Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Hydrophobicity: an ancient damage-associated molecular pattern that initiates innate immune responses

Abstract

It is currently thought that immune responses are initiated by pathogen-associated molecular patterns or by tissue-derived danger/alarm signals. Here, we propose that these two groups of molecules might not be mutually exclusive. Many of them might be part of an evolutionarily ancient alert system in which the hydrophobic portions of biological molecules act, when exposed, as universal damage-associated molecular patterns to initiate repair, remodelling and immunity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Purchase on Springer Link

Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Promiscuity of Toll-like receptor–ligand interactions.
Figure 2: Some of the structures that hydrophobic portions can form in water.
Figure 3: To stimulate or be silent: three destinies of hydrophobic portions.

Similar content being viewed by others

References

  1. Janeway, C. A., Jr. Approaching the asymptote? Evolution and revolution in immunology. Cold Spring Harb. Symp. Quant. Biol. 54, 1–13 (1989).

    Article  CAS  PubMed  Google Scholar 

  2. Matzinger, P. Tolerance, danger, and the extended family. Annu. Rev. Immunol. 12, 991–1045 (1994).

    Article  CAS  PubMed  Google Scholar 

  3. Brightbill, H. D. et al. Host defense mechanisms triggered by microbial lipoproteins through Toll-like receptors. Science 285, 732–736 (1999).

    Article  CAS  PubMed  Google Scholar 

  4. Gallucci, S., Lolkema, M. & Matzinger, P. Natural adjuvants: endogenous activators of dendritic cells. Nature Med. 5, 1249–1255 (1999).

    Article  CAS  PubMed  Google Scholar 

  5. Medzhitov, R. & Janeway, C. A., Jr. Decoding the patterns of self and nonself by the innate immune system. Science 296, 298–300 (2002).

    Article  CAS  PubMed  Google Scholar 

  6. Janeway, C. A., Jr. & Medzhitov, R. Innate immune recognition. Annu. Rev. Immunol. 20, 197–216 (2002).

    Article  CAS  PubMed  Google Scholar 

  7. Termeer, C. et al. Oligosaccharides of hyaluronan activate dendritic cells via toll-like receptor 4. J. Exp. Med. 195, 99–111 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Asea, A. et al. Novel signal transduction pathway utilized by extracellular HSP70: role of toll-like receptor (TLR) 2 and TLR4. J. Biol. Chem. 277, 15028–15034 (2002).

    Article  CAS  PubMed  Google Scholar 

  9. Guillot, L. et al. Cutting edge: the immunostimulatory activity of the lung surfactant protein-A involves Toll-like receptor 4. J. Immunol. 168, 5989–5992 (2002).

    Article  CAS  PubMed  Google Scholar 

  10. Shi, Y., Evans, J. E. & Rock, K. L. Molecular identification of a danger signal that alerts the immune system to dying cells. Nature 425, 516–521 (2003).

    Article  CAS  PubMed  Google Scholar 

  11. Okamura, Y. et al. The extra domain A of fibronectin activates Toll-like receptor 4. J. Biol. Chem. 276, 10229–10233 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. Biragyn, A. et al. Toll-like receptor 4-dependent activation of dendritic cells by β-defensin 2. Science 298, 1025–1029 (2002).

    Article  CAS  PubMed  Google Scholar 

  13. Peitsch, M. C., Tschopp, J., Kress, A. & Isliker, H. Antibody-independent activation of the complement system by mitochondria is mediated by cardiolipin. Biochem. J. 249, 495–500 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bausinger, H. et al. Endotoxin-free heat-shock protein 70 fails to induce APC activation. Eur. J. Immunol. 32, 3708–3713 (2002).

    Article  CAS  PubMed  Google Scholar 

  15. Wallin, R. P. et al. Heat-shock proteins as activators of the innate immune system. Trends Immunol. 23, 130–135 (2002).

    Article  CAS  PubMed  Google Scholar 

  16. Dembic, Z. Immune system protects integrity of tissues. Mol. Immunol. 37, 563–569 (2000).

    Article  CAS  PubMed  Google Scholar 

  17. Wahl, L. M., Shankavaram, U. & Zhang, Y. Role of macrophages in vascular tissue remodelling. Transpl. Immunol. 5, 173–176 (1997).

    Article  CAS  PubMed  Google Scholar 

  18. Takeda, K., Kaisho, T. & Akira, S. Toll-like receptors. Annu. Rev. Immunol. 21, 335–376 (2003).

    Article  CAS  PubMed  Google Scholar 

  19. Sugiyama, T. & Wright, S. D. Soluble CD14 mediates efflux of phospholipids from cells. J. Immunol. 166, 826–831 (2001).

    Article  CAS  PubMed  Google Scholar 

  20. Wang, P. Y. & Munford, R. S. CD14-dependent internalization and metabolism of extracellular phosphatidylinositol by monocytes. J. Biol. Chem. 274, 23235–23241 (1999).

    Article  CAS  PubMed  Google Scholar 

  21. Callahan, M. K. et al. Phosphatidylserine expression and phagocytosis of apoptotic thymocytes during differentiation of monocytic cells. J. Leukoc. Biol. 74, 846–56 (2003).

    Article  CAS  PubMed  Google Scholar 

  22. Stover, A. G. et al. Structure–activity relationship of synthetic Toll-like receptor 4 agonists. J. Biol. Chem. 279, 4440–4449 (2004).

    Article  PubMed  Google Scholar 

  23. Bell, J. K. et al. Leucine-rich repeats and pathogen recognition in Toll-like receptors. Trends Immunol. 24, 528–533 (2003).

    Article  CAS  PubMed  Google Scholar 

  24. Jones, E. Y. MHC class I and class II structures. Curr. Opin. Immunol. 9, 75–79 (1997).

    Article  CAS  PubMed  Google Scholar 

  25. Sinha, N. & Smith-Gill, S. J. Electrostatics in protein binding and function. Curr. Protein Pept. Sci. 3, 601–614 (2002).

    Article  CAS  PubMed  Google Scholar 

  26. Hashimoto, M. et al. Chemical structure and immunobiological activity of lipid A from Prevotella intermedia ATCC 25611 lipopolysaccharide. FEBS Lett. 543, 98–102 (2003).

    Article  CAS  PubMed  Google Scholar 

  27. Steinberg, M. H. & Rodgers, G. P. Pathophysiology of sickle cell disease: role of cellular and genetic modifiers. Semin. Hematol. 38, 299–306 (2001).

    Article  CAS  PubMed  Google Scholar 

  28. Minton, A. P. The influence of macromolecular crowding and macromolecular confinement on biochemical reactions in physiological media. J. Biol. Chem. 276, 10577–10580 (2001).

    Article  CAS  PubMed  Google Scholar 

  29. Agashe, V. R. & Hartl, F. U. Roles of molecular chaperones in cytoplasmic protein folding. Semin. Cell. Dev. Biol. 11, 15–25 (2000).

    Article  CAS  PubMed  Google Scholar 

  30. Ben-Zvi, A. P. & Goloubinoff, P. Mechanisms of disaggregation and refolding of stable protein aggregates by molecular chaperones. J. Struct. Biol. 135, 84–93 (2001).

    Article  CAS  PubMed  Google Scholar 

  31. Glotzer, J. B. et al. Activation of heat-shock response by an adenovirus is essential for virus replication. Nature 407, 207–211 (2000).

    Article  CAS  PubMed  Google Scholar 

  32. Kourie, J. I. & Henry, C. L. Ion channel formation and membrane-linked pathologies of misfolded hydrophobic proteins: the role of dangerous unchaperoned molecules. Clin. Exp. Pharmacol. Physiol. 29, 741–753 (2002).

    Article  CAS  PubMed  Google Scholar 

  33. Kuroki, Y. et al. A novel type of binding specificity to phospholipids for rat mannose-binding proteins isolated from serum and liver. FEBS Lett. 414, 387–392 (1997).

    Article  CAS  PubMed  Google Scholar 

  34. de Beer, M. C. et al. Apolipoprotein A-II modulates the binding and selective lipid uptake of reconstituted high density lipoprotein by scavenger receptor BI. J. Biol. Chem. 276, 15832–15839 (2001).

    Article  CAS  PubMed  Google Scholar 

  35. Vandivier, R. W. et al. Role of surfactant proteins A, D, and C1q in the clearance of apoptotic cells in vivo and in vitro: calreticulin and CD91 as a common collectin receptor complex. J. Immunol. 169, 3978–3986 (2002).

    Article  CAS  PubMed  Google Scholar 

  36. Marcel, Y. L. & Kiss, R. S. Structure–function relationships of apolipoprotein A-I: a flexible protein with dynamic lipid associations. Curr. Opin. Lipidol. 14, 151–157 (2003).

    Article  CAS  PubMed  Google Scholar 

  37. Borst, P., Zelcer, N. & van Helvoort, A. ABC transporters in lipid transport. Biochim. Biophys. Acta 1486, 128–144 (2000).

    Article  CAS  PubMed  Google Scholar 

  38. Inohara, N. & Nunez, G. NODs: intracellular proteins involved in inflammation and apoptosis. Nature Rev. Immunol. 3, 371–382 (2003).

    Article  CAS  Google Scholar 

  39. Krantz, D. D., Zidovetzki, R., Kagan, B. L. & Zipursky, S. L. Amphipathic β structure of a leucine-rich repeat peptide. J. Biol. Chem. 266, 16801–16807 (1991).

    CAS  PubMed  Google Scholar 

  40. Hunter, R., Strickland, F. & Kezdy, F. The adjuvant activity of nonionic block polymer surfactants. I. The role of hydrophile–lipophile balance. J. Immunol. 127, 1244–1250 (1981).

    CAS  PubMed  Google Scholar 

  41. Nishiguchi, M. et al. Mycoplasma fermentans lipoprotein M161Ag-induced cell activation is mediated by Toll-like receptor 2: role of N-terminal hydrophobic portion in its multiple functions. J. Immunol. 166, 2610–2616 (2001).

    Article  CAS  PubMed  Google Scholar 

  42. Kurt-Jones, E. A. et al. Pattern recognition receptors TLR4 and CD14 mediate response to respiratory syncytial virus. Nature Immunol. 1, 398–401 (2000).

    Article  CAS  Google Scholar 

  43. Koka, R. M., Huang, E. & Lieske, J. C. Adhesion of uric acid crystals to the surface of renal epithelial cells. Am. J. Physiol. Renal Physiol. 278, F989–F998 (2000).

    Article  CAS  PubMed  Google Scholar 

  44. Hristova, K., Selsted, M. E. & White, S. H. Critical role of lipid composition in membrane permeabilization by rabbit neutrophil defensins. J. Biol. Chem. 272, 24224–24233 (1997).

    Article  CAS  PubMed  Google Scholar 

  45. Burston, S. G. & Clarke, A. R. Molecular chaperones: physical and mechanistic properties. Essays Biochem. 29, 125–136 (1995).

    CAS  PubMed  Google Scholar 

  46. Stromer, T., Ehrnsperger, M., Gaestel, M. & Buchner, J. Analysis of the interaction of small heat shock proteins with unfolding proteins. J. Biol. Chem. 278, 18015–18021 (2003).

    Article  CAS  PubMed  Google Scholar 

  47. Surin, A. K., Kotova, N. V., Marchenkova, S., Marchenkov, V. V. & Semisotnov, G. V. Monomeric form of the molecular chaperone GroEL: structure, stability, and oligomerization. Bioorg. Khim. 25, 358–364 (1999) (in Russian).

    CAS  PubMed  Google Scholar 

  48. Gorovits, B. M. & Horowitz, P. M. The chaperonin GroEL is destabilized by binding of ADP. J. Biol. Chem. 270, 28551–28556 (1995).

    Article  CAS  PubMed  Google Scholar 

  49. Lapcik, L., Jr, Lapcik, L., De Smedt, S., Demeester, J. & Chabrecek, P. Hyaluronan: preparation, structure, properties, and applications. Chem. Rev. 98, 2663–2684 (1998).

    Article  CAS  PubMed  Google Scholar 

  50. Srimal, S., Surolia, N., Balasubramanian, S. & Surolia, A. Titration calorimetric studies to elucidate the specificity of the interactions of polymyxin B with lipopolysaccharides and lipid A. Biochem. J. 315, 679–686 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Katz, M. et al. Lipid binding and membrane penetration of polymyxin B derivatives studied in a biomimetic vesicle system. Biochem. J. 375, 405–413 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Thorbecke, G. J. & Benacerraf, B. Tolerance in adult rabbits by repeated non-immunogenic doses of bovine serum albumin. Immunology 13, 141–145 (1967).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Golub, E. S. & Weigle, W. O. Studies on the induction of immunologic unresponsiveness. 3. Antigen form and mouse strain variation. J. Immunol. 102, 389–396 (1969).

    CAS  PubMed  Google Scholar 

  54. Reding, M. T. et al. CD4+ T cell response to factor VIII in hemophilia A, acquired hemophilia, and healthy subjects. Thromb. Haemost. 82, 509–515 (1999).

    Article  CAS  PubMed  Google Scholar 

  55. Saenko, E. L., Shima, M. & Sarafanov, A. G. Role of activation of the coagulation factor VIII in interaction with vWf, phospholipid, and functioning within the factor Xase complex. Trends Cardiovasc. Med. 9, 185–192 (1999).

    Article  CAS  PubMed  Google Scholar 

  56. Barrick, J. E. & Roberts, R. W. Sequence analysis of an artificial family of RNA-binding peptides. Protein Sci. 11, 2688–2696 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Heil, F. et al. Species-specific recognition of single-stranded RNA via toll-like receptor 7 and 8. Science 303, 1526–1529 (2004).

    Article  CAS  PubMed  Google Scholar 

  58. Matsumoto, M., Kikkawa, S., Kohase, M., Miyake, K. & Seya, T. Establishment of a monoclonal antibody against human Toll-like receptor 3 that blocks double-stranded RNA-mediated signaling. Biochem. Biophys. Res. Commun. 293, 1364–1369 (2002).

    Article  CAS  PubMed  Google Scholar 

  59. Kishore, U. & Reid, K. B. Structures and functions of mammalian collectins. Results Probl. Cell Differ. 33, 225–248 (2001).

    Article  CAS  PubMed  Google Scholar 

  60. Seifert, P. S. et al. Isolation and characterization of a complement-activating lipid extracted from human atherosclerotic lesions. J. Exp. Med. 172, 547–557 (1990).

    Article  CAS  PubMed  Google Scholar 

  61. Kairies, N. et al. The 2.0-A crystal structure of tachylectin 5A provides evidence for the common origin of the innate immunity and the blood coagulation systems. Proc. Natl Acad. Sci. USA 98, 13519–13524 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Retzinger, G. S., DeAnglis, A. P. & Patuto, S. J. Adsorption of fibrinogen to droplets of liquid hydrophobic phases. Functionality of the bound protein and biological implications. Arterioscler. Thromb. Vasc. Biol. 18, 1948–1957 (1998).

    Article  CAS  PubMed  Google Scholar 

  63. Hailman, E. et al. Lipopolysaccharide (LPS)-binding protein accelerates the binding of LPS to CD14. J. Exp. Med. 179, 269–277 (1994).

    Article  CAS  PubMed  Google Scholar 

  64. Muta, T. & Takeshige, K. Essential roles of CD14 and lipopolysaccharide-binding protein for activation of toll-like receptor (TLR)2 as well as TLR4. Reconstitution of TLR2- and TLR4-activation by distinguishable ligands in LPS preparations. Eur. J. Biochem. 268, 4580–4589 (2001).

    Article  CAS  PubMed  Google Scholar 

  65. Yu, B., Hailman, E. & Wright, S. D. Lipopolysaccharide binding protein and soluble CD14 catalyze exchange of phospholipids. J. Clin. Invest. 99, 315–324 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Gregory, C. D. & Devitt, A. CD14 and apoptosis. Apoptosis 4, 11–20 (1999).

    Article  CAS  PubMed  Google Scholar 

  67. Schlegel, R. A., Callahan, M. K. & Williamson, P. The central role of phosphatidylserine in the phagocytosis of apoptotic thymocytes. Ann. NY Acad. Sci. 926, 217–225 (2000).

    Article  CAS  PubMed  Google Scholar 

  68. van Oss, C. J. Phagocytosis as a surface phenomenon. Annu. Rev. Microbiol. 32, 19–39 (1978).

    Article  CAS  PubMed  Google Scholar 

  69. McEvoy, L., Williamson, P. & Schlegel, R. A. Membrane phospholipid asymmetry as a determinant of erythrocyte recognition by macrophages. Proc. Natl Acad. Sci. USA 83, 3311–3315 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Schlegel, R. A., Krahling, S., Callahan, M. K. & Williamson, P. CD14 is a component of multiple recognition systems used by macrophages to phagocytose apoptotic lymphocytes. Cell Death Differ. 6, 583–592 (1999).

    Article  CAS  PubMed  Google Scholar 

  71. Thompson, D., Pepys, M. B. & Wood, S. P. The physiological structure of human C-reactive protein and its complex with phosphocholine. Structure Fold. Des. 7, 169–177 (1999).

    Article  CAS  PubMed  Google Scholar 

  72. Gershov, D., Kim, S., Brot, N. & Elkon, K. B. C-reactive protein binds to apoptotic cells, protects the cells from assembly of the terminal complement components, and sustains an antiinflammatory innate immune response: implications for systemic autoimmunity. J. Exp. Med. 192, 1353–1364 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Platt, N., da Silva, R. P. & Gordon, S. Class A scavenger receptors and the phagocytosis of apoptotic cells. Immunol. Lett. 65, 15–19 (1999).

    Article  CAS  PubMed  Google Scholar 

  74. Platt, N. & Gordon, S. Is the class A macrophage scavenger receptor (SR-A) multifunctional? The mouse's tale. J. Clin. Invest. 108, 649–654 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Janabi, M. et al. Oxidized LDL-induced NF-κB activation and subsequent expression of proinflammatory genes are defective in monocyte-derived macrophages from CD36-deficient patients. Arterioscler. Thromb. Vasc. Biol. 20, 1953–1960 (2000).

    Article  CAS  PubMed  Google Scholar 

  76. Krieger, M. Molecular flypaper and atherosclerosis: structure of the macrophage scavenger receptor. Trends Biochem. Sci. 17, 141–146 (1992).

    Article  CAS  PubMed  Google Scholar 

  77. Coraci, I. S. et al. CD36, a class B scavenger receptor, is expressed on microglia in Alzheimer's disease brains and can mediate production of reactive oxygen species in response to β-amyloid fibrils. Am. J. Pathol. 160, 101–112 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Terpstra, V., Bird, D. A. & Steinberg, D. Evidence that the lipid moiety of oxidized low density lipoprotein plays a role in its interaction with macrophage receptors. Proc. Natl Acad. Sci. USA 95, 1806–1811 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Rutschmann, S., Kilinc, A. & Ferrandon, D. Cutting edge: the toll pathway is required for resistance to Gram-positive bacterial infections in Drosophila. J. Immunol. 168, 1542–1546 (2002).

    Article  CAS  PubMed  Google Scholar 

  80. Kiechl, S., Wiedermann, C. J. & Willeit, J. Toll-like receptor 4 and atherogenesis. Ann. Med. 35, 164–171 (2003).

    Article  CAS  PubMed  Google Scholar 

  81. Muta, T. & Iwanaga, S. The role of hemolymph coagulation in innate immunity. Curr. Opin. Immunol. 8, 41–47 (1996).

    Article  CAS  PubMed  Google Scholar 

  82. Haziot, A. et al. Resistance to endotoxin shock and reduced dissemination of Gram-negative bacteria in CD14-deficient mice. Immunity 4, 407–414 (1996).

    Article  CAS  PubMed  Google Scholar 

  83. Yamada, Y., Doi, T., Hamakubo, T. & Kodama, T. Scavenger receptor family proteins: roles for atherosclerosis, host defence and disorders of the central nervous system. Cell. Mol. Life Sci. 54, 628–640 (1998).

    Article  CAS  PubMed  Google Scholar 

  84. Urban, B. C. et al. Plasmodium falciparum-infected erythrocytes modulate the maturation of dendritic cells. Nature 400, 73–77 (1999).

    Article  CAS  PubMed  Google Scholar 

  85. Finney, J. L. The Structural Basis of the Hydrophobic Interaction (ed. Bellissent-Funel, M.-C.) (IOS press, 1999).

    Google Scholar 

  86. Berezovskyi, I. N. & Trifono, E. Protein structure and folding: a new start. J. Biomol. Struct. Dyn. 19, 397–403 (2001).

    Article  Google Scholar 

  87. Eisenberg, D. & McLachlan, A. D. Solvation energy in protein folding and binding. Nature 319, 199–203 (1986).

    Article  CAS  PubMed  Google Scholar 

  88. Borsos, T. Immune complex mediated activation of the classical complement pathway. Behring Inst. Mitt. 84, 93–101 (1989).

    CAS  Google Scholar 

  89. Storrs, S. B., Kolb, W. P. & Olson, M. S. C1q binding and C1 activation by various isolated cellular membranes. J. Immunol. 131, 416–422 (1983).

    CAS  PubMed  Google Scholar 

  90. Martin, J. Protein folding assisted by the GroEL/GroES chaperonin system. Biochemistry (Mosc) 63, 374–381 (1998).

    CAS  Google Scholar 

  91. Molina, A. & Garcia-Olmedo, F. Developmental and pathogen-induced expression of three barley genes encoding lipid transfer proteins. Plant J. 4, 983–991 (1993).

    Article  CAS  PubMed  Google Scholar 

  92. Guiderdoni, E. et al. Inducibility by pathogen attack and developmental regulation of the rice Ltp1 gene. Plant Mol. Biol. 49, 683–699 (2002).

    Article  CAS  PubMed  Google Scholar 

  93. Bonas, U. & Lahaye, T. Plant disease resistance triggered by pathogen-derived molecules: refined models of specific recognition. Curr. Opin. Microbiol. 5, 44–50 (2002).

    Article  CAS  PubMed  Google Scholar 

  94. Niere, M., Dettloff, M., Maier, T., Ziegler, M. & Wiesner, A. Insect immune activation by apolipophorin III is correlated with the lipid-binding properties of this protein. Biochemistry 40, 11502–11508 (2001).

    Article  CAS  PubMed  Google Scholar 

  95. Bergner, A. et al. Crystal structure of a coagulogen, the clotting protein from horseshoe crab: a structural homologue of nerve growth factor. EMBO J. 15, 6789–6797 (1996).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Zhou, D. et al. Editing of Cd1d-bound lipid antigens by endosomal lipid transfer proteins. Science 303, 523–527 (2004).

    Article  CAS  PubMed  Google Scholar 

  97. Verjans, G. M., van Hagen, P. M., van der Kooi, A., Osterhaus, A. D. & Baarsma, G. S. Vγ9Vδ2 T cells recovered from eyes of patients with Behcet's disease recognize non-peptide prenyl pyrophosphate antigens. J. Neuroimmunol. 130, 46–54 (2002).

    Article  CAS  PubMed  Google Scholar 

  98. Vance, D. E. & Van den Bosch, H. Cholesterol in the year 2000. Biochim. Biophys. Acta 1529, 1–8 (2000).

    Article  CAS  PubMed  Google Scholar 

  99. Neuhaus, F. C. & Baddiley, J. A continuum of anionic charge: structures and functions of D-alanyl-teichoic acids in gram-positive bacteria. Microbiol. Mol. Biol. Rev. 67, 686–723 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Smith, K. D. et al. Toll-like receptor 5 recognizes a conserved site on flagellin required for protofilament formation and bacterial motility. Nature Immunol. 4, 1247–1253 (2003).

    Article  CAS  Google Scholar 

  101. Cheng, V. C. et al. Clinical spectrum of paradoxical deterioration during antituberculosis therapy in non-HIV-infected patients. Eur. J. Clin. Microbiol. Infect. Dis. 21, 803–809 (2002).

    Article  CAS  PubMed  Google Scholar 

  102. Ofori, M. F. et al. Malaria-induced acquisition of antibodies to Plasmodium falciparum variant surface antigens. Infect. Immun. 70, 2982–2988 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Lawrence, T., Willoughby, D. A. & Gilroy, D. W. Anti-inflammatory lipid mediators and insights into the resolution of inflammation. Nature Rev. Immunol. 2, 787–795 (2002).

    Article  CAS  Google Scholar 

  104. Golenbock, D. T., Hampton, R. Y., Qureshi, N., Takayama, K. & Raetz, C. R. Lipid A-like molecules that antagonize the effects of endotoxins on human monocytes. J. Biol. Chem. 266, 19490–19498 (1991).

    CAS  PubMed  Google Scholar 

  105. Schromm, A. B. et al. Biological activities of lipopolysaccharides are determined by the shape of their lipid A portion. Eur. J. Biochem. 267, 2008–2013 (2000).

    Article  CAS  PubMed  Google Scholar 

  106. Brandenburg, K. et al. Influence of the supramolecular structure of free lipid A on its biological activity. Eur. J. Biochem. 218, 555–563 (1993).

    Article  CAS  PubMed  Google Scholar 

  107. Seydel, U., Brandenburg, K., Koch, M. H. & Rietschel, E. T. Supramolecular structure of lipopolysaccharide and free lipid A under physiological conditions as determined by synchrotron small-angle X-ray diffraction. Eur. J. Biochem. 186, 325–332 (1989).

    Article  CAS  PubMed  Google Scholar 

  108. Seydel, U., Oikawa, M., Fukase, K., Kusumoto, S. & Brandenburg, K. Intrinsic conformation of lipid A is responsible for agonistic and antagonistic activity. Eur. J. Biochem. 267, 3032–3039 (2000).

    Article  CAS  PubMed  Google Scholar 

  109. Seydel, U. et al. The generalized endotoxic principle. Eur. J. Immunol. 33, 1586–1592 (2003).

    Article  CAS  PubMed  Google Scholar 

  110. Hofmann, A. F. & Roda, A. Physicochemical properties of bile acids and their relationship to biological properties: an overview of the problem. J. Lipid Res. 25, 1477–1489 (1984).

    CAS  PubMed  Google Scholar 

  111. Pison, U., Max, M., Neuendank, A., Weissbach, S. & Pietschmann, S. Host defence capacities of pulmonary surfactant: evidence for 'non-surfactant' functions of the surfactant system. Eur. J. Clin. Invest. 24, 586–599 (1994).

    Article  CAS  PubMed  Google Scholar 

  112. Hailman, E., Albers, J. J., Wolfbauer, G., Tu, A. Y. & Wright, S. D. Neutralization and transfer of lipopolysaccharide by phospholipid transfer protein. J. Biol. Chem. 271, 12172–12178 (1996).

    Article  CAS  PubMed  Google Scholar 

  113. Vreugdenhil, A. C. et al. Lipopolysaccharide (LPS)-binding protein mediates LPS detoxification by chylomicrons. J. Immunol. 170, 1399–1405 (2003).

    Article  CAS  PubMed  Google Scholar 

  114. Kasravi, F. B., Brecht, W. J., Weisgraber, K. H. & Harris, H. W. Induction of cytokine tolerance requires internalization of chylomicron-bound LPS into hepatocytes. J. Surg. Res. 115, 303–309 (2003).

    Article  CAS  PubMed  Google Scholar 

  115. Henson, P. M., Bratton, D. L. & Fadok, V. A. The phosphatidylserine receptor: a crucial molecular switch? Nature Rev. Mol. Cell Biol. 2, 627–633 (2001).

    Article  CAS  Google Scholar 

  116. Vassiliou, E., Jing, H. & Ganea, D. Prostaglandin E2 inhibits TNF production in murine bone marrow-derived dendritic cells. Cell. Immunol. 223, 120–132 (2003).

    Article  CAS  PubMed  Google Scholar 

  117. Angeli, V. et al. Peroxisome proliferator-activated receptor γ inhibits the migration of dendritic cells: consequences for the immune response. J. Immunol. 170, 5295–5301 (2003).

    Article  CAS  PubMed  Google Scholar 

  118. Migita, H., Satozawa, N., Lin, J. H., Morser, J. & Kawai, K. RORα1 and RORα4 suppress TNF-α-induced VCAM-1 and ICAM-1 expression in human endothelial cells. FEBS Lett. 557, 269–274 (2004).

    Article  CAS  PubMed  Google Scholar 

  119. Sinclair, N. R. & Anderson, C. C. Co-stimulation and co-inhibition: equal partners in regulation. Scand. J. Immunol. 43, 597–603 (1996).

    Article  CAS  PubMed  Google Scholar 

  120. McNab, R. et al. Cell wall-anchored CshA polypeptide (259 kilodaltons) in Streptococcus gordonii forms surface fibrils that confer hydrophobic and adhesive properties. J. Bacteriol. 181, 3087–3095 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Ofek, I. & Doyle, R. J. Bacterial Adhesion to Cells and Tissues (Chapman and Hall, London/New York, 1994).

    Book  Google Scholar 

  122. Cvitkovitch, D. G., Li, Y. H. & Ellen, R. P. Quorum sensing and biofilm formation in Streptococcal infections. J. Clin. Invest. 112, 1626–1632 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Chill, J. H., Quadt, S. R., Levy, R., Schreiber, G. & Anglister, J. The human type I interferon receptor: NMR structure reveals the molecular basis of ligand binding. Structure (Camb) 11, 791–802 (2003).

    Article  CAS  Google Scholar 

  124. Zhao, X., Singh, M., Malashkevich, V. N. & Kim, P. S. Structural characterization of the human respiratory syncytial virus fusion protein core. Proc. Natl Acad. Sci. USA 97, 14172–14177 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Sauer, F. G. et al. Structural basis of chaperone function and pilus biogenesis. Science 285, 1058–1061 (1999).

    Article  CAS  PubMed  Google Scholar 

  126. Braig, K., Adams, P. D. & Brunger, A. T. Conformational variability in the refined structure of the chaperonin GroEL at 2.8 A resolution. Nature Struct. Biol. 2, 1083–1094 (1995).

    Article  CAS  PubMed  Google Scholar 

  127. Schwarz, U. S. Phase behavior of amphiphilic systems. Acta Physica Polonica B 29, 1815–1826 (1998).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seung-Yong Seong.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Related links

Related links

DATABASES

Entrez Gene

CD14

CD36

IFN-α

TLR2

TLR3

TLR4

TLR5

TLR7

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seong, SY., Matzinger, P. Hydrophobicity: an ancient damage-associated molecular pattern that initiates innate immune responses. Nat Rev Immunol 4, 469–478 (2004). https://doi.org/10.1038/nri1372

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri1372

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing