Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Forming functional fat: a growing understanding of adipocyte differentiation

Key Points

  • Adipogenesis is a highly regulated process that converts fibroblast-like precursor cells into round and lipid-laden adipocytes.

  • White and brown adipocyte differentiation share many key important features, such as a requirement for the master adipogenic regulator, peroxisome proliferator-activated receptor-γ (PPARγ), but they also have important differences.

  • The identification of committed precursor cells within adipose tissue has been important for understanding adipogenesis in vivo.

  • Adipogenic stimuli activate signalling pathways that coordinate transcription factors to promote stem cell commitment to an adipogenic fate.

  • Extensive epigenomic modifications underlie the commitment and stability of differentiation into adipocytes.

Abstract

Adipose tissue, which is primarily composed of adipocytes, is crucial for maintaining energy and metabolic homeostasis. Adipogenesis is thought to occur in two stages: commitment of mesenchymal stem cells to a preadipocyte fate and terminal differentiation. Cell shape and extracellular matrix remodelling have recently been found to regulate preadipocyte commitment and competency by modulating WNT and RHO-family GTPase signalling cascades. Adipogenic stimuli induce terminal differentiation in committed preadipocytes through the epigenomic activation of peroxisome proliferator-activated receptor-γ (PPARγ). The coordination of PPARγ with CCAAT/enhancer-binding protein (C/EBP) transcription factors maintains adipocyte gene expression. Improving our understanding of these mechanisms may allow us to identify therapeutic targets against metabolic diseases that are rapidly becoming epidemic globally.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cues influencing white adipogenic progression.
Figure 2: Relationship between white and brown adipogenesis.
Figure 3: WNT signalling in adipogenesis.
Figure 4: RHO-family GTPases in adipogenesis.
Figure 5: Activation of C/EBPs and PPARγ during terminal differentiation.

Similar content being viewed by others

References

  1. Galic, S., Oakhill, J. S. & Steinberg, G. R. Adipose tissue as an endocrine organ. Mol. Cell. Endocrinol. 316, 129–139 (2010).

    Article  CAS  PubMed  Google Scholar 

  2. Cinti, S. The adipose organ. Prostaglandins Leukot. Essent. Fatty Acids 73, 9–15 (2005).

    Article  CAS  PubMed  Google Scholar 

  3. Ibrahim, M. M. Subcutaneous and visceral adipose tissue: structural and functional differences. Obes. Rev. 11, 11–18 (2010).

    Article  PubMed  Google Scholar 

  4. Girard, J. & Lafontan, M. Impact of visceral adipose tissue on liver metabolism and insulin resistance. Part II: visceral adipose tissue production and liver metabolism. Diabetes Metab. 34, 439–445 (2008).

    Article  CAS  PubMed  Google Scholar 

  5. Gesta, S. et al. Evidence for a role of developmental genes in the origin of obesity and body fat distribution. Proc. Natl Acad. Sci. USA 103, 6676–6681 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Yamamoto, Y. et al. Adipose depots possess unique developmental gene signatures. Obesity (Silver Spring) 18, 872–878 (2010).

    Article  CAS  Google Scholar 

  7. Hamdy, O., Porramatikul, S. & Al-Ozairi, E. Metabolic obesity: the paradox between visceral and subcutaneous fat. Curr. Diabetes Rev. 2, 367–373 (2006).

    Article  PubMed  Google Scholar 

  8. Tran, T. T., Yamamoto, Y., Gesta, S. & Kahn, C. R. Beneficial effects of subcutaneous fat transplantation on metabolism. Cell Metab. 7, 410–420 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Frontini, A. & Cinti, S. Distribution and development of brown adipocytes in the murine and human adipose organ. Cell Metab. 11, 253–256 (2010).

    Article  CAS  PubMed  Google Scholar 

  10. van Marken Lichtenbelt, W. D. et al. Cold-activated brown adipose tissue in healthy men. N. Engl. J. Med. 360, 1500–1508 (2009).

    Article  CAS  PubMed  Google Scholar 

  11. Virtanen, K. A. et al. Functional brown adipose tissue in healthy adults. N. Engl. J. Med. 360, 1518–1525 (2009).

    Article  CAS  PubMed  Google Scholar 

  12. Cypess, A. M. et al. Identification and importance of brown adipose tissue in adult humans. N. Engl. J. Med. 360, 1509–1517 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gesta, S., Tseng, Y. H. & Kahn, C. R. Developmental origin of fat: tracking obesity to its source. Cell 131, 242–256 (2007).

    Article  CAS  PubMed  Google Scholar 

  14. Tang, W. et al. White fat progenitor cells reside in the adipose vasculature. Science 322, 583–586 (2008). Identifies preadipocytes that reside within the mouse adipose compartment using a novel lineage-tracing model.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kirtland, J. & Harris, P. M. Changes in adipose tissue of the rat due early undernutrition followed by rehabilitation. 3. Changes in cell replication studied with tritiated thymidine. Br. J. Nutr. 43, 33–43 (1980).

    Article  CAS  PubMed  Google Scholar 

  16. Hirsch, J. & Han, P. W. Cellularity of rat adipose tissue: effects of growth, starvation, and obesity. J. Lipid Res. 10, 77–82 (1969).

    Article  CAS  PubMed  Google Scholar 

  17. Spalding, K. L. et al. Dynamics of fat cell turnover in humans. Nature 453, 783–787 (2008). Calculates rates of adipocyte differentiation and apoptosis in humans using a novel isotopic method.

    Article  CAS  PubMed  Google Scholar 

  18. Lemonnier, D. Effect of age, sex, and sites on the cellularity of the adipose tissue in mice and rats rendered obese by a high-fat diet. J. Clin. Invest. 51, 2907–2915 (1972).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Faust, I. M., Johnson, P. R., Stern, J. S. & Hirsch, J. Diet-induced adipocyte number increase in adult rats: a new model of obesity. Am. J. Physiol. 235, e279–e286 (1978).

    CAS  PubMed  Google Scholar 

  20. Klyde, B. J. & Hirsch, J. Increased cellular proliferation in adipose tissue of adult rats fed a high-fat diet. J. Lipid Res. 20, 705–715 (1979).

    Article  CAS  PubMed  Google Scholar 

  21. Tchoukalova, Y. D. et al. Regional differences in cellular mechanisms of adipose tissue gain with overfeeding. Proc. Natl Acad. Sci. USA 107, 18226–18231 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. van Harmelen, V. et al. Effect of BMI and age on adipose tissue cellularity and differentiation capacity in women. Int. J. Obes. Relat. Metab. Disord. 27, 889–895 (2003).

    Article  CAS  PubMed  Google Scholar 

  23. Seale, P. et al. PRDM16 controls a brown fat/skeletal muscle switch. Nature 454, 961–967 (2008). Reveals that brown adipocytes and skeletal myocytes share a common progenitor, with transcription factor PRDM16 determining the brown adipogenic fate.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lepper, C. & Fan, C.-M. Inducible lineage tracing of Pax7-descendant cells reveals embryonic origin of adult satellite cells. Genesis 48, 424–436 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Cousin, B. et al. Occurrence of brown adipocytes in rat white adipose tissue: molecular and morphological characterization. J. Cell Sci. 103, 931–942 1992).

    Article  CAS  PubMed  Google Scholar 

  26. Stefl, B. et al. Brown fat is essential for cold-induced thermogenesis but not for obesity resistance in aP2-Ucp mice. Am. J. Physiol. 274, e527–e533 (1998).

    CAS  PubMed  Google Scholar 

  27. Seale, P. et al. Prdm16 determines the thermogenic program of subcutaneous white adipose tissue in mice. J. Clin. Invest. 121, 96–105 (2011).

    Article  CAS  PubMed  Google Scholar 

  28. Barbatelli, G. et al. The emergence of cold-induced brown adipocytes in mouse white fat depots is determined predominantly by white to brown adipocyte transdifferentiation. Am. J. Physiol. Endocrinol. Metab. 298, e1244–e1253 (2010).

    Article  CAS  PubMed  Google Scholar 

  29. Rodeheffer, M. S., Birsoy, K. & Friedman, J. M. Identification of white adipocyte progenitor cells in vivo. Cell 135, 240–249 (2008). Characterizes surface antigens that define preadipocytes within the adipose compartment.

    Article  CAS  PubMed  Google Scholar 

  30. Schulz, T. J. et al. Identification of inducible brown adipocyte progenitors residing in skeletal muscle and white fat. Proc. Natl Acad. Sci. USA 108, 143–148 (2011).

    Article  CAS  PubMed  Google Scholar 

  31. Takada, I., Kouzmenko, A. P. & Kato, S. Wnt and PPARγ signaling in osteoblastogenesis and adipogenesis. Nature Rev. Rheumatol. 5, 442–447 (2009).

    Article  CAS  Google Scholar 

  32. Okamura, M. et al. COUP-TFII acts downstream of Wnt/β-catenin signal to silence PPARγ gene expression and repress adipogenesis. Proc. Natl Acad. Sci. USA 106, 5819–5824 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Xu, Z., Yu, S., Hsu, C.-H., Eguchi, J. & Rosen, E. D. The orphan nuclear receptor chicken ovalbumin upstream promoter-transcription factor II is a critical regulator of adipogenesis. Proc. Natl Acad. Sci. USA 105, 2421–2426 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Li, L. et al. The nuclear orphan receptor COUP-TFII plays an essential role in adipogenesis, glucose homeostasis, and energy metabolism. Cell Metab. 9, 77–87 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ross, S. E. et al. Inhibition of adipogenesis by Wnt signaling. Science 289, 950–953 (2000). Identifies a crucial role of WNT signalling in adipogenesis.

    Article  CAS  PubMed  Google Scholar 

  36. Kawai, M. et al. Wnt/Lrp/β-catenin signaling suppresses adipogenesis by inhibiting mutual activation of PPARγ and C/EBPα. Biochem. Biophys. Res. Commun. 363, 276–282 (2007).

    Article  CAS  PubMed  Google Scholar 

  37. Longo, K. A. et al. Wnt10b inhibits development of white and brown adipose tissues. J. Biol. Chem. 279, 35503–35509 (2004).

    Article  CAS  PubMed  Google Scholar 

  38. Kang, S. et al. Wnt signaling stimulates osteoblastogenesis of mesenchymal precursors by suppressing CCAAT/enhancer-binding protein α and peroxisome proliferator-activated receptor γ. J. Biol. Chem. 282, 14515–14524 (2007).

    Article  CAS  PubMed  Google Scholar 

  39. Wang, L., Jin, Q., Lee, J.-E., Su, I-H. & Ge, K. Histone H3K27 methyltransferase Ezh2 represses Wnt genes to facilitate adipogenesis. Proc. Natl Acad. Sci. USA 107, 7317–7322 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Longo, K. A. et al. Wnt signaling protects 3T3-L1 preadipocytes from apoptosis through induction of insulin-like growth factors. J. Biol. Chem. 277, 38239–38244 (2002).

    Article  CAS  PubMed  Google Scholar 

  41. Gagnon, A., Dods, P., Roustan-Delatour, N., Chen, C. S. & Sorisky, A. Phosphatidylinositol-3,4,5-trisphosphate is required for insulin-like growth factor 1-mediated survival of 3T3-L1 preadipocytes. Endocrinology 142, 205–212 (2001).

    Article  CAS  PubMed  Google Scholar 

  42. Takada, I. et al. A histone lysine methyltransferase activated by non-canonical Wnt signalling suppresses PPAR-γ transactivation. Nature Cell Biol. 9, 1273–1285 (2007).

    Article  CAS  PubMed  Google Scholar 

  43. Wakabayashi, K. et al. The peroxisome proliferator-activated receptor γ/retinoid X receptor α heterodimer targets the histone modification enzyme PR-Set7/Setd8 gene and regulates adipogenesis through a positive feedback loop. Mol. Cell. Biol. 29, 3544–3555 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kennell, J. A. & MacDougald, O. A. Wnt signaling inhibits adipogenesis through β-catenin-dependent and -independent mechanisms. J. Biol. Chem. 280, 24004–24010 (2005).

    Article  CAS  PubMed  Google Scholar 

  45. Kanazawa, A. et al. Association of the gene encoding wingless-type mammary tumor virus integration-site family member 5B (WNT5B) with type 2 diabetes. Am. J. Hum. Genet. 75, 832–843 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kanazawa, A. et al. Wnt5b partially inhibits canonical Wnt/β-catenin signaling pathway and promotes adipogenesis in 3T3-L1 preadipocytes. Biochem. Biophys. Res. Commun. 330, 505–510 (2005).

    Article  CAS  PubMed  Google Scholar 

  47. Fox, K. E. et al. Regulation of cyclin D1 and Wnt10b gene expression by cAMP-responsive element-binding protein during early adipogenesis involves differential promoter methylation. J. Biol. Chem. 283, 35096–35105 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Zamani, N. & Brown, C. W. Emerging roles for the transforming growth factor-β superfamily in regulating adiposity and energy expenditure. Endocr. Rev. 32, 387–403 (2011).

    Article  CAS  PubMed  Google Scholar 

  49. Choy, L., Skillington, J. & Derynck, R. Roles of autocrine TGF-β receptor and Smad signaling in adipocyte differentiation. J. Cell Biol. 149, 667–682 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Yadav, H. et al. Protection from obesity and diabetes by blockade of TGF-β/Smad3 signaling. Cell Metab. 14, 67–79 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Böttcher, Y. et al. Adipose tissue expression and genetic variants of the bone morphogenetic protein receptor 1A gene (BMPR1A) are associated with human obesity. Diabetes 58, 2119–2128 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Huang, H. et al. BMP signaling pathway is required for commitment of C3H10T1/2 pluripotent stem cells to the adipocyte lineage. Proc. Natl Acad. Sci. USA 106, 12670–12675 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Hata, K. et al. Differential roles of Smad1 and p38 kinase in regulation of peroxisome proliferator-activating receptor γ during bone morphogenetic protein 2-induced adipogenesis. Mol. Biol. Cell 14, 545–555 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Sottile, V. & Seuwen, K. Bone morphogenetic protein-2 stimulates adipogenic differentiation of mesenchymal precursor cells in synergy with BRL 49653 (rosiglitazone). FEBS Lett. 475, 201–204 (2000).

    Article  CAS  PubMed  Google Scholar 

  55. Skillington, J., Choy, L. & Derynck, R. Bone morphogenetic protein and retinoic acid signaling cooperate to induce osteoblast differentiation of preadipocytes. J. Cell Biol. 159, 135–146 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Jin, W. et al. Schnurri-2 controls BMP-dependent adipogenesis via interaction with Smad proteins. Dev. Cell 10, 461–471 (2006). Characterizes SHN2 as a physiologic regulator of BMP-dependent adipose development.

    Article  CAS  PubMed  Google Scholar 

  57. Tseng, Y.-H. et al. New role of bone morphogenetic protein 7 in brown adipogenesis and energy expenditure. Nature 454, 1000–1004 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Aratani, Y. & Kitagawa, Y. Enhanced synthesis and secretion of type IV collagen and entactin during adipose conversion of 3T3-L1 cells and production of unorthodox laminin complex. J. Biol. Chem. 263, 16163–16169 (1988).

    Article  CAS  PubMed  Google Scholar 

  59. Nakajima, I., Yamaguchi, T., Ozutsumi, K. & Aso, H. Adipose tissue extracellular matrix: newly organized by adipocytes during differentiation. Differentiation 63, 193–200 (1998).

    Article  CAS  PubMed  Google Scholar 

  60. Spiegelman, B. M. & Ginty, C. A. Fibronectin modulation of cell shape and lipogenic gene expression in 3T3-adipocytes. Cell 35, 657–666 (1983).

    Article  CAS  PubMed  Google Scholar 

  61. Liu, J. et al. Changes in integrin expression during adipocyte differentiation. Cell Metab. 2, 165–177 (2005).

    Article  PubMed  CAS  Google Scholar 

  62. Engler, A. J., Sen, S., Sweeney, H. L. & Discher, D. E. Matrix elasticity directs stem cell lineage specification. Cell 126, 677–689 (2006).

    Article  CAS  PubMed  Google Scholar 

  63. Rowlands, A. S., George, P. A. & Cooper-White, J. J. Directing osteogenic and myogenic differentiation of MSCs: interplay of stiffness and adhesive ligand presentation. Am. J. Physiol. Cell Physiol. 295, C1037–C1044 (2008).

    Article  CAS  PubMed  Google Scholar 

  64. Winer, J. P., Janmey, P. A., McCormick, M. E. & Funaki, M. Bone marrow-derived human mesenchymal stem cells become quiescent on soft substrates but remain responsive to chemical or mechanical stimuli. Tissue Eng. Part A 15, 147–154 (2009).

    Article  CAS  PubMed  Google Scholar 

  65. Chun, T.-H. et al. A pericellular collagenase directs the 3-dimensional development of white adipose tissue. Cell 125, 577–591 (2006). Demonstrates that the pericellular collagenase MMP14 is required for adipocyte differentiation in 3D.

    Article  CAS  PubMed  Google Scholar 

  66. Akimoto, T. et al. Mechanical stretch inhibits myoblast-to-adipocyte differentiation through Wnt signaling. Biochem. Biophys. Res. Commun. 329, 381–385 (2005).

    Article  CAS  PubMed  Google Scholar 

  67. Jakkaraju, S., Zhe, X., Pan, D., Choudhury, R. & Schuger, L. TIPs are tension-responsive proteins involved in myogenic versus adipogenic differentiation. Dev. Cell 9, 39–49 (2005).

    Article  CAS  PubMed  Google Scholar 

  68. Teboul, L. et al. Thiazolidinediones and fatty acids convert myogenic cells into adipose-like cells. J. Biol. Chem. 270, 28183–28187 (1995).

    Article  CAS  PubMed  Google Scholar 

  69. Hu, E., Tontonoz, P. & Spiegelman, B. M. Transdifferentiation of myoblasts by the adipogenic transcription factors PPARγ and C/EBPα. Proc. Natl Acad. Sci. USA 92, 9856–9860 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Sen, B. et al. Mechanical strain inhibits adipogenesis in mesenchymal stem cells by stimulating a durable β-catenin signal. Endocrinology 149, 6065–6075 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Visse, R. & Nagase, H. Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure, function, and biochemistry. Circ. Res. 92, 827–839 (2003).

    Article  CAS  PubMed  Google Scholar 

  72. Chavey, C. et al. Matrix metalloproteinases are differentially expressed in adipose tissue during obesity and modulate adipocyte differentiation. J. Biol. Chem. 278, 11888–11896 (2003).

    Article  CAS  PubMed  Google Scholar 

  73. Croissandeau, G., Chretien, M. & Mbikay, M. Involvement of matrix metalloproteinases in the adipose conversion of 3T3-L1 preadipocytes. Biochem. J. 364, 739–746 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Lijnen, H. R. et al. Matrix metalloproteinase inhibition impairs adipose tissue development in mice. Arterioscler. Thromb. Vasc. Biol. 22, 374–379 (2002).

    Article  CAS  PubMed  Google Scholar 

  75. Maquoi, E., Munaut, C., Colige, A., Collen, D. & Lijnen, H. R. Modulation of adipose tissue expression of murine matrix metalloproteinases and their tissue inhibitors with obesity. Diabetes 51, 1093–1101 (2002).

    Article  CAS  PubMed  Google Scholar 

  76. Itoh, Y. MT1-MMP: a key regulator of cell migration in tissue. IUBMB Life 58, 589–596 (2006).

    Article  CAS  PubMed  Google Scholar 

  77. Chun, T.-H. et al. Genetic link between obesity and MMP14-dependent adipogenic collagen turnover. Diabetes 59, 2484–2494 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Bernot, D. et al. Down-regulation of tissue inhibitor of metalloproteinase-3 (TIMP-3) expression is necessary for adipocyte differentiation. J. Biol. Chem. 285, 6508–6514 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Yu, W. H., Yu, S., Meng, Q., Brew, K. & Woessner, J. F. TIMP-3 binds to sulfated glycosaminoglycans of the extracellular matrix. J. Biol. Chem. 275, 31226–31232 (2000).

    Article  CAS  PubMed  Google Scholar 

  80. Demeulemeester, D. et al. Overexpression of tissue inhibitor of matrix metalloproteinases-1 (TIMP-1) in mice does not affect adipogenesis or adipose tissue development. Thromb. Haemost. 95, 1019–1024 (2006).

    Article  CAS  PubMed  Google Scholar 

  81. Scroyen, I., Jacobs, F., Cosemans, L., De Geest, B. & Lijnen, H. R. Blood vessel density in de novo formed adipose tissue is decreased upon overexpression of TIMP-1. Obesity (Silver Spring) 18, 638–640 (2010).

    Article  Google Scholar 

  82. Tran, T. T. & Kahn, C. R. Transplantation of adipose tissue and stem cells: role in metabolism and disease. Nature Rev. Endocrinol. 6, 195–213 (2010). Provides an overview of applications for adipose-derived stem cells, surveys methods of culturing and differentiating adipocyte precursor cells and discusses the potential clinical uses of adipose transplantation.

    Article  Google Scholar 

  83. Green, H. & Meuth, M. An established pre-adipose cell line and its differentiation in culture. Cell 3, 127–133 (1974).

    Article  CAS  PubMed  Google Scholar 

  84. Kuri-Harcuch, W. & Green, H. Adipose conversion of 3T3 cells depends on a serum factor. Proc. Natl Acad. Sci. USA 75, 6107–6109 (1978).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Grigoriadis, A. E., Heersche, J. N. & Aubin, J. E. Differentiation of muscle, fat, cartilage, and bone from progenitor cells present in a bone-derived clonal cell population: effect of dexamethasone. J. Cell Biol. 106, 2139–2151 (1988).

    Article  CAS  PubMed  Google Scholar 

  86. Pairault, J. & Green, H. A study of the adipose conversion of suspended 3T3 cells by using glycerophosphate dehydrogenase as differentiation marker. Proc. Natl Acad. Sci. USA 76, 5138–5142 (1979).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Tang, Q. Q., Otto, T. C. & Lane, M. D. Mitotic clonal expansion: a synchronous process required for adipogenesis. Proc. Natl Acad. Sci. USA 100, 44–49 (2003).

    Article  CAS  PubMed  Google Scholar 

  88. Dike, L. E. & Farmer, S. R. Cell adhesion induces expression of growth-associated genes in suspension-arrested fibroblasts. Proc. Natl Acad. Sci. USA 85, 6792–6796 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. McBeath, R., Pirone, D. M., Nelson, C. M., Bhadriraju, K. & Chen, C. S. Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Dev. Cell 6, 483–495 (2004). Provides evidence for the role of cell shape and the RHO pathway in the regulation adipogenic/osteogenic cell fate decisions.

    Article  CAS  PubMed  Google Scholar 

  90. Kilian, K. A., Bugarija, B., Lahn, B. T. & Mrksich, M. Geometric cues for directing the differentiation of mesenchymal stem cells. Proc. Natl Acad. Sci. USA 107, 4872–4877 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Noguchi, M. et al. Genetic and pharmacological inhibition of Rho-associated kinase II enhances adipogenesis. J. Biol. Chem. 282, 29574–29583 (2007).

    Article  CAS  PubMed  Google Scholar 

  92. Dupont, S. et al. Role of YAP/TAZ in mechanotransduction. Nature 474, 179–183 (2011). Demonstrates that YAP and TAZ are transcription factors downstream of RHO-dependent mechanotransduction that regulate adipogenic commitment in MSCs.

    Article  CAS  PubMed  Google Scholar 

  93. Sordella, R., Jiang, W., Chen, G. C., Curto, M. & Settleman, J. Modulation of Rho GTPase signaling regulates a switch between adipogenesis and myogenesis. Cell 113, 147–158 (2003).

    Article  CAS  PubMed  Google Scholar 

  94. Bryan, B. A. et al. Modulation of muscle regeneration, myogenesis, and adipogenesis by the Rho family guanine nucleotide exchange factor GEFT. Mol. Cell. Biol. 25, 11089–11101 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Gupta, R. K. et al. Transcriptional control of preadipocyte determination by Zfp423. Nature 464, 619–623 (2010). Shows that the transcription factor ZFP423 is an adipogenic competency factor.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Cheng, L. E., Zhang, J. & Reed, R. R. The transcription factor Zfp423/OAZ is required for cerebellar development and CNS midline patterning. Dev. Biol. 307, 43–52 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Takahashi, K. & Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663–676 (2006).

    Article  CAS  PubMed  Google Scholar 

  98. Cristancho, A. G. et al. Repressor transcription factor 7-like 1 promotes adipogenic competency in precursor cells. Proc. Natl Acad. Sci. USA 13 Sep 2011 (doi:10.1073/pnas.1109409108).

    Article  CAS  Google Scholar 

  99. Yi, F. & Merrill, B. J. Stem cells and TCF proteins: a role for β-catenin-independent functions. Stem Cell Rev. 3, 39–48 (2007).

    Article  CAS  PubMed  Google Scholar 

  100. Lefterova, M. I. & Lazar, M. A. New developments in adipogenesis. Trends Endocrinol. Metab. 20, 107–114 (2009).

    Article  CAS  PubMed  Google Scholar 

  101. Hwang, C.-S., Loftus, T. M., Mandrup, S. & Lane, M. D. Adipocyte differentiation and leptin expression. Annu. Rev. Cell Dev. Biol. 13, 231–259 (1997).

    Article  CAS  PubMed  Google Scholar 

  102. Rosen, E. D. & MacDougald, O. A. Adipocyte differentiation from the inside out. Nature Rev. Mol. Cell Biol. 7, 885–896 (2006).

    Article  CAS  Google Scholar 

  103. Yeh, W. C., Cao, Z., Classon, M. & McKnight, S. L. Cascade regulation of terminal adipocyte differentiation by three members of the C/EBP family of leucine zipper proteins. Genes Dev. 9, 168–181 (1995).

    Article  CAS  PubMed  Google Scholar 

  104. Wu, Z., Xie, Y., Bucher, N. L. & Farmer, S. R. Conditional ectopic expression of C/EBPβ in NIH-3T3 cells induces PPARγ and stimulates adipogenesis. Genes Dev. 9, 2350–2363 (1995).

    Article  CAS  PubMed  Google Scholar 

  105. Steger, D. J. et al. Propagation of adipogenic signals through an epigenomic transition state. Genes Dev. 24, 1035–1044 (2010). Identifies an epigenomic transition state in adipogenesis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Tzameli, I. et al. Regulated production of a peroxisome proliferator-activated receptor-γ ligand during an early phase of adipocyte differentiation in 3T3-L1 adipocytes. J. Biol. Chem. 279, 36093–36102 (2004).

    Article  CAS  PubMed  Google Scholar 

  107. Martini, C. N., Plaza, M. V. & Vila, M. del C. PKA-dependent and independent cAMP signaling in 3T3-L1 fibroblasts differentiation. Mol. Cell. Endocrinol. 298, 42–47 (2009).

    Article  CAS  PubMed  Google Scholar 

  108. Petersen, R. K. et al. Cyclic AMP (cAMP)-mediated stimulation of adipocyte differentiation requires the synergistic action of Epac- and cAMP-dependent protein kinase-dependent processes. Mol. Cell. Biol. 28, 3804–3816 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Kawai, M. & Rosen, C. J. PPARγ: a circadian transcription factor in adipogenesis and osteogenesis. Nature Rev. Endocrinol. 6, 629–636 (2010).

    Article  CAS  Google Scholar 

  110. Lefterova, M. I. et al. PPARγ and C/EBP factors orchestrate adipocyte biology via adjacent binding on a genome-wide scale. Genes Dev. 22, 2941–2952 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Nielsen, R. et al. Genome-wide profiling of PPARγ:RXR and RNA polymerase II occupancy reveals temporal activation of distinct metabolic pathways and changes in RXR dimer composition during adipogenesis. Genes Dev. 22, 2953–2967 (2008). References 110 and 111 describe the genome-wide binding of PPARγ in 3T3-L1 adipocytes and identify cooperation with C/EBPs as a hallmark of genomic PPARγ binding in adipocytes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Siersbæk, R. et al. Extensive chromatin remodelling and establishment of transcription factor “hotspots” during early adipogenesis. EMBO J. 30, 1459–1472 (2011). Uses DNase hypersensitivity followed by deep sequencing to identify open chromatin regions during early adipogenesis and in mature adipocytes.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Zhang, J. W., Klemm, D. J., Vinson, C. & Lane, M. D. Role of CREB in transcriptional regulation of CCAAT/enhancer-binding protein β gene during adipogenesis. J. Biol. Chem. 279, 4471–4478 (2004).

    Article  CAS  PubMed  Google Scholar 

  114. Wang, D. et al. Signal transducer and activator of transcription 3 (STAT3) regulates adipocyte differentiation via peroxisome-proliferator-activated receptor γ (PPARγ). Biol. Cell 102, 1–12 (2010).

    Article  CAS  Google Scholar 

  115. Zhang, K., Guo, W., Yang, Y. & Wu, J. JAK2/STAT3 pathway is involved in the early stage of adipogenesis through regulating C/EBPβ transcription. J. Cell. Biochem. 112, 488–497 (2011).

    Article  CAS  PubMed  Google Scholar 

  116. Birsoy, K., Chen, Z. & Friedman, J. Transcriptional regulation of adipogenesis by KLF4. Cell Metab. 7, 339–347 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Chen, Z., Torrens, J. I., Anand, A., Spiegelman, B. M. & Friedman, J. M. Krox20 stimulates adipogenesis via C/EBPβ-dependent and -independent mechanisms. Cell Metab. 1, 93–106 (2005).

    Article  CAS  PubMed  Google Scholar 

  118. Park, B.-H., Qiang, L. & Farmer, S. R. Phosphorylation of C/EBPβ at a consensus extracellular signal-regulated kinase/glycogen synthase kinase 3 site is required for the induction of adiponectin gene expression during the differentiation of mouse fibroblasts into adipocytes. Mol. Cell. Biol. 24, 8671–8680 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Tang, Q.-Q. et al. Sequential phosphorylation of CCAAT enhancer-binding protein β by MAPK and glycogen synthase kinase 3β is required for adipogenesis. Proc. Natl Acad. Sci. USA 102, 9766–9771 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Asada, M. et al. DNA binding-dependent glucocorticoid receptor activity promotes adipogenesis via Krüppel-like factor 15 gene expression. Lab. Invest. 91, 203–215 (2011).

    Article  CAS  PubMed  Google Scholar 

  121. Wiper-Bergeron, N., Wu, D., Pope, L., Schild-Poulter, C. & Hache, R. J. Stimulation of preadipocyte differentiation by steroid through targeting of an HDAC1 complex. EMBO J. 22, 2135–2145 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Wiper-Bergeron, N., Salem, H. A., Tomlinson, J. J., Wu, D. & Hache, R. J. Glucocorticoid-stimulated preadipocyte differentiation is mediated through acetylation of C/EBPβ by GCN5. Proc. Natl Acad. Sci. USA 104, 2703–2708 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Tanaka, T., Yoshida, N., Kishimoto, T. & Akira, S. Defective adipocyte differentiation in mice lacking the C/EBPβ and/or C/EBPδ gene. EMBO J. 16, 7432–7443 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Tang, Q. Q., Zhang, J. W. & Daniel Lane, M. Sequential gene promoter interactions of C/EBPβ, C/EBPα, and PPARγ during adipogenesis. Biochem. Biophys. Res. Commun. 319, 235–239 (2004).

    Article  CAS  PubMed  Google Scholar 

  125. Rosen, E. D. et al. PPARγ is required for the differentiation of adipose tissue in vivo and in vitro. Mol. Cell 4, 611–617 (1999).

    Article  CAS  PubMed  Google Scholar 

  126. Lehmann, J. M. et al. An antidiabetic thiazolidinedione is a high affinity ligand for peroxisome proliferator-activated receptor γ (PPARγ). J. Biol. Chem. 270, 12953–12956 (1995).

    Article  CAS  PubMed  Google Scholar 

  127. Tang, W., Zeve, D., Seo, J., Jo, A.-Y. & Graff, J. M. Thiazolidinediones regulate adipose lineage dynamics. Cell Metab. 14, 116–122 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Tontonoz, P., Hu, E., Graves, R. A., Budavari, A. I. & Spiegelman, B. M. mPPAR gamma 2: tissue-specific regulator of an adipocyte enhancer. Genes Dev. 8, 1224–1234 (1994).

    Article  CAS  PubMed  Google Scholar 

  129. Chawla, A., Schwarz, E. J., Dimaculangan, D. D. & Lazar, M. A. Peroxisome proliferator-activated receptor (PPAR) gamma: adipose-predominant expression and induction early in adipocyte differentiation. Endocrinology 135, 798–800 (1994).

    Article  CAS  PubMed  Google Scholar 

  130. Mikkelsen, T. S. et al. Comparative epigenomic analysis of murine and human adipogenesis. Cell 143, 156–169 (2010). Provides an extensive collection of genome-wide profiles of transcription factor binding and histone modifications in human and mouse adipogenesis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Haberland, M., Carrer, M., Mokalled, M. H., Montgomery, R. L. & Olson, E. N. Redundant control of adipogenesis by histone deacetylases 1 and 2. J. Biol. Chem. 285, 14663–14670 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Kim, S.-N., Choi, H.-Y. & Kim, Y. K. Regulation of adipocyte differentiation by histone deacetylase inhibitors. Arch. Pharm. Res. 32, 535–541 (2009).

    Article  CAS  PubMed  Google Scholar 

  133. Lagace, D. C. & Nachtigal, M. W. Inhibition of histone deacetylase activity by valproic acid blocks adipogenesis. J. Biol. Chem. 279, 18851–18860 (2004).

    Article  CAS  PubMed  Google Scholar 

  134. Chatterjee, T. K. et al. Histone deacetylase 9 is a negative regulator of adipogenic differentiation. J. Biol. Chem. 286, 27836–27847 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Yoo, E. J., Chung, J.-J., Choe, S. S., Kim, K. H. & Kim, J. B. Down-regulation of histone deacetylases stimulates adipocyte differentiation. J. Biol. Chem. 281, 6608–6615 (2006).

    Article  CAS  PubMed  Google Scholar 

  136. Nebbioso, A. et al. HDACs class II-selective inhibition alters nuclear receptor-dependent differentiation. J. Mol. Endocrinol. 45, 219–228 (2010).

    Article  CAS  PubMed  Google Scholar 

  137. Picard, F. et al. Sirt1 promotes fat mobilization in white adipocytes by repressing PPAR-γ. Nature 429, 771–776 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Jing, E., Gesta, S. & Kahn, C. R. SIRT2 regulates adipocyte differentiation through FoxO1 acetylation/deacetylation. Cell Metab. 6, 105–114 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Lee, J. et al. Targeted inactivation of MLL3 histone H3-Lys-4 methyltransferase activity in the mouse reveals vital roles for MLL3 in adipogenesis. Proc. Natl Acad. Sci. USA 105, 19229–19234 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Lizcano, F., Romero, C. & Vargas, D. Regulation of adipogenesis by nuclear receptor PPARγ is modulated by the histone demethylase JMJD2C. Genet. Mol. Biol. 34, 19–24 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Cho, Y.-W. et al. Histone methylation regulator PTIP is required for PPARγ and C/EBPα expression and adipogenesis. Cell Metab. 10, 27–39 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Park, U.-H., Yoon, S. K., Park, T., Kim, E.-J. & Um, S.-J. Additional sex comb-like (ASXL) proteins 1 and 2 play opposite roles in adipogenesis via reciprocal regulation of peroxisome proliferator-activated receptor γ. J. Biol. Chem. 286, 1354–1363 (2011).

    Article  CAS  PubMed  Google Scholar 

  143. Wang, J. & Lazar, M. A. Bifunctional role of Rev-erbα in adipocyte differentiation. Mol. Cell. Biol. 28, 2213–2220 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Kawai, M. et al. A circadian-regulated gene, Nocturnin, promotes adipogenesis by stimulating PPAR-γ nuclear translocation. Proc. Natl Acad. Sci. USA 107, 10508–10513 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Tong, Q. et al. Function of GATA transcription factors in preadipocyte–adipocyte transition. Science 290, 134–138 (2000).

    Article  CAS  PubMed  Google Scholar 

  146. Villanueva, C. J. et al. TLE3 is a dual-function transcriptional coregulator of adipogenesis. Cell Metab. 13, 413–427 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Wu, Z. et al. Cross-regulation of C/EBPα and PPARγ controls the transcriptional pathway of adipogenesis and insulin sensitivity. Mol. Cell 3, 151–158 (1999).

    Article  CAS  PubMed  Google Scholar 

  148. Schupp, M. et al. Re-expression of GATA2 cooperates with peroxisome proliferator-activated receptor-γ depletion to revert the adipocyte phenotype. J. Biol. Chem. 284, 9458–9464 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Liao, W. et al. Suppression of PPAR-γ attenuates insulin-stimulated glucose uptake by affecting both GLUT1 and GLUT4 in 3T3-L1 adipocytes. Am. J. Physiol. Endocrinol. Metab. 293, e219–e227 (2007).

    Article  CAS  PubMed  Google Scholar 

  150. Imai, T. et al. Peroxisome proliferator-activated receptor γ is required in mature white and brown adipocytes for their survival in the mouse. Proc. Natl Acad. Sci. USA 101, 4543–4547 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. He, W. et al. Adipose-specific peroxisome proliferator-activated receptor γ knockout causes insulin resistance in fat and liver but not in muscle. Proc. Natl Acad. Sci. USA 100, 15712–15717 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Schmidt, S. F. et al. Cross species comparison of C/EBPα and PPARγ profiles in mouse and human adipocytes reveals interdependent retention of binding sites. BMC Genomics 12, 152 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Soccio, R. E. et al. Species-specific strategies underlying conserved functions of metabolic transcription factors. Mol. Endocrinol. 25, 694–706 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Nedergaard, J., Petrovic, N., Lindgren, E. M., Jacobsson, A. & Cannon, B. PPARγ in the control of brown adipocyte differentiation. Biochim. Biophys. Acta 1740, 293–304 (2005).

    Article  CAS  PubMed  Google Scholar 

  155. Kajimura, S. et al. Initiation of myoblast to brown fat switch by a PRDM16-C/EBP-β transcriptional complex. Nature 460, 1154–1158 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Kajimura, S. et al. Regulation of the brown and white fat gene programs through a PRDM16/CtBP transcriptional complex. Genes Dev. 22, 1397–1409 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Puigserver, P. et al. A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell 92, 829–839 (1998).

    Article  CAS  PubMed  Google Scholar 

  158. Uldry, M. et al. Complementary action of the PGC-1 coactivators in mitochondrial biogenesis and brown fat differentiation. Cell Metab. 3, 333–341 (2006).

    Article  CAS  PubMed  Google Scholar 

  159. Tontonoz, P. & Spiegelman, B. M. Fat and beyond: the diverse biology of PPARγ. Annu. Rev. Biochem. 77, 289–312 (2008).

    Article  CAS  PubMed  Google Scholar 

  160. Müller, S. & Krämer, O. H. Inhibitors of HDACs — effective drugs against cancer? Curr. Cancer Drug Targets 10, 210–228 (2010).

    Article  PubMed  Google Scholar 

  161. Sugii, S. et al. Human and mouse adipose-derived cells support feeder-independent induction of pluripotent stem cells. Proc. Natl Acad. Sci. USA 107, 3558–3563 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Sauer, B. Inducible gene targeting in mice using the Cre/lox system. Methods 14, 381–392 (1998).

    Article  CAS  PubMed  Google Scholar 

  163. Chang, T. H. & Polakis, S. E. Differentiation of 3T3-L1 fibroblasts to adipocytes. Effect of insulin and indomethacin on the levels of insulin receptors. J. Biol. Chem. 253, 4693–4696 (1978).

    Article  CAS  PubMed  Google Scholar 

  164. Costa, M., Manen, C. A. & Russell, D. H. In vivo activation of cAMP-dependent protein kinase by aminophylline and 1-methyl, 3-isobutylxanthine. Biochem. Biophys. Res. Commun. 65, 75–81 (1975).

    Article  CAS  PubMed  Google Scholar 

  165. Elks, M. L., Manganiello, V. C. & Vaughan, M. Hormone-sensitive particulate cAMP phosphodiesterase activity in 3T3-L1 adipocytes. Regulation of responsiveness by dexamethasone. J. Biol. Chem. 258, 8582–8587 (1983).

    Article  CAS  PubMed  Google Scholar 

  166. Fischer-Posovszky, P., Newell, F. S., Wabitsch, M. & Tornqvist, H. E. Human SGBS cells — a unique tool for studies of human fat cell biology. Obes. Facts 1, 184–189 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  167. Mandrup, S., Loftus, T. M., MacDougald, O. A., Kuhajda, F. P. & Lane, M. D. Obese gene expression at in vivo levels by fat pads derived from s.c. implanted 3T3-F442A preadipocytes. Proc. Natl Acad. Sci. USA 94, 4300–4305 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. MacDougald, O. A. & Lane, M. D. Transcriptional regulation of gene expression during adipocyte differentiation. Annu. Rev. Biochem. 64, 345–373 (1995).

    Article  CAS  PubMed  Google Scholar 

  169. Ross, S. R. et al. A fat-specific enhancer is the primary determinant of gene expression for adipocyte P2 in vivo. Proc. Natl Acad. Sci. USA 87, 9590–9594 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Hunt, C. R., Ro, J. H., Dobson, D. E., Min, H. Y. & Spiegelman, B. M. Adipocyte P2 gene: developmental expression and homology of 5′-flanking sequences among fat cell-specific genes. Proc. Natl Acad. Sci. USA 83, 3786–3790 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Makowski, L. et al. Lack of macrophage fatty-acid-binding protein aP2 protects mice deficient in apolipoprotein E against atherosclerosis. Nature Med. 7, 699–705 (2001).

    Article  CAS  PubMed  Google Scholar 

  172. Urs, S., Harrington, A., Liaw, L. & Small, D. Selective expression of an aP2/fatty acid binding protein 4-Cre transgene in non-adipogenic tissues during embryonic development. Transgenic Res. 15, 647–653 (2006).

    Article  CAS  PubMed  Google Scholar 

  173. Martens, K., Bottelbergs, A. & Baes, M. Ectopic recombination in the central and peripheral nervous system by aP2/FABP4-Cre mice: implications for metabolism research. FEBS Lett. 584, 1054–1058 (2010).

    Article  CAS  PubMed  Google Scholar 

  174. Wang, Z. V., Deng, Y., Wang, Q. A., Sun, K. & Scherer, P. E. Identification and characterization of a promoter cassette conferring adipocyte-specific gene expression. Endocrinology 151, 2933–2939 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Calo, E. et al. Rb regulates fate choice and lineage commitment in vivo. Nature 466, 1110–1114 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank P. Seale and members of the Lazar laboratory for insightful discussions. Work on adipogenesis in the Lazar laboratory is supported by US National Institutes of Health grant number DK49780. A.G.C. was supported by the Gilliam Fellowship from the Howard Hughes Medical Institute. We apologize for not being able to discuss and cite all worthy papers and topics as a result of space limitations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mitchell A. Lazar.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Mitchell A. Lazar's homepage

Glossary

Type 2 diabetes

A chronic disease that is characterized by increased blood glucose and is related to insulin resistance and pancreatic failure.

Cancer cachexia

Loss of weight, muscle atrophy, fatigue, weakness and loss of appetite in the setting of cancer.

Lipodystrophies

Reduced or abnormally redistributed adipose compartments (acquired or genetic).

Unilocular

Having one large lipid droplet.

Thermogenesis

The process of producing heat.

Fluorodeoxyglucose positron emission tomography

A molecular imaging technique that uses a labelled glucose analogue.

Epigenomic

Of the epigenome; that is, chromatin modifications, including DNA methylation and histone modification, that regulate gene expression and function without a corresponding alteration in DNA sequence.

Subscapular

Referring to the region below the scapula (the shoulder blade).

Uncoupling protein 1

(UCP1). A mitochondrial protein that dissociates oxidative phosphorylation from energy production, leading to increased thermogenesis.

A-Zip mice

Mice in which a dominant-negative transcription factor that interferes with CCAAT/enhancer-binding protein (C/EBP) function is expressed by adipocytes, leading to lipodystrophy.

Integrin

A heterodimeric, cation-dependent cell surface receptor that attaches cells to their surrounding environment, connecting extracellular matrix cues to intracellular signalling.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cristancho, A., Lazar, M. Forming functional fat: a growing understanding of adipocyte differentiation. Nat Rev Mol Cell Biol 12, 722–734 (2011). https://doi.org/10.1038/nrm3198

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm3198

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing