Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Translational control in stress and apoptosis

Key Points

  • Translation is the final step in the flow of the genetic information, and regulation at this level allows an immediate, rapid and reversible response to changes in physiological conditions. This type of regulation is especially advantageous during conditions of cellular stress.

  • Translation is divided into three distinct phases: initiation, elongation and termination. Although all three phases are subject to regulatory mechanisms, under most circumstances the rate-limiting, regulated step is the initiation of translation.

  • Most cellular mRNAs are translated by a cap-dependent mechanism that involves the interaction of the 5′ m7G-cap structure of the mRNA with the cap-binding protein, eukaryotic initiation factor-4E (eIF4E), and the translation-initiation machinery. Some viral and cellular mRNAs have evolved a cap-independent mechanism of translation initiation that uses the internal ribosome-entry site (IRES) sequence that is located in the 5′ untranslated regions of these mRNAs. IRESs recruit ribosomes directly to the vicinity of the initiation codon without the requirement for eIF4E.

  • Global translation is reduced in response to most cellular stresses, both to conserve energy and to prevent the synthesis of unwanted proteins. Remarkably, the stress-induced attenuation of global translation is often accompanied by a switch to the selective translation of proteins that are required for cell survival under stress.

  • Several genes that are involved in cell growth and proliferation, differentiation and the regulation of apoptosis use IRES-mediated translation. This mode of translation provides a means for escaping the global decline in protein synthesis, and allows the selective translation of specific mRNAs, which indicates that the selective regulation of IRES-mediated translation is crucial to the regulation of cell death and survival.

Abstract

Cells respond to stress stimuli through coordinated changes in gene expression. The regulation of translation is often used under these circumstances because it allows immediate and selective changes in protein levels. There are many examples of translational control in response to stress. Here we examine two representative models, the regulation of eukaryotic initiation factor-2α by phosphorylation and internal ribosome initiation through the internal ribosome-entry site, which illustrate the importance of translational control in the cellular stress response and apoptosis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cap-dependent versus internal ribosome-entry site-dependent translation initiation.
Figure 2: Integration of stress responses by the phosphorylation of eukaryotic initiation factor-2α.
Figure 3: RNA regulatory elements in the 5′ untranslated regions of mRNAs that are involved in selective translation.
Figure 4: Translational regulation of XIAP and APAF1 in apoptosis.

Similar content being viewed by others

References

  1. Nishizuka, S. et al. Proteomic profiling of the NCI-60 cancer cell lines using new high-density reverse-phase lysate microarrays. Proc. Natl Acad. Sci. USA 100, 14229–14234 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Gygi, S. P., Rochon, Y., Franza, B. R. & Aebersold, R. Correlation between protein and mRNA abundance in yeast. Mol. Cell. Biol. 19, 1720–1730 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Rajasekhar, V. K. et al. Oncogenic Ras and Akt signaling contribute to glioblastoma formation by differential recruitment of existing mRNAs to polysomes. Mol. Cell 12, 889–901 (2003).

    Article  CAS  PubMed  Google Scholar 

  4. Rajasekhar, V. K. & Holland, E. C. Postgenomic global analysis of translational control induced by oncogenic signaling. Oncogene 23, 3248–3264 (2004).

    Article  CAS  PubMed  Google Scholar 

  5. Celis, J. E. et al. Gene expression profiling: monitoring transcription and translation products using DNA microarrays and proteomics. FEBS Lett. 480, 2–16 (2000).

    Article  CAS  PubMed  Google Scholar 

  6. Le Naour, F. et al. Profiling changes in gene expression during differentiation and maturation of monocyte-derived dendritic cells using both oligonucleotide microarrays and proteomics. J. Biol. Chem. 276, 17920–17931 (2001).

    Article  CAS  PubMed  Google Scholar 

  7. Hanash, S. M. et al. Integrating cancer genomics and proteomics in the post-genome era. Proteomics 2, 69–75 (2002).

    Article  CAS  PubMed  Google Scholar 

  8. Ideker, T. et al. Integrated genomic and proteomic analyses of a systematically perturbed metabolic network. Science 292, 929–934 (2001).

    Article  CAS  PubMed  Google Scholar 

  9. Mathews, M. B., Sonenberg, N. & Hershey, J. W. B. in Translational Control of Gene Expression (eds Sonenberg, N., Hershey, J. W. B. & Mathews, M. B.) 1–32 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor Laboratory, New York, 2000).

    Google Scholar 

  10. Hershey, J. W. B. & Merrick, W. C. in Translation Control of Gene Expression (eds Sonenberg, N., Hershey, J. W. B. & Mathews, M. B.) 33–88 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor Laboratory, New York, 2000).

    Google Scholar 

  11. Gebauer, F. & Hentze, M. W. Molecular mechanisms of translational control. Nature Rev. Mol. Cell Biol. 5, 827–835 (2004).

    Article  CAS  Google Scholar 

  12. Johannes, G., Carter, M. S., Eisen, M. B., Brown, P. O. & Sarnow, P. Identification of eukaryotic mRNAs that are translated at reduced cap binding complex eIF4F concentrations using a cDNA microarray. Proc. Natl Acad. Sci. USA 96, 13118–13123 (1999). This was the first work to indicate that cap-independent translation was more common than had been previously assumed.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hellen, C. U. & Sarnow, P. Internal ribosome entry sites in eukaryotic mRNA molecules. Genes Dev. 15, 1593–1612 (2001).

    Article  CAS  PubMed  Google Scholar 

  14. Johannes, G. & Sarnow, P. Cap-independent polysomal association of natural mRNAs encoding c-myc, BiP, and eIF4G conferred by internal ribosome entry sites. RNA 4, 1500–1513 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Pelletier, J. & Sonenberg, N. Internal initiation of translation of eukaryotic mRNA directed by a sequence derived from poliovirus RNA. Nature 334, 320–325 (1988).

    Article  CAS  PubMed  Google Scholar 

  16. Jang, S. K. et al. A segment of the 5′ nontranslated region of encephalomyocarditis virus RNA directs internal entry of ribosomes during in vitro translation. J. Virol. 62, 2636–2643 (1988). References 15 and 16 presented the first evidence of an IRES in a eukaryotic mRNA.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Verge, V., Vonlanthen, M., Masson, J. M., Trachsel, H. & Altmann, M. Localization of a promoter in the putative internal ribosome entry site of the Saccharomyces cerevisiae TIF4631 gene. RNA 10, 277–286 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Han, B. & Zhang, J. T. Regulation of gene expression by internal ribosome entry sites or cryptic promoters: the eIF4G story. Mol. Cell. Biol. 22, 7372–7384 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Van Eden, M. E., Byrd, M. P., Sherrill, K. W. & Lloyd, R. E. Demonstrating internal ribosome entry sites in eukaryotic mRNAs using stringent RNA test procedures. RNA 10, 720–730 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hennecke, M. et al. Composition and arrangement of genes define the strength of IRES-driven translation in bicistronic mRNAs. Nucleic Acids Res. 29, 3327–3334 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Merrick, W. C. Cap-dependent and cap-independent translation in eukaryotic systems. Gene 332, 1–11 (2004).

    Article  CAS  PubMed  Google Scholar 

  22. Holcik, M., Sonenberg, N. & Korneluk, R. G. Internal ribosome initiation of translation and the control of cell death. Trends Genet. 16, 469–473 (2000).

    Article  CAS  PubMed  Google Scholar 

  23. Stoneley, M. & Willis, A. E. Cellular internal ribosome entry segments: structures, trans-acting factors and regulation of gene expression. Oncogene 23, 3200–3207 (2004).

    Article  CAS  PubMed  Google Scholar 

  24. Martinez-Salas, E., Ramos, R., Lafuente, E. & Lopez De Quinto, S. Functional interactions in internal translation initiation directed by viral and cellular IRES elements. J. Gen. Virol. 82, 973–984 (2001).

    Article  CAS  PubMed  Google Scholar 

  25. Mitchell, S. A., Brown, E. C., Coldwell, M. J., Jackson, R. J. & Willis, A. E. Protein factor requirements of the Apaf-1 internal ribosome entry segment: roles of polypyrimidine tract binding protein and upstream of N-ras. Mol. Cell. Biol. 21, 3364–3374 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Holcik, M. & Korneluk, R. G. Functional characterization of the X-linked inhibitor of apoptosis (XIAP) internal ribosome entry site element: role of La autoantigen in XIAP translation. Mol. Cell. Biol. 20, 4648–4657 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kim, Y. K., Back, S. H., Rho, J., Lee, S. H. & Jang, S. K. La autoantigen enhances translation of BiP mRNA. Nucleic Acids Res. 29, 5009–5016 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Holcik, M., Gordon, B. W. & Korneluk, R. G. The internal ribosome entry site-mediated translation of antiapoptotic protein XIAP is modulated by the heterogeneous nuclear ribonucleoproteins C1 and C2. Mol. Cell. Biol. 23, 280–288 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sella, O., Gerlitz, G., Le, S. Y. & Elroy-Stein, O. Differentiation-induced internal translation of c-sis mRNA: analysis of the cis elements and their differentiation-linked binding to the hnRNP C protein. Mol. Cell. Biol. 19, 5429–5440 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Nevins, T. A., Harder, Z. M., Korneluk, R. G. & Holcik, M. Distinct regulation of internal ribosome entry site-mediated translation following cellular stress is mediated by apoptotic fragments of eIF4G translation initiation factor family members eIF4GI and p97/DAP5/NAT1. J. Biol. Chem. 278, 3572–3579 (2003).

    Article  CAS  PubMed  Google Scholar 

  31. Henis-Korenblit, S. et al. The caspase-cleaved DAP5 protein supports internal ribosome entry site-mediated translation of death proteins. Proc. Natl Acad. Sci. USA 99, 5400–5405 (2002). References 30 and 31 presented the first evidence that p97/DAP5 could function as an apoptosis-specific translation-initiation factor.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Henis-Korenblit, S., Strumpf, N. L., Goldstaub, D. & Kimchi, A. A novel form of DAP5 protein accumulates in apoptotic cells as a result of caspase cleavage and internal ribosome entry site-mediated translation. Mol. Cell. Biol. 20, 496–506 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kullmann, M., Gopfert, U., Siewe, B. & Hengst, L. ELAV/Hu proteins inhibit p27 translation via an IRES element in the p27 5′UTR. Genes Dev. 16, 3087–3099 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wolin, S. L. & Cedervall, T. The La protein. Annu. Rev. Biochem. 71, 375–403 (2002).

    Article  CAS  PubMed  Google Scholar 

  35. Creancier, L., Mercier, P., Prats, A. C. & Morello, D. c-myc internal ribosome entry site activity is developmentally controlled and subjected to a strong translational repression in adult transgenic mice. Mol. Cell. Biol. 21, 1833–1840 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Fernandez, J., Yaman, I., Sarnow, P., Snider, M. D. & Hatzoglou, M. Regulation of internal ribosomal entry site-mediated translation by phosphorylation of the translation initiation factor eIF2α. J. Biol. Chem. 277, 19198–19205 (2002).

    Article  CAS  PubMed  Google Scholar 

  37. Gerlitz, G., Jagus, R. & Elroy-Stein, O. Phosphorylation of initiation factor-2α is required for activation of internal translation initiation during cell differentiation. Eur. J. Biochem. 269, 2810–2819 (2002).

    Article  CAS  PubMed  Google Scholar 

  38. Warnakulasuriyarachchi, D., Cerquozzi, S., Cheung, H. H. & Holcik, M. Translational induction of the inhibitor of apoptosis protein HIAP2 during endoplasmic reticulum stress attenuates cell death and is mediated via an inducible internal ribosome entry site element. J. Biol. Chem. 279, 17148–17157 (2004).

  39. Pearce, A. K. & Humphrey, T. C. Integrating stress-response and cell-cycle checkpoint pathways. Trends Cell Biol. 11, 426–433 (2001).

    Article  CAS  PubMed  Google Scholar 

  40. Warner, J. R. The economics of ribosome biosynthesis in yeast. Trends Biochem. Sci. 24, 437–440 (1999).

    Article  CAS  PubMed  Google Scholar 

  41. Rudra, D. & Warner, J. R. What better measure than ribosome synthesis? Genes Dev. 18, 2431–2436 (2004).

    Article  CAS  PubMed  Google Scholar 

  42. Holcik, M., Yeh, C., Korneluk, R. G. & Chow, T. Translational upregulation of X-linked inhibitor of apoptosis (XIAP) increases resistance to radiation induced cell death. Oncogene 19, 4174–4177 (2000).

    Article  CAS  PubMed  Google Scholar 

  43. Harding, H. P., Zhang, Y., Bertolotti, A., Zeng, H. & Ron, D. Perk is essential for translational regulation and cell survival during the unfolded protein response. Mol. Cell 5, 897–904 (2000).

    Article  CAS  PubMed  Google Scholar 

  44. Hinnebusch, A. G. in Translation Control of Gene Expression (eds Sonenberg, N., Hershey, J. W. B. & Mathews, M. B.) 185–243 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor Laboratory, New York, 2000). This comprehensive review summarizes the literature on the translational activation of GCN4 mRNA by the GCN2 kinase.

    Google Scholar 

  45. Dever, T. E. et al. Phosphorylation of initiation factor 2α by protein kinase GCN2 mediates gene-specific translational control of GCN4 in yeast. Cell 68, 585–596 (1992).

    Article  CAS  PubMed  Google Scholar 

  46. Clemens, M. J. Targets and mechanisms for the regulation of translation in malignant transformation. Oncogene 23, 3180–3188 (2004).

    Article  CAS  PubMed  Google Scholar 

  47. Chen, J. J. in Translation Control of Gene Expression (eds Sonenberg, N., Hershey, J. W. B. & Mathews, M. B.) 529–546 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor Laboratory, New York, 2000).

    Google Scholar 

  48. Kimball, S. R. Regulation of translation initiation by amino acids in eukaryotic cells. Prog. Mol. Subcell. Biol. 26, 155–184 (2001).

    Article  CAS  PubMed  Google Scholar 

  49. Deng, J. et al. Activation of GCN2 in UV-irradiated cells inhibits translation. Curr. Biol. 12, 1279–1286 (2002).

    Article  CAS  PubMed  Google Scholar 

  50. Jiang, H. Y. & Wek, R. C. Gcn2 phosphorylation of eIF2α activates NF-κB in response to UV irradiation. Biochem. J. 385, 371–380 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kaufman, R. J. in Translation Control of Gene Expression (eds Sonenberg, N., Hershey, J. W. B. & Mathews, M. B.) 503–527 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor Laboratory, New York, 2000).

    Google Scholar 

  52. Ron, D. Translational control in the endoplasmic reticulum stress response. J. Clin. Invest. 110, 1383–1388 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Hinnebusch, A. G. Evidence for translational regulation of the activator of general amino acid control in yeast. Proc. Natl Acad. Sci. USA 81, 6442–6446 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Mueller, P. P. & Hinnebusch, A. G. Multiple upstream AUG codons mediate translational control of GCN4. Cell 45, 201–207 (1986). This report was the first to describe both positive and negative roles of upstream AUG codons in translational upregulation.

    Article  CAS  PubMed  Google Scholar 

  55. Kaufman, R. J. Regulation of mRNA translation by protein folding in the endoplasmic reticulum. Trends Biochem. Sci. 29, 152–158 (2004).

    Article  CAS  PubMed  Google Scholar 

  56. Danial, N. N. & Korsmeyer, S. J. Cell death: critical control points. Cell 116, 205–219 (2004).

    Article  CAS  PubMed  Google Scholar 

  57. Nakagawa, T. et al. Caspase-12 mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloid-β. Nature 403, 98–103 (2000).

    Article  CAS  PubMed  Google Scholar 

  58. Morishima, N., Nakanishi, K., Takenouchi, H., Shibata, T. & Yasuhiko, Y. An endoplasmic reticulum stress-specific caspase cascade in apoptosis. Cytochrome c-independent activation of caspase-9 by caspase-12. J. Biol. Chem. 277, 34287–34294 (2002).

    Article  CAS  PubMed  Google Scholar 

  59. Saleh, M. et al. Differential modulation of endotoxin responsiveness by human caspase-12 polymorphisms. Nature 429, 75–79 (2004).

    Article  CAS  PubMed  Google Scholar 

  60. Harding, H. P., Zhang, Y. & Ron, D. Protein translation and folding are coupled by an endoplasmic-reticulum-resident kinase. Nature 397, 271–274 (1999). This was the first description of PERK and its activation by the UPR.

    Article  CAS  PubMed  Google Scholar 

  61. Bertolotti, A., Zhang, Y., Hendershot, L. M., Harding, H. P. & Ron, D. Dynamic interaction of BiP and ER stress transducers in the unfolded-protein response. Nature Cell Biol. 2, 326–332 (2000).

    Article  CAS  PubMed  Google Scholar 

  62. Harding, H. P. et al. Regulated translation initiation controls stress-induced gene expression in mammalian cells. Mol. Cell 6, 1099–1108 (2000).

    Article  CAS  PubMed  Google Scholar 

  63. Harding, H. P. et al. An integrated stress response regulates amino acid metabolism and resistance to oxidative stress. Mol. Cell 11, 619–633 (2003).

    Article  CAS  PubMed  Google Scholar 

  64. Vattem, K. M. & Wek, R. C. Reinitiation involving upstream ORFs regulates ATF4 mRNA translation in mammalian cells. Proc. Natl Acad. Sci. USA 101, 11269–11274 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Lu, P. D., Harding, H. P. & Ron, D. Translation reinitiation at alternative open reading frames regulates gene expression in an integrated stress response. J. Cell Biol. 167, 27–33 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Scheuner, D. et al. Translational control is required for the unfolded protein response and in vivo glucose homeostasis. Mol. Cell 7, 1165–1176 (2001).

    Article  CAS  PubMed  Google Scholar 

  67. Harding, H. P. et al. Diabetes mellitus and exocrine pancreatic dysfunction in Perk−/− mice reveals a role for translational control in secretory cell survival. Mol. Cell 7, 1153–1163 (2001). References 66 and 67 presented the first evidence of the role of PERK in the UPR and glucose metabolism in vivo.

    Article  CAS  PubMed  Google Scholar 

  68. Zhang, P. et al. The PERK eukaryotic initiation factor 2α kinase is required for the development of the skeletal system, postnatal growth, and the function and viability of the pancreas. Mol. Cell. Biol. 22, 3864–3874 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Kaufman, R. J. et al. The unfolded protein response in nutrient sensing and differentiation. Nature Rev. Mol. Cell Biol. 3, 411–421 (2002).

    Article  CAS  Google Scholar 

  70. Delepine, M. et al. EIF2AK3, encoding translation initiation factor 2-α kinase 3, is mutated in patients with Wolcott-Rallison syndrome. Nature Genet. 25, 406–409 (2000).

    Article  CAS  PubMed  Google Scholar 

  71. Nicholson, D. W. Caspase structure, proteolytic substrates, and function during apoptotic cell death. Cell Death Differ. 6, 1028–1042 (1999).

    Article  CAS  PubMed  Google Scholar 

  72. Clemens, M. J., Bushell, M., Jeffrey, I. W., Pain, V. M. & Morley, S. J. Translation initiation factor modifications and the regulation of protein synthesis in apoptotic cells. Cell Death Differ. 7, 603–615 (2000).

    Article  CAS  PubMed  Google Scholar 

  73. Coldwell, M. J., Mitchell, S. A., Stoneley, M., MacFarlane, M. & Willis, A. E. Initiation of Apaf-1 translation by internal ribosome entry. Oncogene 19, 899–905 (2000).

    Article  CAS  PubMed  Google Scholar 

  74. Holcik, M., Lefebvre, C. A., Yeh, C., Chow, T. & Korneluk, R. G. A new internal-ribosome-entry-site motif potentiates XIAP-mediated cytoprotection. Nature Cell Biol. 1, 190–192 (1999).

    Article  CAS  PubMed  Google Scholar 

  75. Adams, J. M. & Cory, S. Apoptosomes: engines for caspase activation. Curr. Opin. Cell Biol. 14, 715–720 (2002).

    Article  CAS  PubMed  Google Scholar 

  76. Liston, P., Fong, W. G. & Korneluk, R. G. The inhibitors of apoptosis: there is more to life than Bcl2. Oncogene 22, 8568–8580 (2003).

    Article  CAS  PubMed  Google Scholar 

  77. Budihardjo, I., Oliver, H., Lutter, M., Luo, X. & Wang, X. Biochemical pathways of caspase activation during apoptosis. Annu. Rev. Cell Dev. Biol. 15, 269–290 (1999).

    Article  CAS  PubMed  Google Scholar 

  78. Zou, H., Henzel, W. J., Liu, X., Lutschg, A. & Wang, X. Apaf-1, a human protein homologous to C. elegans CED-4, participates in cytochrome c-dependent activation of caspase-3. Cell 90, 405–413 (1997).

    Article  CAS  PubMed  Google Scholar 

  79. Rodriguez, J. & Lazebnik, Y. Caspase-9 and APAF-1 form an active holoenzyme. Genes Dev. 13, 3179–3184 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Cain, K. et al. Apaf-1 oligomerizes into biologically active approximately 700-kDa and inactive approximately 1.4-MDa apoptosome complexes. J. Biol. Chem. 275, 6067–6070 (2000).

    Article  CAS  PubMed  Google Scholar 

  81. Holcik, M. & Korneluk, R. G. XIAP, the guardian angel. Nature Rev. Mol. Cell Biol. 2, 550–556 (2001).

    Article  CAS  Google Scholar 

  82. Yamagiwa, Y., Marienfeld, C., Meng, F., Holcik, M. & Patel, T. Translational regulation of X-linked inhibitor of apoptosis protein by interleukin-6: a novel mechanism of tumor cell survival. Cancer Res. 64, 1293–1298 (2004).

    Article  CAS  PubMed  Google Scholar 

  83. Pardo, O. E. et al. Fibroblast growth factor 2-mediated translational control of IAPs blocks mitochondrial release of Smac/DIABLO and apoptosis in small cell lung cancer cells. Mol. Cell. Biol. 23, 7600–7610 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Brockstedt, E. et al. Identification of apoptosis-associated proteins in a human Burkitt lymphoma cell line. Cleavage of heterogeneous nuclear ribonucleoprotein A1 by caspase 3. J. Biol. Chem. 273, 28057–28064 (1998).

    Article  CAS  PubMed  Google Scholar 

  85. Rutjes, S. A. et al. The La (SS-B) autoantigen, a key protein in RNA biogenesis, is dephosphorylated and cleaved early during apoptosis. Cell Death Differ. 6, 976–986 (1999).

    Article  CAS  PubMed  Google Scholar 

  86. Schwartz, E. I., Intine, R. V. & Maraia, R. J. CK2 is responsible for phosphorylation of human La protein serine-366 and can modulate rpL37 5′-terminal oligopyrimidine mRNA metabolism. Mol. Cell. Biol. 24, 9580–9591 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Marienfeld, C. et al. Translational regulation of XIAP expression and cell survival during hypoxia in human cholangiocarcinoma. Gastroenterology 127, 1787–1797 (2004).

    Article  CAS  PubMed  Google Scholar 

  88. Mitchell, S. A., Spriggs, K. A., Coldwell, M. J., Jackson, R. J. & Willis, A. E. The Apaf-1 internal ribosome entry segment attains the correct structural conformation for function via interactions with PTB and unr. Mol. Cell 11, 757–771 (2003).

    Article  CAS  PubMed  Google Scholar 

  89. Lassus, P., Opitz-Araya, X. & Lazebnik, Y. Requirement for caspase-2 in stress-induced apoptosis before mitochondrial permeabilization. Science 297, 1352–1354 (2002).

    Article  CAS  PubMed  Google Scholar 

  90. Gingras, A. C., Raught, B. & Sonenberg, N. eIF4 initiation factors: effectors of mRNA recruitment to ribosomes and regulators of translation. Annu. Rev. Biochem. 68, 913–963 (1999).

    Article  CAS  PubMed  Google Scholar 

  91. Clemens, M. J., Bushell, M. & Morley, S. J. Degradation of eukaryotic polypeptide chain initiation factor (eIF) 4G in response to induction of apoptosis in human lymphoma cell lines. Oncogene 17, 2921–2931 (1998).

    Article  CAS  PubMed  Google Scholar 

  92. Ohlmann, T., Rau, M., Pain, V. M. & Morley, S. J. The C-terminal domain of eukaryotic protein synthesis initiation factor (eIF) 4G is sufficient to support cap-independent translation in the absence of eIF4E. EMBO J. 15, 1371–1382 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Borman, A. M. et al. elF4G and its proteolytic cleavage products: effect on initiation of protein synthesis from capped, uncapped, and IRES-containing mRNAs. RNA 3, 186–196 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Nanbru, C. et al. Alternative translation of the proto-oncogene c-myc by an internal ribosome entry site. J. Biol. Chem. 272, 32061–32066 (1997).

    Article  CAS  PubMed  Google Scholar 

  95. Stoneley, M., Paulin, F. E., Le Quesne, J. P., Chappell, S. A. & Willis, A. E. c-Myc 5′ untranslated region contains an internal ribosome entry segment. Oncogene 16, 423–428 (1998).

    Article  CAS  PubMed  Google Scholar 

  96. Stoneley, M. et al. c-Myc protein synthesis is initiated from the internal ribosome entry segment during apoptosis. Mol. Cell. Biol. 20, 1162–1169 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Subkhankulova, T., Mitchell, S. A. & Willis, A. E. Internal ribosome entry segment-mediated initiation of c-Myc protein synthesis following genotoxic stress. Biochem. J. 359, 183–192 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Warnakulasuriyarachchi, D., Ungureanu, N. H. & Holcik, M. The translation of an antiapoptotic protein HIAP2 is regulated by an upstream open reading frame. Cell Death Differ. 10, 899–904 (2003).

    Article  CAS  PubMed  Google Scholar 

  99. Semenza, G. L. HIF-1 and human disease: one highly involved factor. Genes Dev. 14, 1983–1991 (2000).

    Article  CAS  PubMed  Google Scholar 

  100. Koumenis, C. et al. Regulation of protein synthesis by hypoxia via activation of the endoplasmic reticulum kinase PERK and phosphorylation of the translation initiation factor eIF2α. Mol. Cell. Biol. 22, 7405–7416 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Blais, J. D. et al. Activating transcription factor 4 is translationally regulated by hypoxic stress. Mol. Cell. Biol. 24, 7469–7482 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Tinton, S. A. & Buc-Calderon, P. M. Hypoxia increases the association of 4E-binding protein 1 with the initiation factor 4E in isolated rat hepatocytes. FEBS Lett. 446, 55–59 (1999).

    Article  CAS  PubMed  Google Scholar 

  103. Lang, K. J. D., Kappel, A. & Goodall, G. J. Hypoxia-inducible factor-1α mRNA contains an internal ribosome entry site that allows efficient translation during normoxia and hypoxia. Mol. Biol. Cell 13, 1792–1801 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Huez, I. et al. Two independent internal ribosome entry sites are involved in translation initiation of vascular endothelial growth factor mRNA. Mol. Cell. Biol. 18, 6178–6190 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Plate, K. H., Breier, G., Weich, H. A. & Risau, W. Vascular endothelial growth factor is a potential tumour angiogenesis factor in human gliomas in vivo. Nature 359, 845–848 (1992).

    Article  CAS  PubMed  Google Scholar 

  106. Baek, J. H. et al. Hypoxia-induced VEGF enhances tumor survivability via suppression of serum deprivation-induced apoptosis. Oncogene 19, 4621–4631 (2000).

    Article  CAS  PubMed  Google Scholar 

  107. Stein, I. et al. Translation of vascular endothelial growth factor mRNA by internal ribosome entry: implications for translation under hypoxia. Mol. Cell. Biol. 18, 3112–3119 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Akiri, G. et al. Regulation of vascular endothelial growth factor (VEGF) expression is mediated by internal initiation of translation and alternative initiation of transcription. Oncogene 17, 227–236 (1998).

    Article  CAS  PubMed  Google Scholar 

  109. Vagner, S. et al. Alternative translation of human fibroblast growth factor 2 mRNA occurs by internal entry of ribosomes. Mol. Cell. Biol. 15, 35–44 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Macejak, D. G. & Sarnow, P. Internal initiation of translation mediated by the 5′ leader of a cellular mRNA. Nature 353, 90–94 (1991).

    Article  CAS  PubMed  Google Scholar 

  111. Holcik, M. Targeting endogenous inhibitors of apoptosis for treatment of cancer, stroke and multiple sclerosis. Expert Opin. Ther. Targets 8, 241–253 (2004).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank members of our laboratories for critical reading of this manuscript and numerous discussions. The work in the laboratory of M.H. is supported by funds from the Canadian Institutes of Health Research (CIHR), Canada Foundation for Innovation, and the Natural Science and Engineering Research Council of Canada (NSERC). N.S. is supported by funds from the CIHR, National Cancer Institute of Canada, National Institutes of Health and Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

OMIM

Wolcott–Rallison syndrome

Swiss-Prot

APAF1

ATF4

FGF2

GCN2

GCN4

GRP78

HIF1

HTRA2

PAIP1

PDGF2

PIM1

UNR

FURTHER INFORMATION

IRES Database

Glossary

ENDOPLASMIC RETICULUM (ER) STRESS

Perturbations of the ER function that are caused by the accumulation of misfolded proteins, oxidative stress, inhibition of glycosylation or alteration in Ca2+ homeostasis.

INTERNAL RIBOSOME-ENTRY SITE

(IRES). A ribosome-binding site that is found in the 5′ UTR or in a coding region of a few cellular and viral RNAs. The IRES facilitates translation by recruiting ribosomes directly to the mRNA independently of the cap structure.

BICISTRONIC mRNA

Allows two different proteins to be translated from the same mRNA strand; the first protein is usually translated by a cap-dependent mechanism, whereas the second protein is translated through an IRES.

RNA CHAPERONE

An RNA-binding protein that aids the correct folding of a given RNA.

UPSTREAM OPEN READING FRAME

(uORF). A short reading frame that is located in the 5′ UTR of some mRNAs. Certain uORFs code for short polypeptides, whereas others are non-coding.

UNFOLDED PROTEIN RESPONSE

(UPR). A coordinated adaptive programme that is triggered by ER stress. The UPR leads to the inhibition of global protein synthesis, and the selective transcription and translation of proteins, which helps the cell to deal with ER stress.

BASIC-HELIX-LOOP-HELIX (bHLH)–LEUCINE-ZIPPER (ZIP) FAMILY

Transcription factors that have a bHLH DNA-binding motif and a zip dimerization motif, which regulate the expression of their target genes as hetero- or homodimers.

POLYSOME

An mRNA with more than one associated translating 80S ribosome.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Holcik, M., Sonenberg, N. Translational control in stress and apoptosis. Nat Rev Mol Cell Biol 6, 318–327 (2005). https://doi.org/10.1038/nrm1618

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm1618

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing