Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Mitochondrial dynamics in the central regulation of metabolism

Key Points

  • Mitochondrial dynamics in hypothalamic neurons affect peripheral tissue function in metabolic disorders such as obesity

  • Activation of neuropeptide-Y-agouti-related-protein (NPY–AgRP) neurons mediates an orexigenic response, which promotes hunger, whereas activation of proopiomelanocortin (POMC) neurons results in an anorexigenic response that promotes appetite suppression

  • NPY–AgRP neurons and POMC neurons are components of the central melanocortin system and are activated via distinct signalling pathways, each of which is dependent on mitochondrial dynamics

  • Activation of NPY–AgRP neurons occurs through metabolism of fatty acids whereas activation of POMC neurons is dependent on glucose metabolism

  • The molecular regulators of mitochondrial fusion, Mfn1 and Mfn2, have distinct functions in specific cell types

  • Impairment of mitochondrial dynamics contributes to development of metabolic disorders, such as obesity and diabetes mellitus

Abstract

The ability of an organism to convert organic molecules from the environment into energy is essential for the development of cellular structures, cell differentiation and growth. Mitochondria have a fundamental role in regulating metabolic pathways, and tight control of mitochondrial functions and dynamics is critical to maintaining adequate energy balance. In complex organisms, such as mammals, it is also essential that the metabolic demands of various tissues are coordinated to ensure that the energy needs of the whole body are effectively met. Within the arcuate nucleus of the hypothalamus, the NPY–AgRP and POMC neurons have a crucial role in orchestrating the regulation of hunger and satiety. Emerging findings from animal studies have revealed an important function for mitochondrial dynamics within these two neuronal populations, which facilitates the correct adaptive responses of the whole body to changes in the metabolic milieu. The main proteins implicated in these studies are the mitofusins, Mfn1 and Mfn2, which are regulators of mitochondrial dynamics. In this Review, we provide an overview of the mechanisms by which mitochondria are involved in the central regulation of energy balance and discuss the implications of mitochondrial dysfunction for metabolic disorders.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Melanocortin system in the arcuate nucleus of the hypothalamus.
Figure 2: Regulation of POMC and NPY–AgRP neuron activation.
Figure 3: Feeding states and mitochondrial dynamics in NPY–AgRP and POMC neurons.

Similar content being viewed by others

References

  1. Eckel, R.H. et al. Obesity and type 2 diabetes: what can be unified and what needs to be individualized? J. Clin. Endocrinol. Metab. 96, 1654–1663 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Williams, K. W. & Elmquist, J. K. From neuroanatomy to behavior: central integration of peripheral signals regulating feeding behavior. Nat. Neurosci. 15, 1350–1355 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Levin, B. E. & Sherwin, R. S. Peripheral glucose homeostasis: does brain insulin matter? J. Clin. Invest. 121, 3392–3395 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Pocai, A., Obici, S., Schwartz, G. J. & Rossetti, L. A brain–liver circuit regulates glucose homeostasis. Cell Metab. 1, 53–61 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. Cone, R. D. Anatomy and regulation of the central melanocortin system. Nat. Neurosci. 8, 571–578 (2005).

    Article  CAS  PubMed  Google Scholar 

  6. Broadwell, R. D., Balin, B. J., Salcman, M. & Kaplan, R. S. Brain-blood barrier? Yes and no. Proc. Natl Acad. Sci. USA 80, 7352–7356 (1983).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Norsted, E., Gomuc, B. & Meister, B. Protein components of the blood–brain barrier (BBB) in the mediobasal hypothalamus. J. Chem. Neuroanat. 36, 107–121 (2008).

    Article  CAS  PubMed  Google Scholar 

  8. Elmquist, J. K., Bjorbaek, C., Ahima, R. S., Flier, J. S. & Saper, C. B. Distributions of leptin receptor mRNA isoforms in the rat brain. J. Comp. Neurol. 395, 535–547 (1998).

    Article  CAS  PubMed  Google Scholar 

  9. Guan, X. M. et al. Distribution of mRNA encoding the growth hormone secretagogue receptor in brain and peripheral tissues. Brain Res. Mol. Brain Res. 48, 23–29 (1997).

    Article  CAS  PubMed  Google Scholar 

  10. Couce, M. E., Burguera, B., Parisi, J. E., Jensen, M. D. & Lloyd, R. V. Localization of leptin receptor in the human brain. Neuroendocrinology 66, 145–150 (1997).

    Article  CAS  PubMed  Google Scholar 

  11. Elias, C. F. et al. Leptin activates hypothalamic CART neurons projecting to the spinal cord. Neuron 21, 1375–1385 (1998).

    Article  CAS  PubMed  Google Scholar 

  12. Castro, M. G. & Morrison, E. Post-translational processing of proopiomelanocortin in the pituitary and in the brain. Crit. Rev. Neurobiol. 11, 35–57 (1997).

    Article  CAS  PubMed  Google Scholar 

  13. Mountjoy, K. G. Functions for pro-opiomelanocortin-derived peptides in obesity and diabetes. Biochem. J. 428, 305–324 (2010).

    Article  CAS  PubMed  Google Scholar 

  14. Roselli-Rehfuss, L. et al. Identification of a receptor for γ melanotropin and other proopiomelanocortin peptides in the hypothalamus and limbic system. Proc. Natl Acad. Sci. USA 90, 8856–8860 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Biebermann, H. et al. A role for β-melanocyte-stimulating hormone in human body-weight regulation. Cell Metab. 3, 141–146 (2006).

    Article  CAS  PubMed  Google Scholar 

  16. McMinn, J. E., Wilkinson, C. W., Havel, P. J., Woods, S. C. & Schwartz, M. W. Effect of intracerebroventricular α-MSH on food intake, adiposity, c-Fos induction, and neuropeptide expression. Am. J. Physiol. Regul. Integr. Comp. Physiol. 279, R695–R703 (2000).

    Article  CAS  PubMed  Google Scholar 

  17. Poggioli, R., Vergoni, A. V. & Bertolini, A. ACTH-(1–24) and α-MSH antagonize feeding behavior stimulated by κ opiate agonists. Peptides 7, 843–848 (1986).

    Article  CAS  PubMed  Google Scholar 

  18. Mountjoy, K. G., Mortrud, M. T., Low, M. J., Simerly, R. B. & Cone, R. D. Localization of the melanocortin-4 receptor (MC4-R) in neuroendocrine and autonomic control circuits in the brain. Mol. Endocrinol. 8, 1298–1308 (1994).

    CAS  PubMed  Google Scholar 

  19. Clark, J. T., Kalra, P. S., Crowley, W. R. & Kalra, S. P. Neuropeptide Y and human pancreatic polypeptide stimulate feeding behavior in rats. Endocrinology 115, 427–429 (1984).

    Article  CAS  PubMed  Google Scholar 

  20. Stanley, B. G. & Leibowitz, S. F. Neuropeptide Y: stimulation of feeding and drinking by injection into the paraventricular nucleus. Life Sci. 35, 2635–2642 (1984).

    Article  CAS  PubMed  Google Scholar 

  21. Chua, S. C. Jr et al. Food deprivation and hypothalamic neuropeptide gene expression: effects of strain background and the diabetes mutation. Brain Res. Mol. Brain Res. 11, 291–299 (1991).

    Article  CAS  PubMed  Google Scholar 

  22. Dryden, S., Pickavance, L., Frankish, H. M. & Williams, G. Increased neuropeptide Y secretion in the hypothalamic paraventricular nucleus of obese (fa/fa) Zucker rats. Brain Res. 690, 185–188 (1995).

    Article  CAS  PubMed  Google Scholar 

  23. Wilding, J. P. et al. Increased neuropeptide-Y messenger ribonucleic acid (mRNA) and decreased neurotensin mRNA in the hypothalamus of the obese (ob/ob) mouse. Endocrinology 132, 1939–1944 (1993).

    Article  CAS  PubMed  Google Scholar 

  24. Hahn, T. M., Breininger, J. F., Baskin, D. G. & Schwartz, M. W. Coexpression of Agrp and NPY in fasting-activated hypothalamic neurons. Nat. Neurosci. 1, 271–272 (1998).

    Article  CAS  PubMed  Google Scholar 

  25. Ollmann, M. M. et al. Antagonism of central melanocortin receptors in vitro and in vivo by agouti-related protein. Science 278, 135–138 (1997).

    Article  CAS  PubMed  Google Scholar 

  26. Yen, T. T., Gill, A. M., Frigeri, L. G., Barsh, G. S. & Wolff, G. L. Obesity, diabetes, and neoplasia in yellow Avy/− mice: ectopic expression of the agouti gene. FASEB J. 8, 479–488 (1994).

    Article  CAS  PubMed  Google Scholar 

  27. Luquet, S., Perez, F. A., Hnasko, T. S. & Palmiter, R. D. NPY/AgRP neurons are essential for feeding in adult mice but can be ablated in neonates. Science 310, 683–685 (2005).

    Article  CAS  PubMed  Google Scholar 

  28. Gropp, E. et al. Agouti-related peptide-expressing neurons are mandatory for feeding. Nat. Neurosci. 8, 1289–1291 (2005).

    Article  CAS  PubMed  Google Scholar 

  29. Palmiter, R. D., Erickson, J. C., Hollopeter, G., Baraban, S. C. & Schwartz, M. W. Life without neuropeptide Y. Recent Prog. Horm. Res. 53, 163–199 (1998).

    CAS  PubMed  Google Scholar 

  30. Qian, S. et al. Neither agouti-related protein nor neuropeptide Y is critically required for the regulation of energy homeostasis in mice. Mol. Cell Biol. 22, 5027–5035 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Horvath, T. L., Bechmann, I., Naftolin, F., Kalra, S. P. & Leranth, C. Heterogeneity in the neuropeptide Y-containing neurons of the rat arcuate nucleus: GABAergic and non-GABAergic subpopulations. Brain Res. 756, 283–286 (1997).

    Article  CAS  PubMed  Google Scholar 

  32. Tong, Q., Ye, C. P., Jones, J. E., Elmquist, J. K. & Lowell, B. B. Synaptic release of GABA by AgRP neurons is required for normal regulation of energy balance. Nat. Neurosci. 11, 998–1000 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wu, Q., Boyle, M. P. & Palmiter, R. D. Loss of GABAergic signaling by AgRP neurons to the parabrachial nucleus leads to starvation. Cell 137, 1225–1234 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Aponte, Y., Atasoy, D. & Sternson, S. M. AGRP neurons are sufficient to orchestrate feeding behavior rapidly and without training. Nat. Neurosci. 14, 351–355 (2011).

    Article  CAS  PubMed  Google Scholar 

  35. Krashes, M. J. et al. Rapid, reversible activation of AgRP neurons drives feeding behavior in mice. J. Clin. Invest. 121, 1424–1428 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Cheung, C. C., Clifton, D. K. & Steiner, R. A. Proopiomelanocortin neurons are direct targets for leptin in the hypothalamus. Endocrinology 138, 4489–4492 (1997).

    Article  CAS  PubMed  Google Scholar 

  37. Willesen, M. G., Kristensen, P. & Romer, J. Co-localization of growth hormone secretagogue receptor and NPY mRNA in the arcuate nucleus of the rat. Neuroendocrinology 70, 306–316 (1999).

    Article  CAS  PubMed  Google Scholar 

  38. Cowley, M. A. et al. Leptin activates anorexigenic POMC neurons through a neural network in the arcuate nucleus. Nature 411, 480–484 (2001).

    Article  CAS  PubMed  Google Scholar 

  39. Elias, C. F. et al. Leptin differentially regulates NPY and POMC neurons projecting to the lateral hypothalamic area. Neuron 23, 775–786 (1999).

    Article  CAS  PubMed  Google Scholar 

  40. Schwartz, M. W. et al. Leptin increases hypothalamic pro-opiomelanocortin mRNA expression in the rostral arcuate nucleus. Diabetes 46, 2119–2123 (1997).

    Article  CAS  PubMed  Google Scholar 

  41. Cowley, M. A. et al. The distribution and mechanism of action of ghrelin in the CNS demonstrates a novel hypothalamic circuit regulating energy homeostasis. Neuron 37, 649–661 (2003).

    Article  CAS  PubMed  Google Scholar 

  42. Dickson, S. L. & Luckman, S. M. Induction of c-fos messenger ribonucleic acid in neuropeptide Y and growth hormone (GH)-releasing factor neurons in the rat arcuate nucleus following systemic injection of the GH secretagogue, GH-releasing peptide-6. Endocrinology 138, 771–777 (1997).

    Article  CAS  PubMed  Google Scholar 

  43. Nakazato, M. et al. A role for ghrelin in the central regulation of feeding. Nature 409, 194–198 (2001).

    Article  CAS  PubMed  Google Scholar 

  44. Spanswick, D., Smith, M. A., Groppi, V. E., Logan, S. D. & Ashford, M. L. Leptin inhibits hypothalamic neurons by activation of ATP-sensitive potassium channels. Nature 390, 521–525 (1997).

    Article  CAS  PubMed  Google Scholar 

  45. Cannon, B. & Nedergaard, J. Brown adipose tissue: function and physiological significance. Physiol. Rev. 84, 277–359 (2004).

    Article  CAS  PubMed  Google Scholar 

  46. Enerback, S. et al. Mice lacking mitochondrial uncoupling protein are cold-sensitive but not obese. Nature 387, 90–94 (1997).

    Article  CAS  PubMed  Google Scholar 

  47. Ricquier, D. & Bouillaud, F. Mitochondrial uncoupling proteins: from mitochondria to the regulation of energy balance. J. Physiol. 529, 3–10 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Alan, L., Smolkova, K., Kronusova, E., Santorova, J. & Jezek, P. Absolute levels of transcripts for mitochondrial uncoupling proteins UCP2, UCP3, UCP4, and UCP5 show different patterns in rat and mice tissues. J. Bioenerg. Biomembr. 41, 71–78 (2009).

    Article  CAS  PubMed  Google Scholar 

  49. Andrews, Z. B., Diano, S. & Horvath, T. L. Mitochondrial uncoupling proteins in the CNS: in support of function and survival. Nat. Rev. Neurosci. 6, 829–840 (2005).

    Article  CAS  PubMed  Google Scholar 

  50. Krauss, S., Zhang, C. Y. & Lowell, B. B. The mitochondrial uncoupling-protein homologues. Nat. Rev. Mol. Cell Biol. 6, 248–261 (2005).

    Article  CAS  PubMed  Google Scholar 

  51. Andrews, Z. B. et al. Uncoupling protein-2 is critical for nigral dopamine cell survival in a mouse model of Parkinson's disease. J. Neurosci. 25, 184–191 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Affourtit, C., Crichton, P. G., Parker, N. & Brand, M. D. Novel uncoupling proteins. Novartis Found. Symp. 287, 70–80 (2007).

    CAS  PubMed  Google Scholar 

  53. Finkel, T. Signal transduction by mitochondrial oxidants. J. Biol. Chem. 287, 4434–4440 (2012).

    Article  CAS  PubMed  Google Scholar 

  54. Levenson, R., Macara, I. G., Smith, R. L., Cantley, L. & Housman, D. Role of mitochondrial membrane potential in the regulation of murine erythroleukemia cell differentiation. Cell 28, 855–863 (1982).

    Article  CAS  PubMed  Google Scholar 

  55. Rizzuto, R., De Stefani, D., Raffaello, A. & Mammucari, C. Mitochondria as sensors and regulators of calcium signalling. Nat. Rev. Mol. Cell Biol. 13, 566–578 (2012).

    Article  CAS  PubMed  Google Scholar 

  56. Wang, C. & Youle, R. J. The role of mitochondria in apoptosis*. Annu. Rev. Genet. 43, 95–118 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Gomes, L. C. & Scorrano, L. High levels of Fis1, a pro-fission mitochondrial protein, trigger autophagy. Biochim. Biophys. Acta 1777, 860–866 (2008).

    Article  CAS  PubMed  Google Scholar 

  58. Twig, G. et al. Fission and selective fusion govern mitochondrial segregation and elimination by autophagy. EMBO J. 27, 433–446 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Hoppins, S., Lackner, L. & Nunnari, J. The machines that divide and fuse mitochondria. Annu. Rev. Biochem. 76, 751–780 (2007).

    Article  CAS  PubMed  Google Scholar 

  60. Okamoto, K. & Shaw, J. M. Mitochondrial morphology and dynamics in yeast and multicellular eukaryotes. Annu. Rev. Genet. 39, 503–536 (2005).

    Article  CAS  PubMed  Google Scholar 

  61. Youle, R. J. & van der Bliek, A. M. Mitochondrial fission, fusion, and stress. Science 337, 1062–1065 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Chen, H., Chomyn, A. & Chan, D. C. Disruption of fusion results in mitochondrial heterogeneity and dysfunction. J. Biol. Chem. 280, 26185–26192 (2005).

    Article  CAS  PubMed  Google Scholar 

  63. Parone, P. A. et al. Preventing mitochondrial fission impairs mitochondrial function and leads to loss of mitochondrial DNA. PLoS ONE 3, e3257 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Chen, H., McCaffery, J. M. & Chan, D. C. Mitochondrial fusion protects against neurodegeneration in the cerebellum. Cell 130, 548–562 (2007).

    Article  CAS  PubMed  Google Scholar 

  65. Lee, S. et al. Mitofusin 2 is necessary for striatal axonal projections of midbrain dopamine neurons. Hum. Mol. Genet. 21, 4827–4835 (2012).

    Article  CAS  PubMed  Google Scholar 

  66. Pham, A. H., Meng, S., Chu, Q. N. & Chan, D. C. Loss of Mfn2 results in progressive, retrograde degeneration of dopaminergic neurons in the nigrostriatal circuit. Hum. Mol. Genet. 21, 4817–4826 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Boncompagni, S. et al. Mitochondria are linked to calcium stores in striated muscle by developmentally regulated tethering structures. Mol. Biol. Cell 20, 1058–1067 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Csordas, G. et al. Structural and functional features and significance of the physical linkage between ER and mitochondria. J. Cell Biol. 174, 915–921 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Hayashi, T., Rizzuto, R., Hajnoczky, G. & Su, T. P. MAM: more than just a housekeeper. Trends Cell Biol. 19, 81–88 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Rizzuto, R. et al. Ca2+ transfer from the ER to mitochondria: when, how and why. Biochim. Biophys. Acta 1787, 1342–1351 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Rowland, A. A. & Voeltz, G. K. Endoplasmic reticulum-mitochondria contacts: function of the junction. Nat. Rev. Mol. Cell Biol. 13, 607–625 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. de Brito, O. M. & Scorrano, L. Mitofusin 2 tethers endoplasmic reticulum to mitochondria. Nature 456, 605–610 (2008).

    Article  PubMed  CAS  Google Scholar 

  73. Morais, V. A. & De Strooper, B. Mitochondria dysfunction and neurodegenerative disorders: cause or consequence. J. Alzheimers Dis. 20 (Suppl. 2), S255–S263 (2010).

    Article  PubMed  Google Scholar 

  74. Albers, D. S. & Beal, M. F. Mitochondrial dysfunction and oxidative stress in aging and neurodegenerative disease. J. Neural Transm. Suppl. 59, 133–154 (2000).

    CAS  PubMed  Google Scholar 

  75. Trifunovic, A. & Larsson, N. G. Mitochondrial dysfunction as a cause of ageing. J. Intern. Med. 263, 167–178 (2008).

    Article  CAS  PubMed  Google Scholar 

  76. Bournat, J. C. & Brown, C. W. Mitochondrial dysfunction in obesity. Curr. Opin. Endocrinol. Diabetes Obes. 17, 446–452 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. King, A., Selak, M. A. & Gottlieb, E. Succinate dehydrogenase and fumarate hydratase: linking mitochondrial dysfunction and cancer. Oncogene 25, 4675–4682 (2006).

    Article  CAS  PubMed  Google Scholar 

  78. Horvath, T. L., Naftolin, F., Kalra, S. P. & Leranth, C. Neuropeptide-Y innervation of β-endorphin-containing cells in the rat mediobasal hypothalamus: a light and electron microscopic double immunostaining analysis. Endocrinology 131, 2461–2467 (1992).

    Article  CAS  PubMed  Google Scholar 

  79. Horvath, T. L., Naftolin, F. & Leranth, C. GABAergic and catecholaminergic innervation of mediobasal hypothalamic β-endorphin cells projecting to the medial preoptic area. Neuroscience 51, 391–399 (1992).

    Article  CAS  PubMed  Google Scholar 

  80. Andrews, Z. B. et al. UCP2 mediates ghrelin's action on NPY/AgRP neurons by lowering free radicals. Nature 454, 846–851 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Lopez, M. et al. Hypothalamic fatty acid metabolism mediates the orexigenic action of ghrelin. Cell Metab. 7, 389–399 (2008).

    Article  CAS  PubMed  Google Scholar 

  82. Reznick, R. M. & Shulman, G. I. The role of AMP-activated protein kinase in mitochondrial biogenesis. J. Physiol. 574, 33–39 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. McCrimmon, R. J. et al. Potential role for AMP-activated protein kinase in hypoglycemia sensing in the ventromedial hypothalamus. Diabetes 53, 1953–1958 (2004).

    Article  CAS  PubMed  Google Scholar 

  84. Minokoshi, Y. et al. AMP-kinase regulates food intake by responding to hormonal and nutrient signals in the hypothalamus. Nature 428, 569–574 (2004).

    Article  CAS  PubMed  Google Scholar 

  85. Hardie, D. G. & Carling, D. The AMP-activated protein kinase--fuel gauge of the mammalian cell? Eur. J. Biochem. 246, 259–273 (1997).

    Article  CAS  PubMed  Google Scholar 

  86. Obici, S., Feng, Z., Arduini, A., Conti, R. & Rossetti, L. Inhibition of hypothalamic carnitine palmitoyltransferase-1 decreases food intake and glucose production. Nat. Med. 9, 756–761 (2003).

    Article  CAS  PubMed  Google Scholar 

  87. Xie, Z., Zhang, J., Wu, J., Viollet, B. & Zou, M. H. Upregulation of mitochondrial uncoupling protein-2 by the AMP-activated protein kinase in endothelial cells attenuates oxidative stress in diabetes. Diabetes 57, 3222–3230 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Parton, L. E. et al. Glucose sensing by POMC neurons regulates glucose homeostasis and is impaired in obesity. Nature 449, 228–232 (2007).

    Article  CAS  PubMed  Google Scholar 

  89. Coppola, A. et al. A central thermogenic-like mechanism in feeding regulation: an interplay between arcuate nucleus T3 and UCP2. Cell Metab. 5, 21–33 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Ibrahim, N. et al. Hypothalamic proopiomelanocortin neurons are glucose responsive and express KATP channels. Endocrinology 144, 1331–1340 (2003).

    Article  CAS  PubMed  Google Scholar 

  91. Ashford, M. L., Boden, P. R. & Treherne, J. M. Glucose-induced excitation of hypothalamic neurones is mediated by ATP-sensitive K+ channels. Pflugers Arch. 415, 479–483 (1990).

    Article  CAS  PubMed  Google Scholar 

  92. Miki, T. et al. ATP-sensitive K+ channels in the hypothalamus are essential for the maintenance of glucose homeostasis. Nat. Neurosci. 4, 507–512 (2001).

    Article  CAS  PubMed  Google Scholar 

  93. Ladyman, S.R. & Grattan, D.R. JAKSTAT and feeding. JAKSTAT 2, e23675 (2013).

    PubMed  PubMed Central  Google Scholar 

  94. Horvath, T. L., Andrews, Z. B. & Diano, S. Fuel utilization by hypothalamic neurons: roles for ROS. Trends Endocrinol. Metab. 20, 78–87 (2009).

    Article  CAS  PubMed  Google Scholar 

  95. Diano, S. et al. Peroxisome proliferation-associated control of reactive oxygen species sets melanocortin tone and feeding in diet-induced obesity. Nat. Med. 17, 1121–1127 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Zhang, C. Y. et al. Uncoupling protein-2 negatively regulates insulin secretion and is a major link between obesity, β cell dysfunction, and type 2 diabetes. Cell 105, 745–755 (2001).

    Article  CAS  PubMed  Google Scholar 

  97. Molina, A. J. et al. Mitochondrial networking protects β-cells from nutrient-induced apoptosis. Diabetes 58, 2303–2315 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Gomes, L. C., Di Benedetto, G. & Scorrano, L. Essential amino acids and glutamine regulate induction of mitochondrial elongation during autophagy. Cell Cycle 10, 2635–2639 (2011).

    Article  CAS  PubMed  Google Scholar 

  99. Jheng, H. F. et al. Mitochondrial fission contributes to mitochondrial dysfunction and insulin resistance in skeletal muscle. Mol. Cell Biol. 32, 309–319 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Bach, D. et al. Mitofusin-2 determines mitochondrial network architecture and mitochondrial metabolism. A novel regulatory mechanism altered in obesity. J. Biol. Chem. 278, 17190–17197 (2003).

    Article  CAS  PubMed  Google Scholar 

  101. Sebastian, D. et al. Mitofusin 2 (Mfn2) links mitochondrial and endoplasmic reticulum function with insulin signaling and is essential for normal glucose homeostasis. Proc. Natl Acad. Sci. USA 109, 5523–5528 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Ozcan, U. et al. Endoplasmic reticulum stress links obesity, insulin action, and type 2 diabetes. Science 306, 457–461 (2004).

    Article  PubMed  CAS  Google Scholar 

  103. Ozcan, L. et al. Endoplasmic reticulum stress plays a central role in development of leptin resistance. Cell Metab. 9, 35–51 (2009).

    Article  CAS  PubMed  Google Scholar 

  104. Hernandez-Alvarez, M. I. et al. Subjects with early-onset type 2 diabetes show defective activation of the skeletal muscle PGC-1α/Mitofusin-2 regulatory pathway in response to physical activity. Diabetes Care 33, 645–651 (2010).

    Article  CAS  PubMed  Google Scholar 

  105. Dietrich, M. O., Liu, Z. W. & Horvath, T. L. Mitochondrial dynamics controlled by mitofusins regulate Agrp neuronal activity and diet-induced obesity. Cell 155, 188–199 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Schneeberger, M. et al. Mitofusin 2 in POMC neurons connects ER stress with leptin resistance and energy imbalance. Cell 155, 172–187 (2013).

    Article  CAS  PubMed  Google Scholar 

  107. Welch, W. J. & Brown, C. R. Influence of molecular and chemical chaperones on protein folding. Cell Stress Chaperones 1, 109–115 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Dietrich, M. O. & Horvath, T. L. Limitations in anti-obesity drug development: the critical role of hunger-promoting neurons. Nat. Rev. Drug Discov. 11, 675–691 (2012).

    Article  CAS  PubMed  Google Scholar 

  109. Katz, A. Modulation of glucose transport in skeletal muscle by reactive oxygen species. J. Appl. Physiol. 102, 1671–1676 (2007).

    Article  CAS  PubMed  Google Scholar 

  110. Ritchie, R. H. & Delbridge, L. M. Cardiac hypertrophy, substrate utilization and metabolic remodelling: cause or effect? Clin. Exp. Pharmacol. Physiol. 33, 159–166 (2006).

    Article  CAS  PubMed  Google Scholar 

  111. Kahn, S. E., Hull, R. L. & Utzschneider, K. M. Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature 444, 840–846 (2006).

    Article  CAS  PubMed  Google Scholar 

  112. Kelley, D. E., He, J., Menshikova, E. V. & Ritov, V. B. Dysfunction of mitochondria in human skeletal muscle in type 2 diabetes. Diabetes 51, 2944–2950 (2002).

    Article  CAS  PubMed  Google Scholar 

  113. Bonnard, C. et al. Mitochondrial dysfunction results from oxidative stress in the skeletal muscle of diet-induced insulin-resistant mice. J. Clin. Invest. 118, 789–800 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Zhang, L., He, H. & Balschi, J. A. Metformin and phenformin activate AMP-activated protein kinase in the heart by increasing cytosolic AMP concentration. Am. J. Physiol. Heart Circ. Physiol. 293, H457–H466 (2007).

    Article  CAS  PubMed  Google Scholar 

  115. Owen, M. R., Doran, E. & Halestrap, A. P. Evidence that metformin exerts its anti-diabetic effects through inhibition of complex 1 of the mitochondrial respiratory chain. Biochem. J. 348, 607–614 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Irons, B. K. & Minze, M. G. Drug treatment of type 2 diabetes mellitus in patients for whom metformin is contraindicated. Diabetes Metab. Syndr. Obes 7, 15–24 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. Gregor, M. F. & Hotamisligil, G. S. Inflammatory mechanisms in obesity. Annu. Rev. Immunol. 29, 415–445 (2011).

    Article  CAS  PubMed  Google Scholar 

  118. Lehrke, M. & Lazar, M. A. Inflamed about obesity. Nat. Med. 10, 126–127 (2004).

    Article  CAS  PubMed  Google Scholar 

  119. Lumeng, C. N. & Saltiel, A. R. Inflammatory links between obesity and metabolic disease. J. Clin. Invest. 121, 2111–2117 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Schenk, S., Saberi, M. & Olefsky, J. M. Insulin sensitivity: modulation by nutrients and inflammation. J. Clin. Invest. 118, 2992–3002 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. De Souza, C. T. et al. Consumption of a fat-rich diet activates a proinflammatory response and induces insulin resistance in the hypothalamus. Endocrinology 146, 4192–4199 (2005).

    Article  CAS  PubMed  Google Scholar 

  122. Milanski, M. et al. Saturated fatty acids produce an inflammatory response predominantly through the activation of TLR4 signaling in hypothalamus: implications for the pathogenesis of obesity. J. Neurosci. 29, 359–370 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Posey, K. A. et al. Hypothalamic proinflammatory lipid accumulation, inflammation, and insulin resistance in rats fed a high-fat diet. Am. J. Physiol. Endocrinol. Metab. 296, E1003–E1012 (2009).

    Article  CAS  PubMed  Google Scholar 

  124. Thaler, J. P. et al. Obesity is associated with hypothalamic injury in rodents and humans. J. Clin. Invest. 122, 153–162 (2012).

    Article  CAS  PubMed  Google Scholar 

  125. van de Sande-Lee, S. et al. Partial reversibility of hypothalamic dysfunction and changes in brain activity after body mass reduction in obese subjects. Diabetes 60, 1699–1704 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Cai, D. & Liu, T. Inflammatory cause of metabolic syndrome via brain stress and NF-κB. Aging (Albany NY) 4, 98–115 (2012).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

C.M.N. and T.L.H contributed equally to researching data for the article, to discussions of the content, to writing of the article and to review and/or editing of the manuscript before submission.

Corresponding author

Correspondence to Tamas L. Horvath.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nasrallah, C., Horvath, T. Mitochondrial dynamics in the central regulation of metabolism. Nat Rev Endocrinol 10, 650–658 (2014). https://doi.org/10.1038/nrendo.2014.160

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrendo.2014.160

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing