Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Gut microbiota modulation of chemotherapy efficacy and toxicity

Key Points

  • Evidence is increasing that the gut microbiota modulate the actions of chemotherapeutic drugs used in cancer and other diseases

  • We propose the 'TIMER' mechanistic framework to explain how gut bacteria influence chemotherapy effects on the host: Translocation, Immunomodulation, Metabolism, Enzymatic degradation and Reduced diversity and ecological variation

  • A number of tools for manipulating the gut microbiota in this context, including dietary modifications, probiotics and synthetically engineered bacteria, are in development

  • The gut microbiota will be central to the future of personalized cancer treatment strategies

Abstract

Evidence is growing that the gut microbiota modulates the host response to chemotherapeutic drugs, with three main clinical outcomes: facilitation of drug efficacy; abrogation and compromise of anticancer effects; and mediation of toxicity. The implication is that gut microbiota are critical to the development of personalized cancer treatment strategies and, therefore, a greater insight into prokaryotic co-metabolism of chemotherapeutic drugs is now required. This thinking is based on evidence from human, animal and in vitro studies that gut bacteria are intimately linked to the pharmacological effects of chemotherapies (5-fluorouracil, cyclophosphamide, irinotecan, oxaliplatin, gemcitabine, methotrexate) and novel targeted immunotherapies such as anti-PD-L1 and anti-CLTA-4 therapies. The gut microbiota modulate these agents through key mechanisms, structured as the 'TIMER' mechanistic framework: Translocation, Immunomodulation, Metabolism, Enzymatic degradation, and Reduced diversity and ecological variation. The gut microbiota can now, therefore, be targeted to improve efficacy and reduce the toxicity of current chemotherapy agents. In this Review, we outline the implications of pharmacomicrobiomics in cancer therapeutics and define how the microbiota might be modified in clinical practice to improve efficacy and reduce the toxic burden of these compounds.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: An overview of the TIMER microbiota–host interactions that modulate chemotherapy efficacy and toxicity.
Figure 2: A model for the future analysis and translation of the oncomicrobiome for improved cancer outcomes.

Similar content being viewed by others

References

  1. Siegel, R. L., Miller, K. D. & Jemal, A. Cancer statistics, 2016. CA Cancer J. Clin. 66, 7–30 (2016).

    Article  PubMed  Google Scholar 

  2. Wallington, M. et al. 30-day mortality after systemic anticancer treatment for breast and lung cancer in England: a population-based, observational study. Lancet Oncol. 17, 1203–1216 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Mirnezami, R., Nicholson, J. & Darzi, A. Preparing for precision medicine. N. Engl. J. Med. 366, 489–491 (2012).

    Article  PubMed  Google Scholar 

  4. Marusyk, A. & Polyak, K. Tumor heterogeneity: causes and consequences. Biochim. Biophys. Acta 1805, 105–117 (2010).

    CAS  PubMed  Google Scholar 

  5. Marusyk, A., Almendro, V. & Polyak, K. Intra-tumour heterogeneity: a looking glass for cancer? Nat. Rev. Cancer 12, 323–334 (2012).

    Article  CAS  PubMed  Google Scholar 

  6. Kantarjian, H. M., Fojo, T., Mathisen, M. & Zwelling, L. A. Cancer drugs in the United States: Justum Pretium — the just price. J. Clin. Oncol. 31, 3600–3604 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Weber, J. S. et al. Patterns of onset and resolution of immune-related adverse events of special interest with ipilimumab: detailed safety analysis from a phase 3 trial in patients with advanced melanoma. Cancer 119, 1675–1682 (2013).

    Article  CAS  PubMed  Google Scholar 

  8. Welsh, S. J., Rizos, H., Scolyer, R. A. & Long, G. V. Resistance to combination BRAF and MEK inhibition in metastatic melanoma: where to next? Eur. J. Cancer 62, 76–85 (2016).

    Article  CAS  PubMed  Google Scholar 

  9. Nicholson, J. K. Global systems biology, personalized medicine and molecular epidemiology. Mol. Syst. Biol. 2, 52 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Marchesi, J. R. et al. The gut microbiota and host health: a new clinical frontier. Gut 65, 330–339 (2016).

    Article  PubMed  Google Scholar 

  11. Holmes, E., Li, J. V., Marchesi, J. R. & Nicholson, J. K. Gut microbiota composition and activity in relation to host metabolic phenotype and disease risk. Cell Metab. 16, 559–564 (2012).

    Article  CAS  PubMed  Google Scholar 

  12. Nicholson, J. K. et al. Host-gut microbiota metabolic interactions. Science 336, 1262–1267 (2012).

    Article  CAS  PubMed  Google Scholar 

  13. Nicholson, J. K., Holmes, E. & Wilson, I. D. Gut microorganisms, mammalian metabolism and personalized health care. Nat. Rev. Microbiol. 3, 431–438 (2005).

    Article  CAS  PubMed  Google Scholar 

  14. Li, H., He, J. & Jia, W. The influence of gut microbiota on drug metabolism and toxicity. Expert Opin. Drug Metab. Toxicol. 12, 31–40 (2016).

    Article  CAS  PubMed  Google Scholar 

  15. Scheline, R. R. Drug metabolism by intestinal microorganisms. J. Pharm. Sci. 57, 2021–2037 (1968).

    Article  CAS  PubMed  Google Scholar 

  16. Lindenbaum, J., Tse-Eng, D., Butler, V. P. Jr & Rund, D. G. Urinary excretion of reduced metabolites of digoxin. Am. J. Med. 71, 67–74 (1981).

    Article  CAS  PubMed  Google Scholar 

  17. Lin, X. B. et al. The role of intestinal microbiota in development of irinotecan toxicity and in toxicity reduction through dietary fibres in rats. PLoS ONE 9, e83644 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Jia, W., Li, H., Zhao, L. & Nicholson, J. K. Gut microbiota: a potential new territory for drug targeting. Nat. Rev. Drug Discov. 7, 123–129 (2008).

    Article  CAS  PubMed  Google Scholar 

  19. Claesson, M. J. et al. Composition, variability, and temporal stability of the intestinal microbiota of the elderly. Proc. Natl Acad. Sci. USA 108 (Suppl. 1), 4586–4591 (2011).

    Article  CAS  PubMed  Google Scholar 

  20. Teillant, A., Gandra, S., Barter, D., Morgan, D. J. & Laxminarayan, R. Potential burden of antibiotic resistance on surgery and cancer chemotherapy antibiotic prophylaxis in the USA: a literature review and modelling study. Lancet Infect. Dis. 15, 1429–1437 (2015).

    Article  PubMed  Google Scholar 

  21. Samet, A. et al. Leukemia and risk of recurrent Escherichia coli bacteremia: genotyping implicates E. coli translocation from the colon to the bloodstream. Eur. J. Clin. Microbiol. Infect. Dis. 32, 1393–1400 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wolochow, H., Hildebrand, G. J. & Lamanna, C. Translocation of microorganisms across the intestinal wall of the rat: effect of microbial size and concentration. J. Infect. Dis. 116, 523–528 (1966).

    Article  CAS  PubMed  Google Scholar 

  23. Kroemer, G., Galluzzi, L., Kepp, O. & Zitvogel, L. Immunogenic cell death in cancer therapy. Annu. Rev. Immunol. 31, 51–72 (2013).

    Article  CAS  PubMed  Google Scholar 

  24. Schiavoni, G. et al. Cyclophosphamide synergizes with type I interferons through systemic dendritic cell reactivation and induction of immunogenic tumor apoptosis. Cancer Res. 71, 768–778 (2011).

    Article  CAS  PubMed  Google Scholar 

  25. Viaud, S. et al. Cyclophosphamide induces differentiation of Th17 cells in cancer patients. Cancer Res. 71, 661–665 (2011).

    Article  CAS  PubMed  Google Scholar 

  26. Viaud, S. et al. The intestinal microbiota modulates the anticancer immune effects of cyclophosphamide. Science 342, 971–976 (2013). This paper demonstrates that translocation of bacteria and stimulation of type 17 and type 1 T-helper cell responses is necessary for cyclophosphamide efficacy in tumour-bearing mice.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Daillere, R. et al. Enterococcus hirae and Barnesiella intestinihominis facilitate cyclophosphamide-induced therapeutic immunomodulatory effects. Immunity 45, 931–943 (2016).

    Article  CAS  PubMed  Google Scholar 

  28. Iida, N. et al. Commensal bacteria control cancer response to therapy by modulating the tumor microenvironment. Science 342, 967–970 (2013). This study reports that microbiota disruption abates tumour-associated myeloid cell responses to CpG-oligonucleotide immunotherapy and platinum chemotherapy.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Vetizou, M. et al. Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota. Science 350, 1079–1084 (2015). This study shows that Bacteroidales are critical in the anti-cancer immunostimulatory effects of CTLA-4 blockade.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wolchok, J. D. & Chan, T. A. Cancer: antitumour immunity gets a boost. Nature 515, 496–498 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sivan, A. et al. Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy. Science 350, 1084–1089 (2015). This study establishes that Bifidobacterium improves melanoma control, facilitating anti-PD-L1 efficacy via CD8+ T-cell priming and peri-tumoral accumulation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Berman, D. et al. Blockade of cytotoxic T-lymphocyte antigen-4 by ipilimumab results in dysregulation of gastrointestinal immunity in patients with advanced melanoma. Cancer Immun. 10, 11 (2010).

    PubMed  PubMed Central  Google Scholar 

  33. Dubin, K. et al. Intestinal microbiome analyses identify melanoma patients at risk for checkpoint-blockade-induced colitis. Nat. Commun. 7, 10391 (2016). This paper reports that baseline microbiota profiles enable prediction of which patients with melanoma will develop CTLA-4-blockade-induced colitis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Abreu, M. T. et al. Decreased expression of Toll-like receptor-4 and MD-2 correlates with intestinal epithelial cell protection against dysregulated proinflammatory gene expression in response to bacterial lipopolysaccharide. J. Immunol. 167, 1609–1616 (2001).

    Article  CAS  PubMed  Google Scholar 

  35. Cario, E. & Podolsky, D. K. Differential alteration in intestinal epithelial cell expression of toll-like receptor 3 (TLR3) and TLR4 in inflammatory bowel disease. Infect. Immun. 68, 7010–7017 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Frank, M. et al. TLR signaling modulates side effects of anticancer therapy in the small intestine. J. Immunol. 194, 1983–1995 (2015).

    Article  CAS  PubMed  Google Scholar 

  37. Wardill, H. R. et al. Irinotecan-induced gastrointestinal dysfunction and pain are mediated by common TLR4-dependent mechanisms. Mol. Cancer Ther. 15, 1376–1386 (2016).

    Article  CAS  PubMed  Google Scholar 

  38. Paci, A. et al. Review of therapeutic drug monitoring of anticancer drugs part 1 — cytotoxics. Eur. J. Cancer 50, 2010–2019 (2014).

    Article  CAS  PubMed  Google Scholar 

  39. Villa, A. & Sonis, S. T. Mucositis: pathobiology and management. Curr. Opin. Oncol. 27, 159–164 (2015).

    Article  CAS  PubMed  Google Scholar 

  40. Touchefeu, Y. et al. Systematic review: the role of the gut microbiota in chemotherapy- or radiation-induced gastrointestinal mucositis — current evidence and potential clinical applications. Aliment. Pharmacol. Ther. 40, 409–421 (2014). A systematic review summarizing evidence that the microbiota are altered in the context of mucositis, and clinical trials suggesting that probiotic use might be efficacious in this setting.

    CAS  PubMed  Google Scholar 

  41. Keefe, D. M. et al. Updated clinical practice guidelines for the prevention and treatment of mucositis. Cancer 109, 820–831 (2007).

    Article  CAS  PubMed  Google Scholar 

  42. Vanhoefer, U. et al. Irinotecan in the treatment of colorectal cancer: clinical overview. J. Clin. Oncol. 19, 1501–1518 (2001).

    Article  CAS  PubMed  Google Scholar 

  43. Lin, X. B. et al. Irinotecan (CPT-11) chemotherapy alters intestinal microbiota in tumour bearing rats. PLoS ONE 7, e39764 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Gupta, E. et al. Metabolic fate of irinotecan in humans: correlation of glucuronidation with diarrhea. Cancer Res. 54, 3723–3725 (1994).

    CAS  PubMed  Google Scholar 

  45. Wallace, B. D. et al. Alleviating cancer drug toxicity by inhibiting a bacterial enzyme. Science 330, 831–835 (2010). This study shows that diarrhoea, caused by reactivation of Irinotecan by a bacterial β -glucuronidase in the gut, is alleviated by a synthetic selective enzyme inhibitor.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kodawara, T. et al. The inhibitory effect of ciprofloxacin on the beta-glucuronidase-mediated deconjugation of the irinotecan metabolite SN-38-G. Basic Clin. Pharmacol. Toxicol. 118, 333–337 (2016).

    Article  CAS  PubMed  Google Scholar 

  47. Kong, R. et al. Old drug new use — amoxapine and its metabolites as potent bacterial beta-glucuronidase inhibitors for alleviating cancer drug toxicity. Clin. Cancer Res. 20, 3521–3530 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Wallace, B. D. et al. Structure and inhibition of microbiome beta-glucuronidases essential to the alleviation of cancer drug toxicity. Chem. Biol. 22, 1238–1249 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lam, W. et al. The four-herb Chinese medicine PHY906 reduces chemotherapy-induced gastrointestinal toxicity. Sci. Transl Med. 2, 45ra59 (2010).

    Article  CAS  PubMed  Google Scholar 

  50. Nakayama, H. et al. Intestinal anaerobic bacteria hydrolyse sorivudine, producing the high blood concentration of 5-(E)-(2-bromovinyl)uracil that increases the level and toxicity of 5-fluorouracil. Pharmacogenetics 7, 35–43 (1997).

    Article  CAS  PubMed  Google Scholar 

  51. Diasio, R. B. Sorivudine and 5-fluorouracil; a clinically significant drug-drug interaction due to inhibition of dihydropyrimidine dehydrogenase. Br. J. Clin. Pharmacol. 46, 1–4 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Huang, S., Li, J. Y., Wu, J., Meng, L. & Shou, C. C. Mycoplasma infections and different human carcinomas. World J. Gastroenterol. 7, 266–269 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Bronckaers, A., Balzarini, J. & Liekens, S. The cytostatic activity of pyrimidine nucleosides is strongly modulated by Mycoplasma hyorhinis infection: implications for cancer therapy. Biochem. Pharmacol. 76, 188–197 (2008).

    Article  CAS  PubMed  Google Scholar 

  54. Vande Voorde, J. et al. Nucleoside-catabolizing enzymes in mycoplasma-infected tumor cell cultures compromise the cytostatic activity of the anticancer drug gemcitabine. J. Biol. Chem. 289, 13054–13065 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Fijlstra, M. et al. Substantial decreases in the number and diversity of microbiota during chemotherapy-induced gastrointestinal mucositis in a rat model. Support. Care Cancer 23, 1513–1522 (2015).

    Article  PubMed  Google Scholar 

  56. Montassier, E. et al. 16S rRNA gene pyrosequencing reveals shift in patient faecal microbiota during high-dose chemotherapy as conditioning regimen for bone marrow transplantation. Microb. Ecol. 67, 690–699 (2014).

    Article  CAS  PubMed  Google Scholar 

  57. van Vliet, M. J. et al. Chemotherapy treatment in pediatric patients with acute myeloid leukemia receiving antimicrobial prophylaxis leads to a relative increase of colonization with potentially pathogenic bacteria in the gut. Clin. Infect. Dis. 49, 262–270 (2009).

    Article  CAS  PubMed  Google Scholar 

  58. Montassier, E. et al. Chemotherapy-driven dysbiosis in the intestinal microbiome. Aliment. Pharmacol. Ther. 42, 515–528 (2015).

    Article  CAS  PubMed  Google Scholar 

  59. Rooks, M. G. et al. Gut microbiome composition and function in experimental colitis during active disease and treatment-induced remission. ISME J. 8, 1403–1417 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Coley, W. B. The treatment of inoperable sarcoma by bacterial toxins (the mixed toxins of the Streptococcus erysipelas and the Bacillus prodigiosus). Proc. R. Soc. Med. 3, 1–48 (1910).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Lamm, D. et al. Defining progression in nonmuscle invasive bladder cancer: it is time for a new, standard definition. J. Urol. 191, 20–27 (2014).

    Article  PubMed  Google Scholar 

  62. Nicholson, J. K. et al. Metabolic phenotyping in clinical and surgical environments. Nature 491, 384–392 (2012).

    Article  CAS  PubMed  Google Scholar 

  63. Mima, K. et al. Fusobacterium nucleatum in colorectal carcinoma tissue and patient prognosis. Gut 65, 1973–1980 (2015).

    Article  PubMed  CAS  Google Scholar 

  64. Montassier, E. et al. Pretreatment gut microbiome predicts chemotherapy-related bloodstream infection. Genome Med. 8, 49 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Galloway-Pena, J. R. et al. The role of the gastrointestinal microbiome in infectious complications during induction chemotherapy for acute myeloid leukemia. Cancer 122, 2186–2196 (2016).

    Article  CAS  PubMed  Google Scholar 

  66. O'Keefe, S. J. et al. Fat, fibre and cancer risk in African Americans and rural Africans. Nat. Commun. 6, 6342 (2015).

  67. Faber, J. et al. Bacterial translocation is reduced by a specific nutritional combination in mice with chemotherapy-induced neutropenia. J. Nutr. 141, 1292–1298 (2011).

    Article  CAS  PubMed  Google Scholar 

  68. Brandhorst, S. & Longo, V. D. Fasting and caloric restriction in cancer prevention and treatment. Recent Results Cancer Res. 207, 241–266 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Lee, C. et al. Fasting cycles retard growth of tumors and sensitize a range of cancer cell types to chemotherapy. Sci. Transl Med. 4, 124ra27 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Lee, J. D. et al. Synergic chemoprevention with dietary carbohydrate restriction and supplementation of AMPK-activating phytochemicals: the role of SIRT1. Eur. J. Cancer Prev. 25, 54–64 (2016).

    Article  CAS  PubMed  Google Scholar 

  71. Narta, U. K., Kanwar, S. S. & Azmi, W. Pharmacological and clinical evaluation of L-asparaginase in the treatment of leukemia. Crit. Rev. Oncol. Hematol. 61, 208–221 (2007).

    Article  PubMed  Google Scholar 

  72. Jeon, H. et al. Methionine deprivation suppresses triple-negative breast cancer metastasis in vitro and in vivo. Oncotarget 7, 67223–67234 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Maddocks, O. D. et al. Serine starvation induces stress and p53-dependent metabolic remodelling in cancer cells. Nature 493, 542–546 (2013).

    Article  CAS  PubMed  Google Scholar 

  74. Fu, Y. M., Yu, Z. X., Ferrans, V. J. & Meadows, G. G. Tyrosine and phenylalanine restriction induces G0/G1 cell cycle arrest in murine melanoma in vitro and in vivo. Nutr. Cancer 29, 104–113 (1997).

    Article  CAS  PubMed  Google Scholar 

  75. Champ, C. E. et al. Targeting metabolism with a ketogenic diet during the treatment of glioblastoma multiforme. J. Neurooncol. 117, 125–131 (2014).

    Article  CAS  PubMed  Google Scholar 

  76. Withers, S. S. et al. Fasting reduces the incidence of delayed-type vomiting associated with doxorubicin treatment in dogs with lymphoma. Transl Oncol. 7, 377–383 (2014).

    Article  PubMed Central  Google Scholar 

  77. Huisman, S. A. et al. Fasting protects against the side effects of irinotecan but preserves its anti-tumor effect in Apc15lox mutant mice. Cell Cycle 14, 2333–2339 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Yun, T. K. Panax ginseng — a non-organ-specific cancer preventive? Lancet Oncol. 2, 49–55 (2001).

    Article  CAS  PubMed  Google Scholar 

  79. Wang, C. Z. et al. Protopanaxadiol, an active ginseng metabolite, significantly enhances the effects of fluorouracil on colon cancer. Nutrients 7, 799–814 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Wang, C. Z. et al. Notoginseng enhances anti-cancer effect of 5-fluorouracil on human colorectal cancer cells. Cancer Chemother. Pharmacol. 60, 69–79 (2007).

    Article  CAS  PubMed  Google Scholar 

  81. Li, X. L. et al. Panaxadiol, a purified ginseng component, enhances the anti-cancer effects of 5-fluorouracil in human colorectal cancer cells. Cancer Chemother. Pharmacol. 64, 1097–1104 (2009).

    Article  CAS  PubMed  Google Scholar 

  82. Selma, M. V., Beltran, D., Garcia-Villalba, R., Espin, J. C. & Tomas-Barberan, F. A. Description of urolithin production capacity from ellagic acid of two human intestinal Gordonibacter species. Food Funct. 5, 1779–1784 (2014).

    Article  CAS  PubMed  Google Scholar 

  83. Gonzalez-Sarrias, A. et al. Phase-II metabolism limits the antiproliferative activity of urolithins in human colon cancer cells. Eur. J. Nutr. 53, 853–864 (2014).

    Article  CAS  PubMed  Google Scholar 

  84. Gonzalez-Sarrias, A., Tome-Carneiro, J., Bellesia, A., Tomas-Barberan, F. A. & Espin, J. C. The ellagic acid-derived gut microbiota metabolite, urolithin A, potentiates the anticancer effects of 5-fluorouracil chemotherapy on human colon cancer cells. Food Funct. 6, 1460–1469 (2015).

    Article  CAS  PubMed  Google Scholar 

  85. Tang, Q. et al. Dietary squid ink polysaccharides ameliorated the intestinal microflora dysfunction in mice undergoing chemotherapy. Food Funct. 5, 2529–2535 (2014).

    Article  CAS  PubMed  Google Scholar 

  86. Redman, M. G., Ward, E. J. & Phillips, R. S. The efficacy and safety of probiotics in people with cancer: a systematic review. Ann. Oncol. 25, 1919–1929 (2014).

    Article  CAS  PubMed  Google Scholar 

  87. Bowen, J. M. et al. VSL#3 probiotic treatment reduces chemotherapy-induced diarrhea and weight loss. Cancer Biol. Ther. 6, 1449–1454 (2007).

    Article  PubMed  Google Scholar 

  88. Mauger, C. A., Butler, R. N., Geier, M. S., Tooley, K. L. & Howarth, G. S. Probiotic effects on 5-fluorouracil-induced mucositis assessed by the sucrose breath test in rats. Dig. Dis. Sci. 52, 612–619 (2007).

    Article  CAS  PubMed  Google Scholar 

  89. Yeung, C. Y. et al. Amelioration of chemotherapy-induced intestinal mucositis by orally administered probiotics in a mouse model. PLoS ONE 10, e0138746 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Osterlund, P. et al. Lactobacillus supplementation for diarrhoea related to chemotherapy of colorectal cancer: a randomised study. Br. J. Cancer 97, 1028–1034 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Motoori, M. et al. Randomized study of the effect of synbiotics during neoadjuvant chemotherapy on adverse events in esophageal cancer patients. Clin. Nutr. 36, 93–99 (2017).

    Article  PubMed  Google Scholar 

  92. Wada, M. et al. Effects of the enteral administration of Bifidobacterium breve on patients undergoing chemotherapy for pediatric malignancies. Support. Care Cancer 18, 751–759 (2010).

    Article  PubMed  Google Scholar 

  93. Mego, M. et al. Prevention of febrile neutropenia in cancer patients by probiotic strain Enterococcus faecium M-74. Phase II study. Support. Care Cancer 14, 285–290 (2006).

    Article  CAS  PubMed  Google Scholar 

  94. Taper, H. S. & Roberfroid, M. B. Possible adjuvant cancer therapy by two prebiotics — inulin or oligofructose. In Vivo 19, 201–204 (2005).

    CAS  PubMed  Google Scholar 

  95. Taper, H. S. & Roberfroid, M. B. Nontoxic potentiation of cancer chemotherapy by dietary oligofructose or inulin. Nutr. Cancer 38, 1–5 (2000).

    Article  CAS  PubMed  Google Scholar 

  96. Schoener, C. A., Carillo-Conde, B., Hutson, H. N. & Peppas, N. A. An inulin and doxorubicin conjugate for improving cancer therapy. J. Drug Deliv. Sci. Technol. 23, 111–118 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Kim, J. S. et al. Excess risk of Clostridium difficile infection in ovarian cancer is related to exposure to broad-spectrum antibiotics. Support. Care Cancer 21, 3103–3107 (2013).

    Article  PubMed  Google Scholar 

  98. Ochman, H., Lawrence, J. G. & Groisman, E. A. Lateral gene transfer and the nature of bacterial innovation. Nature 405, 299–304 (2000).

    Article  CAS  PubMed  Google Scholar 

  99. Chung, Y. H. & Kim, D. Enhanced TLR4 expression on colon cancer cells after chemotherapy promotes cell survival and epithelial-mesenchymal transition through phosphorylation of GSK3beta. Anticancer Res. 36, 3383–3394 (2016).

    CAS  PubMed  Google Scholar 

  100. Borody, T. J. & Khoruts, A. Fecal microbiota transplantation and emerging applications. Nat. Rev. Gastroenterol. Hepatol. 9, 88–96 (2011).

    Article  CAS  PubMed  Google Scholar 

  101. Kelly, C. P. Fecal microbiota transplantation — an old therapy comes of age. N. Engl. J. Med. 368, 474–475 (2013).

    Article  CAS  PubMed  Google Scholar 

  102. Ratner, M. Seres's pioneering microbiome drug fails mid-stage trial. Nat. Biotechnol. 34, 1004–1005 (2016).

    Article  CAS  PubMed  Google Scholar 

  103. Smith, M. B., Kelly, C. & Alm, E. J. Policy: How to regulate faecal transplants. Nature 506, 290–291 (2014).

    Article  PubMed  Google Scholar 

  104. Yuvaraj, S. et al. E. coli-produced BMP-2 as a chemopreventive strategy for colon cancer: a proof-of-concept study. Gastroenterol. Res. Pract. 2012, 895462 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Din, M. O. et al. Synchronized cycles of bacterial lysis for in vivo delivery. Nature 536, 81–85 (2016). This paper describes how synthetically engineered E. coli deliver a genetically encoded anti-neoplastic cargo in a pulsatile fashion to limit tumour activity.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Kurita, A. et al. Streptomycin alleviates irinotecan-induced delayed-onset diarrhea in rats by a mechanism other than inhibition of beta-glucuronidase activity in intestinal lumen. Cancer Chemother. Pharmacol. 67, 201–213 (2011).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

J.L.A., I.D.W. and J.M.K. researched data for the article. All authors contributed equally to discussion of content, writing and reviewing/editing the manuscript before submission.

Corresponding author

Correspondence to Julian R. Marchesi.

Ethics declarations

Competing interests

J.K.N. is a nonexecutive director for Metabometrix and consultant for Waters Corporation and Nestle Research Centre. The other authors declare no competing interests.

Related links

FURTHER INFORMATION

The Human Microbiome database

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alexander, J., Wilson, I., Teare, J. et al. Gut microbiota modulation of chemotherapy efficacy and toxicity. Nat Rev Gastroenterol Hepatol 14, 356–365 (2017). https://doi.org/10.1038/nrgastro.2017.20

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrgastro.2017.20

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer