Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Breaking the chains: structure and function of the deubiquitinases

Key Points

  • Ubiquitylation is a reversible post-translational modification involved in a myriad of cellular functions.

  • A superfamily of approximately 100 ubiquitin-specific proteases, called deubiquitylating enzymes, deubiquitinases or DUBs, remove ubiquitin from target proteins, disassemble polymeric ubiquitin chains and process ubiquitin precursor polypeptides to maintain ubiquitin homeostasis in cells.

  • Most DUBs are Cys proteases; a small group are metalloproteases.

  • DUBs are classified into five families (ubiquitin C-terminal hydrolases (UCHs), ubiquitin-specific proteases (USPs), Ovarian tumour proteases (OTUs), Josephins and JAB1/MPN/Mov34 metalloenzymes (JAMMs, also known as MPN+) that are structurally unrelated, but all interact with a common hydrophobic patch on ubiquitin.

  • Multiple layers of regulation modulate the activity and specificity of these enzymes. Specificity also entails recognition of and selective activity towards particular ubiquitin chain types, at least eight of which are now known to coexist in yeast and mammalian cells.

  • DUBs might function to regulate both the stability and the activity of target proteins, which include oncogenes and tumour suppressors. Their wide-ranging involvement in key regulatory processes makes DUBs attractive targets for drug therapy.

Abstract

Ubiquitylation is a reversible protein modification that is implicated in many cellular functions. Recently, much progress has been made in the characterization of a superfamily of isopeptidases that remove ubiquitin: the deubiquitinases (DUBs; also known as deubiquitylating or deubiquitinating enzymes). Far from being uniform in structure and function, these enzymes display a myriad of distinct mechanistic features. The small number (<100) of DUBs might at first suggest a low degree of selectivity; however, DUBs are subject to multiple layers of regulation that modulate both their activity and their specificity. Due to their wide-ranging involvement in key regulatory processes, these enzymes might provide new therapeutic targets.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Domain structure of ubiquitin-specific proteases.
Figure 2: Domain structure of UCH, Josephin, OTU and JAMM/MPN+ DUBs.
Figure 3: General roles of DUBs.
Figure 4: Structures of Cys DUBs.
Figure 5: Structures of a JAMM/MPN+ metalloprotease.
Figure 6: Diverse roles for DUB–E3 ligase interactions.

Similar content being viewed by others

References

  1. Peng, J. et al. A proteomics approach to understanding protein ubiquitination. Nature Biotech. 21, 921–926 (2003).

    Article  CAS  Google Scholar 

  2. Meierhofer, D., Wang, X., Huang, L. & Kaiser, P. Quantitative analysis of global ubiquitination in HeLa cells by mass spectrometry. J. Proteome Res. 10, 4566–4576 (2008).

    Article  CAS  Google Scholar 

  3. Ikeda, F. & Dikic, I. Atypical ubiquitin chains: new molecular signals. 'Protein modifications: beyond the usual suspects' review series. EMBO Rep. 9, 536–542 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Scheel, H. Comparative Analysis of the Ubiquitin-Proteasome System in Homo sapiens and Saccharomyces cerevisiae. Thesis, Univ. Cologne (2005). Highly comprehensive bioinformatic study of the ubiquitin–proteasome system, which deserves a wide readership.

  5. Nijman, S. M. et al. A genomic and functional inventory of deubiquitinating enzymes. Cell 123, 773–786 (2005).

    Article  CAS  PubMed  Google Scholar 

  6. Hurley, J. H., Lee, S. & Prag, G. Ubiquitin-binding domains. Biochem. J. 399, 361–372 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zhu, X., Menard, R. & Sulea, T. High incidence of ubiquitin-like domains in human ubiquitin-specific proteases. Proteins 69, 1–7 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Edelmann, M. J. & Kessler, B. M. Ubiquitin and ubiquitin-like specific proteases targeted by infectious pathogens: emerging patterns and molecular principles. Biochim. Biophys. Acta 1782, 809–816 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Komander, D. & Barford, D. Structure of the A20 OTU domain and mechanistic insights into deubiquitination. Biochem. J. 409, 77–85 (2008).

    Article  CAS  PubMed  Google Scholar 

  10. Storer, A. C. & Menard, R. Catalytic mechanism in papain family of cysteine peptidases. Methods Enzymol. 244, 486–500 (1994).

    Article  CAS  PubMed  Google Scholar 

  11. Hu, M. et al. Crystal structure of a UBP-family deubiquitinating enzyme in isolation and in complex with ubiquitin aldehyde. Cell 111, 1041–1054 (2002). The first USP domain structure, in the presence and absence of ubiquitin. It defined the USP fold and revealed conformational changes on ubiquitin binding.

    Article  CAS  PubMed  Google Scholar 

  12. Reyes-Turcu, F. E., Shanks, J. R., Komander, D. & Wilkinson, K. D. Recognition of polyubiquitin isoforms by the multiple ubiquitin binding modules of isopeptidase T. J. Biol. Chem. 283, 19581–19592 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hu, M. et al. Structure and mechanisms of the proteasome-associated deubiquitinating enzyme USP14. EMBO J. 24, 3747–3756 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Avvakumov, G. V. et al. Amino-terminal dimerization, NRDP1–rhodanese interaction, and inhibited catalytic domain conformation of the ubiquitin-specific protease 8 (USP8). J. Biol. Chem. 281, 38061–38070 (2006).

    Article  CAS  PubMed  Google Scholar 

  15. Komander, D. et al. The structure of the CYLD USP domain explains its specificity for Lys63-linked polyubiquitin and reveals a B box module. Mol. Cell 29, 451–464 (2008). Provides a rationale for the Lys63-linked ubiquitin chain specificity of CYLD.

    Article  CAS  PubMed  Google Scholar 

  16. Edelmann, M. J. et al. Structural basis and specificity of human otubain 1-mediated deubiquitination. Biochem. J. 418, 379–390 (2009).

    Article  CAS  PubMed  Google Scholar 

  17. Lin, S. C. et al. Molecular basis for the unique deubiquitinating activity of the NF-κB inhibitor A20. J. Mol. Biol. 376, 526–540 (2008).

    Article  CAS  PubMed  Google Scholar 

  18. Nanao, M. H. et al. Crystal structure of human otubain 2. EMBO Rep. 5, 783–788 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Messick, T. E. et al. Structural basis for ubiquitin recognition by the Otu1 ovarian tumor domain protein. J. Biol. Chem. 283, 11038–11049 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Johnston, S. C., Larsen, C. N., Cook, W. J., Wilkinson, K. D. & Hill, C. P. Crystal structure of a deubiquitinating enzyme (human UCH-L3) at 1.8 A resolution. EMBO J. 16, 3787–3796 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Johnston, S. C., Riddle, S. M., Cohen, R. E. & Hill, C. P. Structural basis for the specificity of ubiquitin C-terminal hydrolases. EMBO J. 18, 3877–3887 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Komander, D. et al. Molecular discrimination of structurally equivalent Lys63-linked and linear polyubiquitin chains. EMBO Rep. 5, 466–473 (2009). First survey of ubiquitin chain linkage specificities across DUB families.

    Article  CAS  Google Scholar 

  23. Popp, M. W., Artavanis-Tsakonas, K. & Ploegh, H. L. Substrate filtering by the active site crossover loop in UCHL3 revealed by sortagging and gain-of-function mutations. J. Biol. Chem. 284, 3593–3602 (2009). The active site crossover loop in UCHL3 requires extension to allow polyubiquitin chain cleavage.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Larsen, C. N., Krantz, B. A. & Wilkinson, K. D. Substrate specificity of deubiquitinating enzymes: ubiquitin C-terminal hydrolases. Biochemistry 37, 3358–3368 (1998).

    Article  CAS  PubMed  Google Scholar 

  25. Riess, O., Rub, U., Pastore, A., Bauer, P. & Schols, L. SCA3: neurological features, pathogenesis and animal models. Cerebellum 7, 125–137 (2008).

    Article  CAS  PubMed  Google Scholar 

  26. Nicastro, G. et al. The solution structure of the Josephin domain of ataxin-3: structural determinants for molecular recognition. Proc. Natl Acad. Sci. USA 102, 10493–10498 (2005). Together with references 27 and 28, this paper reveals the large conformational changes exhibited by the Josephinfamily of DUBs.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Mao, Y. et al. Deubiquitinating function of ataxin-3: insights from the solution structure of the Josephin domain. Proc. Natl Acad. Sci. USA 102, 12700–12705 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Nicastro, G. et al. The josephin domain of ataxin-3 contains two distinct ubiquitin binding motifs. Biopolymers 20 Apr 2009 (doi:10.1002/bip.21210).

  29. Sato, Y. et al. Structural basis for specific cleavage of Lys 63-linked polyubiquitin chains. Nature 455, 358–362 (2008). The first structure of a DUB with a diubiquitin bound across the active site. It revealed the mechanism of action of JAMM/MPN+ proteases and suggested a rationale for the Lys63-linked ubiquitin chain specificity of AMSH-LP.

    Article  CAS  PubMed  Google Scholar 

  30. Tran, H. J., Allen, M. D., Lowe, J. & Bycroft, M. Structure of the Jab1/MPN domain and its implications for proteasome function. Biochemistry 42, 11460–11465 (2003).

    Article  CAS  PubMed  Google Scholar 

  31. Maytal-Kivity, V., Reis, N., Hofmann, K. & Glickman, M. H. MPN+, a putative catalytic motif found in a subset of MPN domain proteins from eukaryotes and prokaryotes, is critical for Rpn11 function. BMC Biochem. 3, 28 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Yao, T. & Cohen, R. E. A cryptic protease couples deubiquitination and degradation by the proteasome. Nature 419, 403–407 (2002).

    Article  CAS  PubMed  Google Scholar 

  33. Cope, G. A. et al. Role of predicted metalloprotease motif of Jab1/Csn5 in cleavage of Nedd8 from Cul1. Science 298, 608–611 (2002).

    Article  CAS  PubMed  Google Scholar 

  34. McCullough, J. et al. Activation of the endosome-associated ubiquitin isopeptidase AMSH by STAM, a component of the multivesicular body-sorting machinery. Curr. Biol. 16, 160–165 (2006).

    Article  CAS  PubMed  Google Scholar 

  35. Dong, Y. et al. Regulation of BRCC, a holoenzyme complex containing BRCA1 and BRCA2, by a signalosome-like subunit and its role in DNA repair. Mol. Cell 12, 1087–1099 (2003).

    Article  CAS  PubMed  Google Scholar 

  36. Wang, B. & Elledge, S. J. Ubc13/Rnf8 ubiquitin ligases control foci formation of the Rap80/Abraxas/Brca1/Brcc36 complex in response to DNA damage. Proc. Natl Acad. Sci. USA 104, 20759–20763 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Shao, G. et al. The Rap80–BRCC36 de-ubiquitinating enzyme complex antagonizes RNF8–Ubc13-dependent ubiquitination events at DNA double strand breaks. Proc. Natl Acad. Sci. USA 106, 3166–3171 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Cooper, E. M. et al. K63-specific deubiquitination by two JAMM/MPN+ complexes: BRISC-associated Brcc36 and proteasomal Poh1. EMBO J. 28, 621–631 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Drag, M. et al. Positional-scanning fluorigenic substrate libraries reveal unexpected specificity determinants of DUBs (deubiquitinating enzymes). Biochem. J. 415, 367–375 (2008).

    Article  CAS  PubMed  Google Scholar 

  40. Catic, A. et al. Screen for ISG15-crossreactive deubiquitinases. PLoS ONE 2, e679 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Frias-Staheli, N. et al. Ovarian tumor domain-containing viral proteases evade ubiquitin- and ISG15-dependent innate immune responses. Cell Host Microbe 2, 404–416 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Malakhov, M. P., Malakhova, O. A., Kim, K. I., Ritchie, K. J. & Zhang, D. E. UBP43 (USP18) specifically removes ISG15 from conjugated proteins. J. Biol. Chem. 277, 9976–9981 (2002).

    Article  CAS  PubMed  Google Scholar 

  43. Gong, L., Kamitani, T., Millas, S. & Yeh, E. T. Identification of a novel isopeptidase with dual specificity for ubiquitin- and NEDD8-conjugated proteins. J. Biol. Chem. 275, 14212–14216 (2000).

    Article  CAS  PubMed  Google Scholar 

  44. Tokunaga, F. et al. Involvement of linear polyubiquitylation of NEMO in NF-κB activation. Nature Cell Biol. 11, 123–132 (2009).

    Article  CAS  PubMed  Google Scholar 

  45. Rahighi, S. et al. Specific recognition of linear ubiquitin chains by NEMO is important for NF-κB activation. Cell 136, 1098–1109 (2009).

    Article  CAS  PubMed  Google Scholar 

  46. Huang, T. T. et al. Regulation of monoubiquitinated PCNA by DUB autocleavage. Nature Cell Biol. 8, 339–347 (2006).

    CAS  PubMed  Google Scholar 

  47. Wang, T. et al. Evidence for bidentate substrate binding as the basis for the K48 linkage specificity of otubain 1. J. Mol. Biol. 386, 1011–1023 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Tran, H., Hamada, F., Schwarz-Romond, T. & Bienz, M. Trabid, a new positive regulator of Wnt-induced transcription with preference for binding and cleaving K63-linked ubiquitin chains. Genes Dev. 22, 528–542 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kayagaki, N. et al. DUBA: a deubiquitinase that regulates type I interferon production. Science 318, 1628–1632 (2007).

    CAS  PubMed  Google Scholar 

  50. McCullough, J., Clague, M. J. & Urbe, S. AMSH is an endosome-associated ubiquitin isopeptidase. J. Cell Biol. 166, 487–492 (2004). First direct demonstration of in vitro chain linkage specificity and proposed function in regulating receptor fate.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Nakamura, M., Tanaka, N., Kitamura, N. & Komada, M. Clathrin anchors deubiquitinating enzymes, AMSH and AMSH-like protein, on early endosomes. Genes Cells 11, 593–606 (2006).

    Article  CAS  PubMed  Google Scholar 

  52. Winborn, B. J. et al. The deubiquitinating enzyme ataxin-3, a polyglutamine disease protein, edits Lys63 linkages in mixed linkage ubiquitin chains. J. Biol. Chem. 283, 26436–26443 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Al-Hakim, A. K. et al. Control of AMPK-related kinases by USP9X and atypical Lys29/Lys33-linked polyubiquitin chains. Biochem. J. 411, 249–260 (2008).

    Article  CAS  PubMed  Google Scholar 

  54. Reyes-Turcu, F. E. et al. The ubiquitin binding domain ZnF UBP recognizes the C-terminal diglycine motif of unanchored ubiquitin. Cell 124, 1197–1208 (2006). Defines a new mode of ubiquitin recognition and allosteric regulation of DUB activity.

    Article  CAS  PubMed  Google Scholar 

  55. Amerik, A., Swaminathan, S., Krantz, B. A., Wilkinson, K. D. & Hochstrasser, M. In vivo disassembly of free polyubiquitin chains by yeast Ubp14 modulates rates of protein degradation by the proteasome. EMBO J. 16, 4826–4838 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Hunter, T. The age of crosstalk: phosphorylation, ubiquitination, and beyond. Mol. Cell 28, 730–738 (2007).

    Article  CAS  PubMed  Google Scholar 

  57. Reiley, W., Zhang, M., Wu, X., Granger, E. & Sun, S. C. Regulation of the deubiquitinating enzyme CYLD by IκB kinase gamma-dependent phosphorylation. Mol. Cell. Biol. 25, 3886–3895 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Mizuno, E., Kitamura, N. & Komada, M. 14-3-3-dependent inhibition of the deubiquitinating activity of UBPY and its cancellation in the M phase. Exp. Cell Res. 313, 3624–3634 (2007).

    Article  CAS  PubMed  Google Scholar 

  59. Pohl, C. & Jentsch, S. Final stages of cytokinesis and midbody ring formation are controlled by BRUCE. Cell 132, 832–845 (2008).

    Article  CAS  PubMed  Google Scholar 

  60. Mukai, A. et al. Dynamic regulation of ubiquitylation and deubiquitylation at the central spindle during cytokinesis. J. Cell Sci. 121, 1325–1333 (2008).

    Article  CAS  PubMed  Google Scholar 

  61. Todi, S. V. et al. Ubiquitination directly enhances activity of the deubiquitinating enzyme ataxin-3. EMBO J. 28, 372–382 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Meulmeester, E., Kunze, M., Hsiao, H. H., Urlaub, H. & Melchior, F. Mechanism and consequences for paralog-specific sumoylation of ubiquitin-specific protease 25. Mol. Cell 30, 610–619 (2008).

    Article  CAS  PubMed  Google Scholar 

  63. Ross, S. H. et al. Differential redox regulation within the PTP superfamily. Cell Signal. 19, 1521–1530 (2007).

    Article  CAS  PubMed  Google Scholar 

  64. Enesa, K. et al. Hydrogen peroxide prolongs nuclear localization of NF-κB in activated cells by suppressing negative regulatory mechanisms. J. Biol. Chem. 283, 18582–18590 (2008). Suggests that DUBs of the NF-κB pathway might be targets of reactive oxygen species.

    Article  CAS  PubMed  Google Scholar 

  65. Coornaert, B. et al. T cell antigen receptor stimulation induces MALT1 paracaspase-mediated cleavage of the NF-κB inhibitor A20. Nature Immunol. 9, 263–271 (2008).

    Article  CAS  Google Scholar 

  66. Row, P. E. et al. The MIT domain of UBPY constitutes a CHMP binding and endosomal localization signal required for efficient epidermal growth factor receptor degradation. J. Biol. Chem. 282, 30929–30937 (2007).

    Article  CAS  PubMed  Google Scholar 

  67. Iha, H. et al. Inflammatory cardiac valvulitis in TAX1BP1-deficient mice through selective NF-κB activation. EMBO J. 27, 629–641 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Wagner, S. et al. Ubiquitin binding mediates the NF-κB inhibitory potential of ABIN proteins. Oncogene 27, 3739–3745 (2008).

    Article  CAS  PubMed  Google Scholar 

  69. Yao, T. et al. Distinct modes of regulation of the Uch37 deubiquitinating enzyme in the proteasome and in the Ino80 chromatin-remodeling complex. Mol. Cell 31, 909–917 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Kimura, Y. et al. An inhibitor of a deubiquitinating enzyme regulates ubiquitin homeostasis. Cell 137, 549–559 (2009).

    Article  CAS  PubMed  Google Scholar 

  71. Ventii, K. H. & Wilkinson, K. D. Protein partners of deubiquitinating enzymes. Biochem. J. 414, 161–175 (2008).

    Article  CAS  PubMed  Google Scholar 

  72. Cohn, M. A. et al. A UAF1-containing multisubunit protein complex regulates the Fanconi anemia pathway. Mol. Cell 28, 786–797 (2007). Together with reference 73, this paper shows that a WD40 protein can allosterically activate three DUBs of the USP family.

    Article  CAS  PubMed  Google Scholar 

  73. Cohn, M. A., Kee, Y., Haas, W., Gygi, S. P. & D'Andrea, A. D. UAF1 is a subunit of multiple deubiquitinating enzyme complexes. J. Biol. Chem. 8, 5343–5351 (2008).

    Google Scholar 

  74. Sowa, M. E., Bennett, E. J., Gygi, S. P. & Harper, J. W. Defining the human deubiquitinating enzyme interaction landscape. Cell 16 Jul 2009 (doi: 10.1016/j.cell.2009.04.042). Comprehensive proteomic study of the interaction profiles of 75 human DUBs.

  75. van der Knaap, J. A. et al. GMP synthetase stimulates histone H2B deubiquitylation by the epigenetic silencer USP7. Mol. Cell 17, 695–707 (2005).

    Article  CAS  PubMed  Google Scholar 

  76. Row, P. E., Prior, I. A., McCullough, J., Clague, M. J. & Urbe, S. The ubiquitin isopeptidase UBPY regulates endosomal ubiquitin dynamics and is essential for receptor down-regulation. J. Biol. Chem. 281, 12618–12624 (2006).

    Article  CAS  PubMed  Google Scholar 

  77. Blagoev, B., Ong, S. E., Kratchmarova, I. & Mann, M. Temporal analysis of phosphotyrosine-dependent signaling networks by quantitative proteomics. Nature Biotech. 22, 1139–1145 (2004).

    Article  CAS  Google Scholar 

  78. Nakamura, N. & Hirose, S. Regulation of mitochondrial morphology by USP30, a deubiquitinating enzyme present in the mitochondrial outer membrane. Mol. Biol. Cell 19, 1903–1911 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Endo, A. et al. Nucleolar structure and function are regulated by the deubiquitylating enzyme USP36. J. Cell Sci. 122, 678–686 (2009).

    Article  CAS  PubMed  Google Scholar 

  80. Lauwers, E., Jacob, C. & Andre, B. K63-linked ubiquitin chains as a specific signal for protein sorting into the multivesicular body pathway. J. Cell Biol. 3, 493–502 (2009).

    Article  CAS  Google Scholar 

  81. Xu, P. et al. Quantitative proteomics reveals the function of unconventional ubiquitin chains in proteasomal degradation. Cell 137, 133–145 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Daviet, L. & Colland, F. Targeting ubiquitin specific proteases for drug discovery. Biochimie 90, 270–283 (2008).

    Article  CAS  PubMed  Google Scholar 

  83. Nicholson, B., Marblestone, J. G., Butt, T. R. & Mattern, M. R. Deubiquitinating enzymes as novel anticancer targets. Future Oncol. 3, 191–199 (2007).

    Article  CAS  PubMed  Google Scholar 

  84. Hoeller, D. & Dikic, I. Targeting the ubiquitin system in cancer therapy. Nature 458, 438–444 (2009).

    Article  CAS  PubMed  Google Scholar 

  85. Graner, E. et al. The isopeptidase USP2a regulates the stability of fatty acid synthase in prostate cancer. Cancer Cell 5, 253–261 (2004). This paper, together with references 86 and 87, highlights the potential relevance of DUBs as therapeutic drug targets.

    Article  CAS  PubMed  Google Scholar 

  86. Popov, N. et al. The ubiquitin-specific protease USP28 is required for MYC stability. Nature Cell Biol. 9, 765–774 (2007).

    Article  CAS  PubMed  Google Scholar 

  87. Cummins, J. M. & Vogelstein, B. HAUSP is required for p53 destabilization. Cell Cycle 3, 689–692 (2004).

    Article  CAS  PubMed  Google Scholar 

  88. Stegmeier, F. et al. Anaphase initiation is regulated by antagonistic ubiquitination and deubiquitination activities. Nature 446, 876–881 (2007). Highlights the crucial role for USP44 in the progression of the cell cycle.

    Article  CAS  PubMed  Google Scholar 

  89. Huang, F., Kirkpatrick, D., Jiang, X., Gygi, S. & Sorkin, A. Differential regulation of EGF receptor internalization and degradation by multiubiquitination within the kinase domain. Mol. Cell 21, 737–748 (2006).

    Article  CAS  PubMed  Google Scholar 

  90. Clague, M. J. & Urbe, S. Endocytosis: the DUB version. Trends Cell Biol. 16, 551–559 (2006).

    Article  CAS  PubMed  Google Scholar 

  91. Butterworth, M. B. et al. The deubiquitinating enzyme UCH-L3 regulates the apical membrane recycling of the epithelial sodium channel. J. Biol. Chem. 282, 37885–37893 (2007).

    Article  CAS  PubMed  Google Scholar 

  92. Mizuno, E., Kobayashi, K., Yamamoto, A., Kitamura, N. & Komada, M. A deubiquitinating enzyme UBPY regulates the level of protein ubiquitination on endosomes. Traffic 7, 1017–1031 (2006).

    Article  CAS  PubMed  Google Scholar 

  93. Boulkroun, S. et al. Vasopressin-inducible ubiquitin-specific protease 10 increases ENaC cell surface expression by deubiquitylating and stabilizing sorting nexin 3. Am. J. Physiol. Renal Physiol. 295, F889–F900 (2008).

    Article  CAS  PubMed  Google Scholar 

  94. Li, Z. et al. Ubiquitination of a novel deubiquitinating enzyme requires direct binding to von Hippel-Lindau tumor suppressor protein. J. Biol. Chem. 277, 4656–4662 (2002).

    Article  CAS  PubMed  Google Scholar 

  95. Lu, Y. et al. USP19 deubiquitinating enzyme supports cell proliferation by stabilizing KPC1, a ubiquitin ligase for p27Kip1. Mol. Cell Biol. 29, 547–558 (2009).

    Article  CAS  PubMed  Google Scholar 

  96. Cao, Z., Wu, X., Yen, L., Sweeney, C. & Carraway, K. L. Neuregulin-induced ErbB3 downregulation is mediated by a protein stability cascade involving the E3 ubiquitin ligase Nrdp1. Mol. Cell. Biol. 27, 2180–2188 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Brummelkamp, T. R., Nijman, S. M., Dirac, A. M. & Bernards, R. Loss of the cylindromatosis tumour suppressor inhibits apoptosis by activating NF-κB. Nature 424, 797–801 (2003). Together with references 98 and 99, this study put the spotlight on the tumour suppressor function of a DUB.

    Article  CAS  PubMed  Google Scholar 

  98. Trompouki, E. et al. CYLD is a deubiquitinating enzyme that negatively regulates NF-κB activation by TNFR family members. Nature 424, 793–796 (2003).

    Article  CAS  PubMed  Google Scholar 

  99. Kovalenko, A. et al. The tumour suppressor CYLD negatively regulates NF-κB signalling by deubiquitination. Nature 424, 801–805 (2003).

    Article  CAS  PubMed  Google Scholar 

  100. Brooks, C. L., Li, M., Hu, M., Shi, Y. & Gu, W. The p53–Mdm2–HAUSP complex is involved in p53 stabilization by HAUSP. Oncogene 26, 7262–7266 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Heyninck, K. & Beyaert, R. A20 inhibits NF-κB activation by dual ubiquitin-editing functions. Trends Biochem. Sci. 30, 1–4 (2005).

    Article  CAS  PubMed  Google Scholar 

  102. Verma, R. et al. Role of Rpn11 metalloprotease in deubiquitination and degradation by the 26S proteasome. Science 298, 611–615 (2002).

    Article  CAS  PubMed  Google Scholar 

  103. Koulich, E., Li, X. & Demartino, G. N. Relative structural and functional roles of multiple deubiquitylating proteins associated with mammalian 26S proteasome. Mol. Biol. Cell 19, 1072–1082 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Crosas, B. et al. Ubiquitin chains are remodeled at the proteasome by opposing ubiquitin ligase and deubiquitinating activities. Cell 127, 1401–1413 (2006).

    Article  CAS  PubMed  Google Scholar 

  105. Leggett, D. S. et al. Multiple associated proteins regulate proteasome structure and function. Mol. Cell 10, 495–507 (2002).

    Article  CAS  PubMed  Google Scholar 

  106. Yao, T. et al. Proteasome recruitment and activation of the Uch37 deubiquitinating enzyme by Adrm1. Nature Cell Biol. 8, 994–1002 (2006).

    Article  CAS  PubMed  Google Scholar 

  107. Hanna, J., Meides, A., Zhang, D. P. & Finley, D. A ubiquitin stress response induces altered proteasome composition. Cell 129, 747–759 (2007).

    Article  CAS  PubMed  Google Scholar 

  108. Hanna, J. et al. Deubiquitinating enzyme Ubp6 functions noncatalytically to delay proteasomal degradation. Cell 127, 99–111 (2006).

    Article  CAS  PubMed  Google Scholar 

  109. Amerik, A. Y., Nowak, J., Swaminathan, S. & Hochstrasser, M. The DoA4 deubiquitinating enzyme is functionally linked to the vacuolar protein-sorting and endocytic pathways. Mol. Biol. Cell 11, 3365–3380 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Dayal, S. et al. Suppression of the deubiquitinating enzyme USP5 causes the accumulation of unanchored polyubiquitin and the activation of p53. J. Biol. Chem. 8, 5030–5041 (2008).

    Google Scholar 

  111. Amerik, A. Y., Li, S. J. & Hochstrasser, M. Analysis of the deubiquitinating enzymes of the yeast Saccharomyces cerevisiae. Biol. Chem. 381, 981–992 (2000).

    Article  CAS  PubMed  Google Scholar 

  112. Kirkin, V. & Dikic, I. Role of ubiquitin- and Ubl-binding proteins in cell signaling. Curr. Opin. Cell Biol. 19, 199–205 (2007).

    Article  CAS  PubMed  Google Scholar 

  113. Mueller, R. D., Yasuda, H., Hatch, C. L., Bonner, W. M. & Bradbury, E. M. Identification of ubiquitinated histones 2A and 2B in Physarum polycephalum. Disappearance of these proteins at metaphase and reappearance at anaphase. J. Biol. Chem. 260, 5147–5153 (1985).

    CAS  PubMed  Google Scholar 

  114. Zhu, P. et al. A histone H2A deubiquitinase complex coordinating histone acetylation and H1 dissociation in transcriptional regulation. Mol. Cell 27, 609–621 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Joo, H. Y. et al. Regulation of cell cycle progression and gene expression by H2A deubiquitination. Nature 449, 1068–1072 (2007).

    Article  CAS  PubMed  Google Scholar 

  116. Nicassio, F. et al. Human USP3 is a chromatin modifier required for S phase progression and genome stability. Curr. Biol. 22, 1972–1977 (2007).

    Article  CAS  Google Scholar 

  117. Zhang, X. Y. et al. The putative cancer stem cell marker USP22 is a subunit of the human SAGA complex required for activated transcription and cell-cycle progression. Mol. Cell 29, 102–111 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Nijman, S. M. et al. The deubiquitinating enzyme USP1 regulates the Fanconi anemia pathway. Mol. Cell 17, 331–339 (2005). A nice example of the application of an siRNA library screen to identify USP1 as a regulator of FANCD2.

    Article  CAS  PubMed  Google Scholar 

  119. Oestergaard, V. H. et al. Deubiquitination of FANCD2 is required for DNA crosslink repair. Mol. Cell 28, 798–809 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Chiu, Y. H., Zhao, M. & Chen, Z. J. Ubiquitin in NF-κB signaling. Chem. Rev. 4, 1549–1560 (2009).

    Article  CAS  Google Scholar 

  121. Sun, S. C. Deubiquitylation and regulation of the immune response. Nature Rev. Immunol. 8, 501–511 (2008).

    Article  CAS  Google Scholar 

  122. Boone, D. L. et al. The ubiquitin-modifying enzyme A20 is required for termination of Toll-like receptor responses. Nature Immunol. 5, 1052–1060 (2004).

    Article  CAS  Google Scholar 

  123. Lee, E. G. et al. Failure to regulate TNF-induced NF-κB and cell death responses in A20-deficient mice. Science 289, 2350–2354 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Compagno, M. et al. Mutations of multiple genes cause deregulation of NF-κB in diffuse large B-cell lymphoma. Nature 459, 717–721 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Kato, M. et al. Frequent inactivation of A20 in B-cell lymphomas. Nature 459, 712–716 (2009).

    Article  CAS  PubMed  Google Scholar 

  126. Schmitz, R. et al. TNFAIP3 (A20) is a tumor suppressor gene in Hodgkin lymphoma and primary mediastinal B cell lymphoma. J. Exp. Med. 5, 981–989 (2009).

    Article  CAS  Google Scholar 

  127. Wertz, I. E. et al. De-ubiquitination and ubiquitin ligase domains of A20 downregulate NF-κB signalling. Nature 430, 694–699 (2004). First description of ubiquitin chain editing by a DUB.

    Article  CAS  PubMed  Google Scholar 

  128. Shembade, N. et al. The E3 ligase Itch negatively regulates inflammatory signaling pathways by controlling the function of the ubiquitin-editing enzyme A20. Nature Immunol. 9, 254–262 (2008).

    Article  CAS  Google Scholar 

  129. Shembade, N., Parvatiyar, K., Harhaj, N. S. & Harhaj, E. W. The ubiquitin-editing enzyme A20 requires RNF11 to downregulate NF-κB signalling. EMBO J. 5, 513–522 (2009).

    Article  CAS  Google Scholar 

  130. Enesa, K. et al. NF-κB suppression by the deubiquitinating enzyme Cezanne: a novel negative feedback loop in pro-inflammatory signaling. J. Biol. Chem. 283, 7036–7045 (2008).

    Article  CAS  PubMed  Google Scholar 

  131. Dupont, S. et al. FAM/USP9x, a deubiquitinating enzyme essential for TGFβ signaling, controls Smad4 monoubiquitination. Cell 136, 123–135 (2009).

    Article  CAS  PubMed  Google Scholar 

  132. Burrows, J. F. et al. USP17 regulates Ras activation and cell proliferation by blocking RCE 1 activity. J. Biol. Chem. 14, 9587–9595 (2009).

    Article  CAS  Google Scholar 

  133. Rigden, D. J., Liu, H., Hayes, S. D., Urbé, S. & Clague, M. J. Ab initio protein modelling reveals novel human MIT domains. FEBS Lett. 583, 872–878 (2009).

    Article  CAS  PubMed  Google Scholar 

  134. Burrows, J. F., McGrattan, M. J. & Johnston, J. A. The DUB/USP17 deubiquitinating enzymes, a multigene family within a tandemly repeated sequence. Genomics 85, 524–529 (2005).

    Article  CAS  PubMed  Google Scholar 

  135. Quesada, V. et al. Cloning and enzymatic analysis of 22 novel human ubiquitin-specific proteases. Biochem. Biophys. Res. Commun. 314, 54–62 (2004).

    Article  CAS  PubMed  Google Scholar 

  136. Pena, V., Liu, S., Bujnicki, J. M., Luhrmann, R. & Wahl, M. C. Structure of a multipartite protein-protein interaction domain in splicing factor prp8 and its link to retinitis pigmentosa. Mol. Cell 25, 615–624 (2007).

    Article  CAS  PubMed  Google Scholar 

  137. Misaghi, S. et al. Structure of the ubiquitin hydrolase UCH-L3 complexed with a suicide substrate. J. Biol. Chem. 280, 1512–1520 (2005).

    Article  CAS  PubMed  Google Scholar 

  138. Ye, Y., Scheel, H., Hofmann, K. & Komander, D. Dissection of USP catalytic domains reveals five common insertion points. Mol. Biosyst. 17 Jul 2009 (doi:10.1039/b907669g)

Download references

Acknowledgements

We thank K. Hofmann and D. Rigden for bioinformatic discussions and advice. S.U. is a Cancer Research UK Senior Research Fellow.

Author information

Authors and Affiliations

Authors

Supplementary information

Supplementary information S1 (figure) | Mechanism and catalytic centre of Cys-DUBs. (PDF 286 kb)

Supplementary information S2 (figure) | Structures of USP domains. (PDF 267 kb)

Supplementary information S3 (figure) | Structures of OTU domains. (PDF 283 kb)

Supplementary information S4 (figure) | Structures of the Josephin domain of Ataxin-3. (PDF 245 kb)

Supplementary information S5 (figure) | Mechanism of JAMM family deubiquitinases (PDF 446 kb)

Supplementary information S6 (figure) | Ubiquitin interactions with DUBs. (PDF 237 kb)

Supplementary information S7 (table) | Carboxyl termini of human ubiquitin-like modifiers (PDF 161 kb)

Supplementary information S8 (figure) | The seven Lys residues of ubiquitin. (PDF 723 kb)

41580_2009_BFnrm2731_MOESM10_ESM.pdf

Supplementary information S9 (table) | Analysis of the linkage context for all types of polyubiquitin chains. (PDF 170 kb)

Supplementary information S10 (box) | Assays for DUB activity (PDF 191 kb)

Supplementary information S11 (box) | Inhibitors for DUBs (PDF 196 kb)

Related links

Related links

FURTHER INFORMATION

David Komander's homepage

Michael J. Clague's homepage

Sylvie Urbé's homepage

HHPRED

Interpro

Pfam

PROSITE

PSORTII

SMART

RefSeq

Glossary

Metalloenzyme

An enzyme that requires a metal ion, such as zinc, for its activity and catalytic mechanism. The positive charge of the metal is used to position components of the reaction cycles.

Zinc finger ubiquitin-specific protease domain

(ZnF-UBP domain). A zinc finger that is present in histone deacetylase 6 and several ubiquitin-specific proteases, and which in some but not all cases has been shown to bind ubiquitin.

Ubiquitin-associated domain

(UBA domain). A short (40 amino acid) sequence motif, first found in proteins associated with the ubiquitylation pathway, that mediates (poly)ubiquitin binding.

Ubiquitin-like fold

(UBL fold). Ubiquitin contains a distinct three-dimensional fold, which has been used in many proteins related to the ubiquitin system and also in unrelated proteins.

MIT

A domain found in microtubule-interacting and trafficking proteins that forms a three-helix bundle. Some MIT domains, including those of AMSH and USP8, bind to charged multi-vesicular body proteins.

pKa

The log10 acid dissociation constant. The pKa of a given molecule corresponds to the pH value at which its acid and conjugate base forms are balanced.

Acyl intermediate

An intermediate in the Cys DUB reaction mechanism, in which the DUB is covalently bound to the C terminus of the distal ubiquitin. A sulphur acyl bond is formed between the C-terminal Gly of ubiquitin and the catalytic Cys of the DUB.

Oxy-anion hole

Found next to the catalytic Cys of a DUB, this environment stabilizes the negative charge that is created during the transition state before the formation of the acyl intermediate, by supplying hydrogen-donating amide groups, for example on Asn or Gln.

Distal

Used here in the context of DUB cleavage to refer to the relative position of ubiquitin moieties in a ubiquitin chain; in a ubiquitin dimer, distal corresponds to the ubiquitin molecule that is conjugated through its C-terminal Gly.

B-box

A small zinc-binding fold resembling a RING domain, but lacking E3 ligase activity. It is frequently found in the tripartite motif (TRIM) ubiquitin E3 ligases in a conserved array consisting of RING, B-box and coiled coil domains. The function is unknown.

Machado–Joseph disease

(MJD). A rare hereditary ataxia — that is, a disease characterized by lack of muscle control — also called spinocerebrellar ataxia type 3. The name derives from two families of Portuguese and Azorean descent, who were among the first patients described.

26S proteasome

A large multisubunit protease complex that selectively degrades multi-ubiquitylated proteins. It contains a 20S particle, which incorporates three distinct proteolytic activities, and one or two regulatory 19S particles.

COP9 signalosome

An eight-subunit protein complex that regulates protein ubiquitylation and turnover in various developmental and physiological contexts. Extensively characterized in plants but fundamental to all eukaryotes, this complex post-translationally modifies the cullin subunit of E3 ubiquitin ligases by cleaving off the covalently coupled peptide NEDD8.

ESCRT machinery

(Endosomal sorting complex required for transport). A multimeric protein complex that was first identified biochemically in yeast. The ESCRT machinery controls the sorting of endosomal cargo proteins into internal vesicles of multivesicular bodies.

14-3-3 proteins

A family of regulatory proteins that bind to phosphorylated forms of various proteins, which are involved in signal transduction and cell cycle control.

Catalytic rate

The number of substrate molecules that are converted into a product by an enzyme molecule in a unit of time, when the enzyme is fully saturated with substrate.

WD40 domain

A domain consisting of 4–10 WD40 repeats of 44–60 amino acids, which assemble into a propeller-shaped scaffold. Many distinct protein- and peptide-binding sites have been described in these adaptor domains.

Nucleolus

A subnuclear electron-dense structure composed of protein and nucleic acids that has a key role in the biogenesis of ribosomal RNA.

Early endosome

(Also known as sorting endosome). A tubular, vesicular structure that receives material directly from the plasma membrane and is a precursor of the mature (late) endosome. Early endosomes have a key role in sorting material for recycling or degradation in lysosomes.

Lysosome

A membrane-bound organelle in higher eukaryotic cells that has an acidic interior and is the major storage site of the degradative enzymes (acidic hydrolases) that are responsible for the breakdown of internalized proteins and many membrane proteins. It is functionally equivalent to the yeast vacuole.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Komander, D., Clague, M. & Urbé, S. Breaking the chains: structure and function of the deubiquitinases. Nat Rev Mol Cell Biol 10, 550–563 (2009). https://doi.org/10.1038/nrm2731

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm2731

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing