Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The Drosophila systemic immune response: sensing and signalling during bacterial and fungal infections

Key Points

  • A defining feature of insect innate immunity is the existence of an efficient systemic humoral immune response that fights off microbial infections alongside cellular immune responses. This response relies on the inducible synthesis and release of potent antimicrobial peptides in the body cavity (haemocoele).

  • Two distinct pathways control the expression of genes that encode antibacterial and/or antifungal peptides. The Toll pathway is required for the resistance against fungi and some Gram-positive bacteria, whereas the immune deficiency (IMD) pathway mediates resistance against most Gram-negative bacterial strains.

  • Activation of the Toll or IMD pathways by bacteria relies on the detection of their peptidoglycan by pattern-recognition receptors (PRRs) belonging to the peptidoglycan-recognition protein (PGRP) family. PGRPs discriminate between lysine-type and diaminopimelic acid (DAP)-type peptidoglycans, and activate accordingly either the Toll or the IMD pathway.

  • A second family of PRRs (known as Gram-negative binding proteins (GNBPs) or β-glucan recognition proteins (βGRPs)) is involved in the detection of bacterial and fungal infections for Toll pathway activation. GNBP1 is required together with PGRPs for sensing some Gram-positive bacterial strains, whereas GNBP3 detects fungal β-(1,3)-glucans.

  • The detection of microbial infection in flies does not solely rely on PRRs. A fungal virulence factor, the PR1 protease, triggers Toll pathway activation in parallel to PRRs.

  • The Toll and IMD signalling pathways activate distinct members of the nuclear factor-κB (NF-κB) family in flies. These pathways are evolutionary ancient and evoke respectively the Toll-like receptor (TLR)/interleukin-1 receptor and the tumour-necrosis factor (TNF) signalling pathways that have a pivotal role in mammalian innate immunity.

Abstract

A hallmark of the potent, multifaceted antimicrobial defence of Drosophila melanogaster is the challenge-induced synthesis of several families of antimicrobial peptides by cells in the fat body. The basic mechanisms of recognition of various types of microbial infections by the adult fly are now understood, often in great detail. We have further gained valuable insight into the infection-induced gene reprogramming by nuclear factor-κB (NF-κB) family members under the dependence of complex intracellular signalling cascades. The striking parallels between the adult fly response and mammalian innate immune defences described below point to a common ancestry and validate the relevance of the fly defence as a paradigm for innate immunity.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Innate immune receptors in Drosophila melanogaster.
Figure 2: Molecular basis for the differential recognition of microbial structures.
Figure 3: The Toll pathway in adult Drosophila melanogaster.
Figure 4: The IMD pathway in Drosophila melanogaster.

Similar content being viewed by others

References

  1. Steiner, H., Hultmark, D., Engström, A., Bennich, H. & Boman, H. G. Sequence and specificity of two antibacterial proteins involved in insect immunity. Nature 292, 246–248 (1981).

    CAS  PubMed  Google Scholar 

  2. Bulet, P., Hetru, C., Dimarcq, J. L. & Hoffmann, D. Antimicrobial peptides in insects; structure and function. Dev. Comp. Immunol. 23, 329–344 (1999).

    CAS  PubMed  Google Scholar 

  3. Lemaitre, B., Nicolas, E., Michaut, L., Reichhart, J. M. & Hoffmann, J. A. The dorsoventral regulatory gene cassette spätzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell 86, 973–983 (1996). A seminal study that demonstrates an essential role of the Toll pathway in the antifungal host response.

    CAS  PubMed  Google Scholar 

  4. Moussian, B. & Roth, S. Dorsoventral axis formation in the Drosophila embryo — shaping and transducing a morphogen gradient. Curr. Biol. 15, R887–R899 (2005).

    CAS  PubMed  Google Scholar 

  5. Hoffmann, J. A. The immune response of Drosophila. Nature 426, 33–38 (2003).

    CAS  PubMed  Google Scholar 

  6. Yoshida, H., Ochiai, M. & Ashida, M. β1,3-glucan receptor and peptidoglycan receptor are present as separate entities within insect prophenoloxidase activating system. Biochem. Biophys. Res. Commun. 141, 1177–1184 (1986).

    CAS  PubMed  Google Scholar 

  7. Leulier, F. et al. The Drosophila immune system detects bacteria through specific peptidoglycan recognition. Nature Immunol. 4, 478–484 (2003).

    CAS  Google Scholar 

  8. Kaneko, T. et al. Monomeric and polymeric gram-negative peptidoglycan but not purified LPS stimulate the Drosophila IMD pathway. Immunity 20, 637–649 (2004). References 7 and 8 show that PGNs induce the systemic immune response.

    Article  CAS  PubMed  Google Scholar 

  9. Gottar, M. et al. Dual detection of fungal infections in Drosophila via recognition of glucans and sensing of virulence factors. Cell 127, 1425–1437 (2006). This study shows that the fly relies both on PRRs and danger signals to detect infections.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Lemaitre, B., Reichhart, J. M. & Hoffmann, J. A. Drosophila host defense: differential display of antimicrobial peptide genes after infection by various classes of microorganisms. Proc. Natl Acad. Sci. USA 94, 14614–14619 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Werner, T. et al. A family of peptidoglycan recognition proteins in the fruit fly Drosophila melanogaster. Proc. Natl Acad. Sci. USA 97, 13772–13777 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Mellroth, P., Karlsson, J. & Steiner, H. A scavenger function for a Drosophila peptidoglycan recognition protein. J. Biol. Chem. 278, 7059–7064 (2003).

    CAS  PubMed  Google Scholar 

  13. Mellroth, P. & Steiner, H. PGRP-SB1: an N-acetylmuramoyl L-alanine amidase with antibacterial activity. Biochem. Biophys. Res. Commun. 350, 994–999 (2006).

    CAS  PubMed  Google Scholar 

  14. Kim, M. S., Byun, M. & Oh, B. H. Crystal structure of peptidoglycan recognition protein LB from Drosophila melanogaster. Nature Immunol. 4, 787–793 (2003).

    CAS  Google Scholar 

  15. Gottar, M. et al. The Drosophila immune response against Gram-negative bacteria is mediated by a peptidoglycan recognition protein. Nature 416, 640–644 (2002).

    CAS  PubMed  Google Scholar 

  16. Choe, K. M., Werner, T., Stoven, S., Hultmark, D. & Anderson, K. V. Requirement for a peptidoglycan recognition protein (PGRP) in Relish activation and antibacterial immune responses in Drosophila. Science 296, 359–362 (2002).

    CAS  PubMed  Google Scholar 

  17. Ramet, M., Manfruelli, P., Pearson, A., Mathey-Prevot, B. & Ezekowitz, R. A. Functional genomic analysis of phagocytosis and identification of a Drosophila receptor for E. coli. Nature 416, 644–648 (2002). References 15–17 report the identification of PGRP-LC as the receptor of the IMD pathway.

    Google Scholar 

  18. Takehana, A. et al. Overexpression of a pattern-recognition receptor, peptidoglycan-recognition protein-LE, activates imd/relish-mediated antibacterial defense and the prophenoloxidase cascade in Drosophila larvae. Proc. Natl Acad. Sci. USA 99, 13705–13710 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Takehana, A. et al. Peptidoglycan recognition protein (PGRP)-LE and PGRP-LC act synergistically in Drosophila immunity. EMBO J. 23, 4690–4700 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Kaneko, T. et al. PGRP-LC and PGRP-LE have essential yet distinct functions in the Drosophila immune response to monomeric DAP-type peptidoglycan. Nature Immunol. 7, 715–723 (2006). This work documents a possible role for PGRP-LE as an intracellular receptor.

    CAS  Google Scholar 

  21. Wu, L. P., Choe, K. M., Lu, Y. & Anderson, K. V. Drosophila immunity: genes on the third chromosome required for the response to bacterial infection. Genetics 159, 189–199 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Stenbak, C. R. et al. Peptidoglycan molecular requirements allowing detection by the Drosophila immune deficiency pathway. J. Immunol. 173, 7339–7348 (2004).

    CAS  PubMed  Google Scholar 

  23. Mellroth, P. et al. Ligand-induced dimerization of Drosophila peptidoglycan recognition proteins in vitro. Proc. Natl Acad. Sci. USA 102, 6455–6460 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Chang, C. I. et al. Structure of the ectodomain of Drosophila peptidoglycan-recognition protein LCa suggests a molecular mechanism for pattern recognition. Proc. Natl Acad. Sci. USA 102, 10279–10284 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Swaminathan, C. P. et al. Dual strategies for peptidoglycan discrimination by peptidoglycan recognition proteins (PGRPs). Proc. Natl Acad. Sci. USA 103, 684–689 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Lim, J. H. et al. Structural basis for preferential recognition of diaminopimelic acid-type peptidoglycan by a subset of peptidoglycan recognition proteins. J. Biol. Chem. 281, 8286–8295 (2006).

    CAS  PubMed  Google Scholar 

  27. Chang, C. I., Chelliah, Y., Borek, D., Mengin-Lecreulx, D. & Deisenhofer, J. Structure of tracheal cytotoxin in complex with a heterodimeric pattern-recognition receptor. Science 311, 1761–1764 (2006). References 26 and 27 report the molecular basis for the discrimination between DAP-type and Lys-type PGNs by the PGRP-LC and PGRP-LE receptors.

    CAS  PubMed  Google Scholar 

  28. Zaidman-Remy, A. et al. The Drosophila amidase PGRP-LB modulates the immune response to bacterial infection. Immunity 24, 463–473 (2006).

    CAS  PubMed  Google Scholar 

  29. Bischoff, V. et al. Downregulation of the Drosophila immune response by peptidoglycan-recognition proteins SC1 and SC2. PLoS Pathog. 2, e14 (2006).

    PubMed  PubMed Central  Google Scholar 

  30. De Gregorio, E., Spellman, P. T., Tzou, P., Rubin, G. M. & Lemaitre, B. The Toll and Imd pathways are the major regulators of the immune response in Drosophila. EMBO J. 21, 2568–2579 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Brennan, C. A., Delaney, J. R., Schneider, D. S. & Anderson, K. V. Psidin is required in Drosophila blood cells for both phagocytic degradation and immune activation of the fat body. Curr. Biol. 17, 67–72 (2007).

    CAS  PubMed  Google Scholar 

  32. Michel, T., Reichhart, J., Hoffmann, J. A. & Royet, J. Drosophila Toll is activated by Gram-positive bacteria through a circulating peptidoglycan recognition protein. Nature 414, 756–759 (2001). In this study genetic evidence is provided that PGRP-SA acts as a PRR for the detection of Gram-positive bacteria.

    CAS  PubMed  Google Scholar 

  33. Bischoff, V. et al. Function of the Drosophila pattern-recognition receptor PGRP-SD in the detection of Gram-positive bacteria. Nature Immunol. 5, 1175–1180 (2004).

    CAS  Google Scholar 

  34. Gobert, V. et al. Dual activation of the Drosophila Toll pathway by two pattern recognition receptors. Science 302, 2126–2130 (2003). References34 and 38 document the role of GNBP1 in sensing Gram-positive bacterial infections.

    CAS  PubMed  Google Scholar 

  35. Lee, W. J., Lee, J. D., Kravchenko, V. V., Ulevitch, R. J. & Brey, P. T. Purification and molecular cloning of an inducible gram-negative bacteria-binding protein from the silkworm, Bombyx mori. Proc. Natl Acad. Sci. USA 93, 7888–7893 (1996).

    CAS  PubMed  Google Scholar 

  36. Ochiai, M. & Ashida, M. A pattern-recognition protein for β-1,3-glucan. The binding domain and the cDNA cloning of β-1,3-glucan recognition protein from the silkworm, Bombyx mori. J. Biol. Chem. 275, 4995–5002 (2000).

    CAS  PubMed  Google Scholar 

  37. Chang, C. I. et al. A Drosophila pattern recognition receptor contains a peptidoglycan docking groove and unusual l, d-carboxypeptidase activity. PLoS Biol. 2, e277 (2004).

    PubMed  PubMed Central  Google Scholar 

  38. Wang, L. et al. Sensing of Gram-positive bacteria in Drosophila: GNBP1 is needed to process and present peptidoglycan to PGRP-SA. Embo J. 25, 5005–5014 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Filipe, S. R., Tomasz, A. & Ligoxygakis, P. Requirements of peptidoglycan structure that allow detection by the Drosophila Toll pathway. EMBO Rep. 6, 327–333 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Rutschmann, S. et al. The Rel protein DIF mediates the antifungal, but not the antibacterial, response in Drosophila. Immunity 12, 569–580 (2000).

    CAS  PubMed  Google Scholar 

  41. Ligoxygakis, P., Pelte, N., Hoffmann, J. A. & Reichhart, J. M. Activation of Drosophila Toll during fungal infection by a blood serine protease. Science 297, 114–116 (2002).

    CAS  PubMed  Google Scholar 

  42. Jones, J. D. & Dangl, J. L. The plant immune system. Nature 444, 323–329 (2006).

    CAS  PubMed  Google Scholar 

  43. Gay, N. J. & Gangloff, M. Structure and function of toll receptors and their ligands. Annu. Rev. Biochem. 76, 141–165 (2007).

    CAS  PubMed  Google Scholar 

  44. Weber, A. N. et al. Binding of the Drosophila cytokine Spätzle to Toll is direct and establishes signaling. Nature Immunol. 4, 794–800 (2003).

    CAS  Google Scholar 

  45. Hu, X., Yagi, Y., Tanji, T., Zhou, S. & Ip, Y. T. Multimerization and interaction of Toll and Spätzle in Drosophila. Proc. Natl Acad. Sci. USA 101, 9369–9374 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Irving, P. et al. New insights into Drosophila larval haemocyte functions through genome-wide analysis. Cell. Microbiol. 7, 335–350 (2005).

    CAS  PubMed  Google Scholar 

  47. Tauszig, S., Jouanguy, E., Hoffmann, J. A. & Imler, J. L. Toll-related receptors and the control of antimicrobial peptide expression in Drosophila. Proc. Natl Acad. Sci. USA 97, 10520–10525 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Parker, J. S., Mizuguchi, K. & Gay, N. J. A family of proteins related to Spätzle, the toll receptor ligand, are encoded in the Drosophila genome. Proteins 45, 71–80 (2001).

    CAS  PubMed  Google Scholar 

  49. Kambris, Z., Hoffmann, J. A., Imler, J. L. & Capovilla, M. Tissue and stage-specific expression of the Tolls in Drosophila embryos. Gene Expr. Patterns 2, 311–317 (2002).

    CAS  PubMed  Google Scholar 

  50. Rast, J. P., Smith, L. C., Loza-Coll., M., Hibino, T. & Litman, G. W. Genomic insights into the immune system of the sea urchin. Science 314, 952–956 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. DeLotto, Y. & DeLotto, R. Proteolytic processing of the Drosophila Spätzle protein by easter generates a dimeric NGF-like molecule with ventralising activity. Mech. Dev. 72, 141–148 (1998).

    CAS  PubMed  Google Scholar 

  52. Jang, I. H. et al. A Spätzle-processing enzyme required for toll signaling activation in Drosophila innate immunity. Dev. Cell 10, 45–55 (2006). This article identifies the protease that cleaves Spätzle into an active Toll ligand during the immune response.

    CAS  PubMed  Google Scholar 

  53. Kambris, Z. et al. Drosophila immunity: a large-scale in vivo RNAi screen identifies five serine proteases required for Toll activation. Curr. Biol. 16, 808–813 (2006).

    CAS  PubMed  Google Scholar 

  54. Meng, X., Khanuja, B. S. & Ip, Y. T. Toll receptor-mediated Drosophila immune response requires Dif, an NF-κB factor. Genes Dev. 13, 792–797 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Tauszig-Delamasure, S., Bilak, H., Capovilla, M., Hoffmann, J. A. & Imler, J. L. Drosophila MyD88 is required for the response to fungal and Gram-positive bacterial infections. Nature Immunol. 3, 91–97 (2002).

    CAS  Google Scholar 

  56. Sun, H., Towb, P., Chiem, D. N., Foster, B. A. & Wasserman, S. A. Regulated assembly of the Toll signaling complex drives Drosophila dorsoventral patterning. EMBO J. 23, 100–110 (2004).

    CAS  PubMed  Google Scholar 

  57. Chen, L. Y. et al. Weckle is a zinc finger adaptor of the Toll pathway in dorsoventral patterning of the Drosophila embryo. Curr. Biol. 16, 1183–1193 (2006).

    CAS  PubMed  Google Scholar 

  58. Belvin, M. P., Jin, Y. & Anderson, K. V. Cactus protein degradation mediates Drosophila dorsal-ventral signaling. Genes Dev. 9, 783–793 (1995).

    CAS  PubMed  Google Scholar 

  59. Fernandez, N. Q., Grosshans, J., Goltz, J. S. & Stein, D. Separable and redundant regulatory determinants in Cactus mediate its dorsal group dependent degradation. Development 128, 2963–2974 (2001).

    CAS  PubMed  Google Scholar 

  60. Lu, Y., Wu, L. P. & Anderson, K. V. The antibacterial arm of the Drosophila innate immune response requires an IκB kinase. Genes Dev. 15, 104–110 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Rutschmann, S. et al. Role of Drosophila IKKγ in a Toll-independent antibacterial immune response. Nature Immunol. 1, 342–347 (2000).

    CAS  Google Scholar 

  62. Edwards, D. N., Towb, P. & Wasserman, S. A. An activity-dependent network of interactions links the Rel protein Dorsal with its cytoplasmic regulators. Development 124, 3855–3864 (1997).

    CAS  PubMed  Google Scholar 

  63. Grosshans, J., Bergmann, A., Haffter, P. & Nüsslein-Volhard, C. Activation of the kinase Pelle by Tube in the dorsoventral signal transduction pathway of Drosophila embryo. Nature 372, 563–566 (1994).

    CAS  PubMed  Google Scholar 

  64. Yang, J. & Steward, R. A multimeric complex and the nuclear targeting of the Drosophila Rel protein Dorsal. Proc. Natl Acad. Sci. USA 94, 14524–14529 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Kawai, T. & Akira, S. Innate immune recognition of viral infection. Nature Immunol. 7, 131–137 (2006).

    CAS  Google Scholar 

  66. Drier, E. A., Govind, S. & Steward, R. Cactus-independent regulation of Dorsal nuclear import by the ventral signal. Curr. Biol. 10, 23–26 (2000).

    CAS  PubMed  Google Scholar 

  67. Ganguly, A., Jiang, J. & Ip, Y. T. Drosophila WntD is a target and an inhibitor of the Dorsal/Twist/Snail network in the gastrulating embryo. Development 132, 3419–3429 (2005).

    CAS  PubMed  Google Scholar 

  68. Gordon, M. D., Dionne, M. S., Schneider, D. S. & Nusse, R. WntD is a feedback inhibitor of Dorsal/NF-κB in Drosophila development and immunity. Nature 437, 746–749 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Lemaitre, B. et al. A recessive mutation, immune deficiency (imd), defines two distinct control pathways in the Drosophila host defence. Proc. Natl Acad. Sci. USA 92, 9465–9469 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Georgel, P. et al. Drosophila immune deficiency (IMD) is a death domain protein that activates antibacterial defense and can promote apoptosis. Dev. Cell 1, 503–514 (2001).

    CAS  PubMed  Google Scholar 

  71. Choe, K. M., Lee, H. & Anderson, K. V. Drosophila peptidoglycan recognition protein LC (PGRP-LC) acts as a signal-transducing innate immune receptor. Proc. Natl Acad. Sci. USA 102, 1122–1126 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Hedengren, M. et al. Relish, a central factor in the control of humoral but not cellular immunity in Drosophila. Molecular Cell 4, 1–20 (1999). This work identifies Relish as the NF- k B transcription factor of the IMD pathway.

    Google Scholar 

  73. Silverman, N. et al. A Drosophila IκB kinase complex required for Relish cleavage and antibacterial immunity. Genes Dev. 14, 2461–2471. (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Stöven, S., Ando, I., Kadalayil, L., Engström, Y. & Hultmark, D. Activation of the Drosophila NF-κB factor Relish by rapid endoproteolytic cleavage. EMBO Rep. 1, 347–352 (2000).

    PubMed  PubMed Central  Google Scholar 

  75. Vidal, S. et al. Mutations in the Drosophila dTAK1 gene reveal a conserved function for MAPKKKs in the control of rel/NF-κB dependent innate immune responses. Genes Dev. 15, 1900–1912 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Silverman, N. et al. Immune activation of NF-κB and JNK requires Drosophila TAK1. J. Biol. Chem. 278, 48928–48934 (2003).

    CAS  PubMed  Google Scholar 

  77. Geuking, P., Narasimamurthy, R. & Basler, K. A genetic screen targeting the TNF/Eiger signaling pathway: identification of Drosophila TAB2 as a functionally conserved component. Genetics 171, 1683–1694 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Gesellchen, V., Kuttenkeuler, D., Steckel, M., Pelte, N. & Boutros, M. An RNA interference screen identifies Inhibitor of Apoptosis Protein 2 as a regulator of innate immune signalling in Drosophila. EMBO Rep. 6, 979–984 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Kleino, A. et al. Inhibitor of apoptosis 2 and TAK1-binding protein are components of the Drosophila Imd pathway. EMBO J. 24, 3423–3434 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Chen, Z. J. Ubiquitin signalling in the NF-κB pathway. Nature Cell Biol. 7, 758–765 (2005).

    CAS  PubMed  Google Scholar 

  81. Zhou, R. et al. The role of ubiquitination in Drosophila innate immunity. J. Biol. Chem. 280, 34048–34055 (2005).

    CAS  PubMed  Google Scholar 

  82. Leulier, F., Lhocine, N., Lemaitre, B. & Meier, P. The Drosophila inhibitor of apoptosis protein DIAP2 functions in innate immunity and is essential to resist gram-negative bacterial infection. Mol. Cell Biol. 26, 7821–7831 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Huh, J. R. et al. The Drosophila inhibitor of apoptosis (IAP) DIAP2 is dispensable for cell survival, required for the innate immune response to Gram-negative bacterial infection, and can be negatively regulated by the reaper/hid/grim family of IAP-binding apoptosis inducers. J. Biol. Chem. 282, 2056–2068 (2007).

    CAS  PubMed  Google Scholar 

  84. Leulier, F., Vidal, S., Saigo, K., Ueda, R. & Lemaitre, B. Inducible expression of double-stranded RNA reveals a role for dFADD in the regulation of the antibacterial response in Drosophila adults. Curr. Biol. 12, 996–1000 (2002).

    CAS  PubMed  Google Scholar 

  85. Leulier, F., Rodriguez, A., Khush, R. S., Abrams, J. M. & Lemaitre, B. The Drosophila caspase Dredd is required to resist Gram-negative bacterial infections. EMBO Rep. 1, 353–358 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Naitza, S. et al. The Drosophila immune defense against gram-negative infection requires the death protein dFADD. Immunity 17, 575–581 (2002).

    CAS  PubMed  Google Scholar 

  87. Stoven, S. et al. Caspase-mediated processing of the Drosophila NF-κB factor Relish. Proc. Natl Acad. Sci. USA 100, 5991–5996 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Boutros, M., Agaisse, H. & Perrimon, N. Sequential activation of signaling pathways during innate immune responses in Drosophila. Dev. Cell 3, 711–722 (2002).

    CAS  PubMed  Google Scholar 

  89. Park, J. M. et al. Targeting of TAK1 by the NF-κB protein Relish regulates the JNK-mediated immune response in Drosophila. Genes Dev. 18, 584–594 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Igaki, T. et al. Eiger, a TNF superfamily ligand that triggers the Drosophila JNK pathway. EMBO J. 21, 3009–3018 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Kim, T. et al. Downregulation of lipopolysaccharide response in Drosophila by negative crosstalk between the AP1 and NF-κB signaling modules. Nature Immunol. 6, 211–218 (2005).

    CAS  Google Scholar 

  92. Delaney, J. R. et al. Cooperative control of Drosophila immune responses by the JNK and NF-κB signaling pathways. EMBO J. 25, 3068–3077 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Khush, R. S., Cornwell, W. D., Uram, J. N. & Lemaitre, B. A ubiquitin-proteasome pathway represses the Drosophila immune deficiency signaling cascade. Curr. Biol. 12, 1728–1737 (2002).

    CAS  PubMed  Google Scholar 

  94. Kim, M., Lee, J. H., Lee, S. Y., Kim, E. & Chung, J. Caspar, a suppressor of antibacterial immunity in Drosophila. Proc. Natl Acad. Sci. USA 103, 16358–16363 (2006).

    CAS  PubMed  Google Scholar 

  95. Busse, M. S., Arnold, C. P., Towb, P., Katrivesis, J. & Wasserman, S. A. A κB sequence code for pathway-specific innate immune responses. EMBO J. 26, 3826–3835 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Tanji, T., Hu, X., Weber, A. N. & Ip, Y. T. Toll and IMD pathways synergistically activate an innate immune response in Drosophila melanogaster. Mol. Cell Biol. 27, 4578–4588 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Tzou, P., Reichhart, J. M. & Lemaitre, B. Constitutive expression of a single antimicrobial peptide can restore wild-type resistance to infection in immunodeficient Drosophila mutants. Proc. Natl Acad. Sci. USA 99, 2152–2157 (2002). This study shows that AMPs are effectors of the systemic immune response against some bacterial and fungal pathogens in vivo.

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Liehl, P., Blight, M., Vodovar, N., Boccard, F. & Lemaitre, B. Prevalence of local immune response against oral infection in a Drosophila/Pseudomonas infection model. PLoS Pathog. 2, e56 (2006).

    PubMed  PubMed Central  Google Scholar 

  99. Ryu, J. H. et al. An essential complementary role of NF-κB pathway to microbicidal oxidants in Drosophila gut immunity. EMBO J. 25, 3693–3701 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Blandin, S. et al. Reverse genetics in the mosquito Anopheles gambiae: targeted disruption of the Defensin gene. EMBO Rep. 3, 852–856 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Levy, F. et al. Peptidomic and proteomic analyses of the systemic immune response of Drosophila. Biochimie 86, 607–616 (2004).

    CAS  PubMed  Google Scholar 

  102. Irving, P. et al. A genome-wide analysis of immune responses in Drosophila. Proc. Natl Acad. Sci. USA 98, 15119–15124 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. De Gregorio, E., Spellman, P. T., Rubin, G. M. & Lemaitre, B. Genome-wide analysis of the Drosophila immune response by using oligonucleotide microarrays. Proc. Natl Acad. Sci. USA 98, 12590–12595 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Engstrom, Y., Loseva, O. & Theopold, U. Proteomics of the Drosophila immune response. Trends Biotechnol. 22, 600–605 (2004).

    PubMed  Google Scholar 

  105. De Gregorio, E. et al. An immune-responsive Serpin regulates the melanization cascade in Drosophila. Dev. Cell 3, 581–592 (2002).

    CAS  PubMed  Google Scholar 

  106. Ligoxygakis, P. et al. A serpin mutant links Toll activation to melanization in the host defence of Drosophila. EMBO J. 21, 6330–6337 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Ha, E. M. et al. An antioxidant system required for host protection against gut infection in Drosophila. Dev. Cell 8, 125–132 (2005). References 107 and 123 document the existence of an oxidative response to intestinal infections.

    CAS  PubMed  Google Scholar 

  108. Apidianakis, Y. et al. Profiling early infection responses: Pseudomonas aeruginosa eludes host defenses by suppressing antimicrobial peptide gene expression. Proc. Natl Acad. Sci. USA 102, 2573–2578 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Vodovar, N. et al. Drosophila host defense after oral infection by an entomopathogenic Pseudomonas species. Proc. Natl Acad. Sci. USA 102, 11414–11419 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Kocks, C. et al. Eater, a transmembrane protein mediating phagocytosis of bacterial pathogens in Drosophila. Cell 123, 335–346 (2005).

    CAS  PubMed  Google Scholar 

  111. Kurucz, E. et al. Nimrod, a putative phagocytosis receptor with EGF repeats in Drosophila plasmatocytes. Curr. Biol. 17, 649–654 (2007).

    CAS  PubMed  Google Scholar 

  112. Watson, F. L. et al. Extensive diversity of Ig-superfamily proteins in the immune system of insects. Science 309, 1874–1878 (2005).

    CAS  PubMed  Google Scholar 

  113. Pham, L. N., Dionne, M. S., Shirasu-Hiza, M. & Schneider, D. S. A specific primed immune response in Drosophila is dependent on phagocytes. PLoS Pathog. 3, e26 (2007).

    PubMed  PubMed Central  Google Scholar 

  114. Lazzaro, B. P., Sceurman, B. K. & Clark, A. G. Genetic basis of natural variation in D. melanogaster antibacterial immunity. Science 303, 1873–1876 (2004).

    CAS  PubMed  Google Scholar 

  115. Jiang, H. & Kanost, M. R. The clip-domain family of serine proteinase in Arthropods. Insect Biochem. Mol. Biol. 30, 95–105 (2000).

    CAS  PubMed  Google Scholar 

  116. Dietzl, G. et al. A genome-wide transgenic RNAi library for conditional gene inactivation in Drosophila. Nature 448, 151–156 (2007).

    CAS  PubMed  Google Scholar 

  117. Matova, N. & Anderson, K. V. Rel/NF-κB double mutants reveal that cellular immunity is central to Drosophila host defense. Proc. Natl Acad. Sci. USA 103, 16424–16429 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Mathey-Prevot, B. & Perrimon, N. Drosophila genome-wide RNAi screens: are they delivering the promise? Cold Spring Harb. Symp. Quant. Biol. 71, 141–148 (2006).

    CAS  PubMed  Google Scholar 

  119. Ayres, J. S. & Schneider, D. S. Genomic dissection of microbial pathogenesis in cultured Drosophila cells. Trends Microbiol. 14, 101–104 (2006).

    CAS  PubMed  Google Scholar 

  120. Ferrandon, D. et al. A drosomycin-GFP reporter transgene reveals a local immune response in Drosophila that is not dependent on the Toll pathway. EMBO J. 17, 1217–1227 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Tzou, P. et al. Tissue-specific inducible expression of antimicrobial peptide genes in Drosophila surface epithelia. Immunity 13, 737–748 (2000).

    CAS  Google Scholar 

  122. Onfelt Tingvall, T., Roos, E. & Engstrom, Y. The imd gene is required for local Cecropin expression in Drosophila barrier epithelia. EMBO Rep. 2, 239–243 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Ha, E. M., Oh, C. T., Bae, Y. S. & Lee, W. J. A direct role for dual oxidase in Drosophila gut immunity. Science 310, 847–850 (2005).

    CAS  PubMed  Google Scholar 

  124. Nehme et al. A model of bacterial intestinal infections in Drosophila melanogaster. PLoS Pathog. (in the press).

Download references

Acknowledgements

We thank Drs Chang, Deisenhofer, Ho, Lim and Troxler for input on Figure 2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dominique Ferrandon.

Supplementary information

Supplementary information S1 (table)

Properties of antimicrobial peptides (PDF 168 kb)

Supplementary information S2 (figure)

Microbial inducers of the Drosophila melanogaster systemic immune response. (PDF 235 kb)

Supplementary information S3 (figure)

Mammalian Toll–like receptor 9 (TLR9)signalling pathway. (PDF 202 kb)

Supplementary information S4 (figure)

TNF and TLR4 signalling in mammals. (PDF 267 kb)

Related links

Related links

SUPPLEMENTARY INFORMATION

See online article

S1 (table)

S2 (figure)

S3 (figure)

S4 (figure)

Glossary

Haemolymph

Insects have an open circulatory system. The haemolymph is the blood-like fluid that bathes tissues and is circulated throughout the body cavity by the dorsal vessel, a functional equivalent of the heart.

Melanization

The deposition of melanin at the site of injury as a result of the activation of a biochemical cascade involving a key enzyme, phenol oxidase, which is activated in response to septic injury. This activation releases toxic reactive oxygen species that may attack invading microbes. Although this mechanism is highly conserved in invertebrates, a primary role of melanization in host defence remains to be firmly established.

Peptidoglycan-recognition proteins

(PGRPs). This family is characterized by the presence of one or several PGRP domains that present similarities to bacteriophage amidases. This family has been conserved throughout evolution. Catalytic and non-catalytic PGRPs are also found in vertebrates in which they act as amidases or antimicrobial peptides.

Malpighian tubules

The excretory and osmoregulatory organs of insects that open near the junction of the midgut and hindgut.

Gram-negative binding proteins

(GNBPs; also known as βGRPs). This family is characterized by the existence of an N-terminal glucan-binding domain and a C-terminal domain with similarities to bacterial glucanases. GNBPs are present in most invertebrates, including deuterostomes, such as the sea urchin Strongylocentrotus purpuratus, but has not been found in vertebrates.

Pattern-recognition receptor

A germ-line encoded receptor that recognizes unique and essential structures that are present in microorganisms, but absent from the host. In vertebrates, signalling through these receptors leads to the production of pro-inflammatory cytokines and chemokines and to the expression of co-stimulatory molecules by antigen-presenting cells. The expression of co-stimulatory molecules, together with the presentation of antigenic peptides, by antigen-presenting cells couples innate immune recognition of pathogens with the activation of adaptive immune responses.

Zymogen

The inactive precursor of a protease. The zymogen contains an amino-terminal pro-domain that keeps the protease in an inactive state. The removal of the pro-domain by another protease or by autoproteolysis leads to a conformational change that exposes the active site.

CLIP domain

CLIP domains are disulphide-knotted protein–protein interaction domains that are present in several invertebrate serine proteases and mediate sequential activation of immune zymogen cascades.The topology of the knot formed by the disulphide bonds is reminiscent of that of a paper clip, hence its name.

Polyubiquitylation

The attachment of the small protein ubiquitin to lysine residues present in other proteins. Protein ubiquitylation occurs in three enzymatic steps requiring a ubiquitin-activating enzyme (E1), a ubiquitin-conjugating enzyme (E2), and ubiquitin ligase (E3). Subsequent ubiquitylation events can extend from the initial ubiquitin at one of its seven lysine residues (K6, K11, K27, K29, K33, K48 or K63) forming a polyubiquitin chain.

Receptor-interacting protein

(RIP). A family of serine/threonine kinases with homologous kinase domains. RIP1 is recruited to TNFR1 and mediates TNF-induced activation of JNK and NF-κB transcriptional pathways. RIP2 (CARDIAK/RICK) binds to caspase-1 and activates NF-κB.

RHIM motif

In mammals, the RHIM motif is found in the adaptor proteins TIR-domain-containing adaptor protein inducing IFNβ (TRIF), which is part of the TLR pathway, and RIP, which is part of both the TLR and TNFR pathways. This motif is required for the interaction between RIP and TRIF and subsequent NF-κB activation by TLR3.

K63-linked ubiquitylation

Formation of polyubiquitin chains on a target protein that are linked through the lysine at position 63 (K63) in ubiquitin. Unlike K48-linked chains, which are the principal signal for targeting substrates for proteasomal degradation, K63-linked ubiquitin-modified proteins regulate protein function, target certain proteins for endocytosis, and interact with proteins with specific ubiquitin-binding domains.

S2 cells

A cell-line established by Imogen Schneider (S2 stands for Schneider's line 2) in 1970, from Drosophila embryos. S2 cells are the most widely used Drosophila cell line. Of particular interest for the study of innate immunity, these cells share several properties with haemocytes, in particular the Toll- and IMD-mediated induction of AMPs, and have the capacity to phagocytose microorganisms.

Redox homeostasis

The protection that is conferred to the fly against the toxic oxidative response that is triggered in the gut in response to the ingestion of high doses of microbes. This protection is mediated by immune regulated catalase (IRC), the transcription of which is also triggered in response to septic injury.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferrandon, D., Imler, JL., Hetru, C. et al. The Drosophila systemic immune response: sensing and signalling during bacterial and fungal infections. Nat Rev Immunol 7, 862–874 (2007). https://doi.org/10.1038/nri2194

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri2194

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing