mouse brain. Neuroscience 117, 521–529 (2003).

    Article  CAS  PubMed  Google Scholar 

  57. Bengtsson, S. K., Johansson, M., Backstrom, T. & Wang, M. Chronic allopregnanolone treatment accelerates Alzheimer's disease development in AbetaPP(Swe)PSEN1(DeltaE9) mice. J. Alzheimers Dis. 31, 71–84 (2012).

    Article  CAS  PubMed  Google Scholar 

  58. Zampieri, S. et al. Oxidative stress in NPC1 deficient cells: protective effect of allopregnanolone. J. Cell. Mol. Med. 13, 3786–3796 (2009).

    Article  PubMed  Google Scholar 

  59. He, J., Hoffman, S. W. & Stein, D. G. Allopregnanolone, a progesterone metabolite, enhances behavioral recovery and decreases neuronal loss after traumatic brain injury. Restor. Neurol. Neurosci. 22, 19–31 (2004).

    CAS  PubMed  Google Scholar 

  60. Noorbakhsh, F. et al. Impaired neurosteroid synthesis in multiple sclerosis. Brain 134, 2703–2721 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Griffin, L. D., Gong, W., Verot, L. & Mellon, S. H. Niemann-Pick type C disease involves disrupted neurosteroidogenesis and responds to allopregnanolone. Nat. Med. 10, 704–711 (2004).

    Article  CAS  PubMed  Google Scholar 

  62. Adeosun, S. O. et al. Allopregnanolone reinstates tyrosine hydroxylase immunoreactive neurons and motor performance in an MPTP-lesioned mouse model of Parkinson's disease. PLoS ONE 7, e50040 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Gee, K. W., Bolger, M. B., Brinton, R. E., Coirini, H. & McEwen, B. S. Steroid modulation of the chloride ionophore in rat brain: structure-activity requirements, regional dependence and mechanism of action. J. Pharmacol. Exp. Ther. 246, 803–812 (1988).

    CAS  PubMed  Google Scholar 

  64. Reddy, D. S. & Rogawski, M. A. Neurosteroid replacement therapy for catamenial epilepsy. Neurotherapeutics 6, 392–401 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Belelli, D. & Lambert, J. J. Neurosteroids: endogenous regulators of the GABA(A) receptor. Nat. Rev. Neurosci. 6, 565–575 (2005).

    Article  CAS  PubMed  Google Scholar 

  66. Kask, K., Backstrom, T., Nilsson, L. G. & Sundstrom-Poromaa, I. Allopregnanolone impairs episodic memory in healthy women. Psychopharmacology (Berl) 199, 161–168 (2008).

    Article  CAS  Google Scholar 

  67. ClinicalTrials.gov. Allopregnanolone for the Treatment of Traumatic Brain Injury [online], (2012).

  68. Sperling, R. et al. Amyloid-related imaging abnormalities in patients with Alzheimer's disease treated with bapineuzumab: a retrospective analysis. Lancet Neurol. 11, 241–249 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Sperling, R. A. et al. Amyloid-related imaging abnormalities in amyloid-modifying therapeutic trials: recommendations from the Alzheimer's Association Research Roundtable Workgroup. Alzheimer's Dement. 7, 367–385 (2011).

    Article  Google Scholar 

  70. Alzheimer Research Forum. CTAD: New Data on Sola, Bapi, Spark Theragnostics Debate [online], (2012).

  71. Alzheimer Research Forum. Phase 3 Solanezumab Trials “Fail”—Is There a Silver Lining? [online], (2012).

  72. Alzheimer Research Forum. Drugs In Clinical Trials [online], (2012).

  73. Eriksson, P. S. et al. Neurogenesis in the adult human hippocampus. Nat. Med. 4, 1313–1317 (1998).

    Article  CAS  PubMed  Google Scholar 

  74. Hosie, A. M., Wilkins, M. E., da Silva, H. M. & Smart, T. G. Endogenous neurosteroids regulate GABAA receptors through two discrete transmembrane sites. Nature 444, 486–489 (2006).

    Article  CAS  PubMed  Google Scholar 

  75. Wang, J. M. & Brinton, R. D. Allopregnanolone-induced rise in intracellular calcium in embryonic hippocampal neurons parallels their proliferative potential. BMC Neurosci. 9 (Suppl 2), 2–11 (2008).

    Article  Google Scholar 

  76. Manganas, L. N. et al. Magnetic resonance spectroscopy identifies neural progenitor cells in the live human brain. Science 318, 980–985 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Pereira, A. C. et al. An in vivo correlate of exercise-induced neurogenesis in the adult dentate gyrus. Proc. Natl. Acad. Sci. USA 104, 5638–5643 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Lipinski, C. A., Lombardo, F., Dominy, B. W. & Feeney, P. J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 46, 3–26 (2001).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The work that led to this Review was supported by grants from the NIH National Institute on Aging (U01 AG031115), the Alzheimer Drug Development Foundation, the Kenneth T. and Eileen L. Norris Foundation, and The California Institute for Regenerative Medicine (DR2-05410) to R. D. Brinton and by the SC CTSI NIH National Center for Advancing Translational Science (UL1 RR031986). The invaluable contributions of J. Wang, S. Chen and R. Irwin of the University of Southern California to our discovery and translational research endeavours described herein are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares that she has filed applications for patents on therapeutic regimen and method of use of allopregnanolone for neurodegenerative diseases.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brinton, R. Neurosteroids as regenerative agents in the brain: therapeutic implications. Nat Rev Endocrinol 9, 241–250 (2013). https://doi.org/10.1038/nrendo.2013.31

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrendo.2013.31

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research