Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Regulated transport of the glucose transporter GLUT4

Key Points

  • Following a meal, insulin secretion from the pancreas facilitates the removal of glucose from the bloodstream. One of the main events in this regulatory process is the stimulation of glucose entry into muscle and fat cells. This is mediated by the translocation of the facilitative glucose transporter GLUT4 from an intracellular store to the cell surface.

  • The insulin-responsive GLUT4 is retained intracellularly in muscle and fat cells. In response to insulin, GLUT4 is translocated to the cell surface, where it facilitates the uptake of glucose into these insulin-responsive tissues. Understanding the transport itinerary of GLUT4 in these cells, both in the absence and presence of insulin, has proved to be a very challenging cell-biology problem.

  • A model that we believe fits all of the available data available for GLUT4 transport at present is described. This model involves the intracellular cycling of GLUT4 between the trans-Golgi network, the endosomal system and the plasma membrane. The effect of insulin on this model is discussed in the article. Other potential models are also discussed.

  • It is likely that the delivery of GLUT4 to the cell surface of fat and muscle cells is insufficient to account for the increase in glucose uptake into these cells, and therefore other layers of regulation, such as enhancement of transporter activity, might also be regulated by insulin.

  • To understand how insulin leads to the translocation of GLUT4 to the cell surface of insulin-sensitive cells, it is necessary to identify a link between the insulin-signalling pathways and GLUT4 transport machinery.

Abstract

In muscle and fat cells, insulin stimulates the delivery of the glucose transporter GLUT4 from an intracellular location to the cell surface, where it facilitates the reduction of plasma glucose levels. Understanding the molecular mechanisms that mediate this translocation event involves integrating our knowledge of two fundamental processes — the signal transduction pathways that are triggered when insulin binds to its receptor and the membrane transport events that need to be modified to divert GLUT4 from intracellular storage to an active plasma membrane shuttle service.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic representation of the GLUT family of proteins.
Figure 2: Insulin triggers the translocation of GLUT4 from an intracellular location to the plasma membrane of adipocytes.
Figure 3: Relative GLUT4 distribution throughout organelles of cells from non-stimulated and insulin-stimulated brown adipose tissue.
Figure 4: A model that depicts the transport of GLUT4 in insulin-responsive cells.

Similar content being viewed by others

References

  1. Shepherd, P. R. & Kahn, B. B. Glucose transporters and insulin action — implications for insulin resistance and diabetes mellitus. N. Engl. J. Med. 341, 248–257 (1999).

    CAS  PubMed  Google Scholar 

  2. Suzuki, K. & Kono, T. Evidence that insulin causes translocation of glucose transport activity to the plasma membrane from an intracellular storage site. Proc. Natl Acad. Sci. USA 77, 2542–2545 (1980).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Cushman, S. W. & Wardzala, L. J. Potential mechanism of insulin action on glucose transport in the isolated rat adipose cell. Apparent translocation of intracellular transport systems to the plasma membrane. J. Biol. Chem. 255, 4758–4762 (1980).

    CAS  PubMed  Google Scholar 

  4. Stenbit, A. E. et al. GLUT4 heterozygous knockout mice develop muscle insulin resistance and diabetes. Nature Med. 3, 1096–1101 (1997).

    CAS  PubMed  Google Scholar 

  5. Brozinick, J. T. Jr et al. GLUT4 overexpression in db/db mice dose-dependently ameliorates diabetes but is not a lifelong cure. Diabetes 50, 593–600 (2001).

    CAS  PubMed  Google Scholar 

  6. Holman, G. D., Leggio, L. L. & Cushman, S. W. Insulin-stimulated GLUT4 glucose transporter recycling. A problem in membrane protein subcellular trafficking through multiple pools. J. Biol. Chem. 269, 17516–17524 (1994).This study used mathematical analysis to show that the intracellular transport of GLUT4 could not be explained by a simple two-compartment model, which indicates that GLUT4 is partitioned within the cell among at least two separate compartments.

    CAS  PubMed  Google Scholar 

  7. Tanner, L. I. & Lienhard, G. E. Insulin elicits a redistribution of transferrin receptors in 3T3-L1 adipocytes through an increase in the rate constant for receptor externalization. J. Biol. Chem. 262, 8975–8980 (1987).

    CAS  PubMed  Google Scholar 

  8. Albiston, A. L. et al. Evidence that the angiotensin IV (AT4) receptor is the enzyme insulin regulated aminopeptidase. J. Biol. Chem. 13, 13 (2001).

    Google Scholar 

  9. Ross, S. A. et al. Characterization of the insulin-regulated membrane aminopeptidase in 3T3-L1 adipocytes. J. Biol. Chem. 271, 3328–3332 (1996).

    CAS  PubMed  Google Scholar 

  10. Palacios, S. et al. Recycling of the insulin-sensitive glucose transporter GLUT4. Access of surface internalized GLUT4 molecules to the perinuclear storage compartment is mediated by the Phe5–Gln6–Gln7–Ile8 motif. J. Biol. Chem. 276, 3371–3383 (2001).

    CAS  PubMed  Google Scholar 

  11. Martin, S. et al. The glucose transporter (GLUT-4) and vesicle-associated membrane protein-2 (VAMP-2) are segregated from recycling endosomes in insulin-sensitive cells. J. Cell Biol. 134, 625–635 (1996).Using a chemical technique to ablate endosomes, this paper was one of the first to show that a significant pool of GLUT4 is excluded from endosomes and that, together with the v-SNARE VAMP2, this might demarcate a separate secretory compartment.

    CAS  PubMed  Google Scholar 

  12. Martin, L. B. et al. Vesicle-associated membrane protein 2 plays a specific role in the insulin-dependent trafficking of the facilitative glucose transporter GLUT4 in 3T3-L1 adipocytes. J. Biol. Chem. 273, 1444–1452 (1998).

    CAS  PubMed  Google Scholar 

  13. Lampson, M. A. et al. Insulin-regulated release from the endosomal recycling compartment is regulated by budding of specialized vesicles. Mol. Biol. Cell 12, 3489–3501 (2001).Using quantitative immunofluorescence-microscopy techniques, this study provides evidence that GLUT4 is retained in recycling endosomes in CHO cells, and moves to the cell surface in transport vesicles that are distinct from those that contain the TfR.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Lim, S. N. et al. Identification of discrete classes of endosome-derived small vesicles as a major cellular pool for recycling membrane proteins. Mol. Biol. Cell 12, 981–995 (2001).In vitro reconstitution experiments were used to show that GLUT4 and the TfR are sorted into different endosomally derived vesicles in CHO cells.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Slot, J. W. et al. Translocation of the glucose transporter GLUT4 in cardiac myocytes of the rat. Proc. Natl Acad. Sci. USA 88, 7815–7819 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Slot, J. W. et al. Immuno-localization of the insulin regulatable glucose transporter in brown adipose tissue of the rat. J. Cell Biol. 113, 123–135 (1991).This was the first immunocytochemical analysis of GLUT4 in insulin-sensitive cells and showed that insulin caused a striking redistribution of GLUT4 from intracellular tubulo–vesicular elements to the plasma membrane.

    CAS  PubMed  Google Scholar 

  17. Slot, J. W. et al. Glucose transporter (GLUT-4) is targeted to secretory granules in rat atrial cardiomyocytes. J. Cell Biol. 137, 1–12 (1997).

    Google Scholar 

  18. Martin, S. et al. Biogenesis of insulin-responsive GLUT4 vesicles is independent of brefeldin A-sensitive trafficking. Traffic 1, 652–660 (2000).

    CAS  PubMed  Google Scholar 

  19. Shewan, A. M. et al. The cytosolic C-terminus of the glucose transporter GLUT4 contains an acidic cluster endosomal targeting motif distal to the dileucine signal. Biochem. J. 350, 99–107 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Molloy, S. S. et al. Bi-cycling the furin pathway: from TGN localization to pathogen activation and embryogenesis. Trends Cell Biol. 9, 28–35 (1999).

    CAS  PubMed  Google Scholar 

  21. Xiang, Y. et al. The PC6B cytoplasmic domain contains two acidic clusters that direct sorting to distinct trans-Golgi network/endosomal compartments. Mol. Biol. Cell 11, 1257–1273 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Wan, L. et al. PACS-1 defines a novel gene family of cytosolic sorting proteins required for trans-Golgi network localization. Cell 94, 205–216 (1998).

    CAS  PubMed  Google Scholar 

  23. Mallard, F. et al. Direct pathway from early/recycling endosomes to the Golgi apparatus revealed through the study of shiga toxin B-fragment transport. J. Cell Biol. 143, 973–990 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Barr, V. A. et al. Insulin stimulates both leptin secretion and production by rat white adipose tissue. Endocrinology 138, 4463–4472 (1997).

    CAS  PubMed  Google Scholar 

  25. Bogan, J. S. & Lodish, H. F. Two compartments for insulin-stimulated exocytosis in 3T3-L1 adipocytes defined by endogenous ACRP30 and GLUT4. J. Cell Biol. 146, 609–620 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Millar, C. A. et al. Adipsin and the glucose transporter GLUT4 traffic to the cell surface via independent pathways in adipocytes. Traffic 1, 141–151 (2000).

    CAS  PubMed  Google Scholar 

  27. Robinson, L. J. & James, D. E. Insulin-regulated sorting of glucose transporters in 3T3-L1 adipocytes. Am. J. Physiol. 263, E383–E393 (1992).

    CAS  PubMed  Google Scholar 

  28. Robinson, M. S. & Bonifacino, J. S. Adaptor-related proteins. Curr. Opin. Cell Biol. 13, 444–453 (2001).

    CAS  PubMed  Google Scholar 

  29. Hashiramoto, M. & James, D. E. Characterization of insulin-responsive GLUT4 storage vesicles isolated from 3T3-L1 adipocytes. Mol. Cell. Biol. 20, 416–427 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Ramm, G. et al. Insulin recruits GLUT4 from specialized VAMP2-carrying vesicles as well as from the dynamic endosomal/trans-Golgi network in rat adipocytes. Mol. Biol. Cell 11, 4079–4091 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Kandror, K. V. & Pilch, P. F. Compartmentalization of protein traffic in insulin-sensitive cells. Am. J. Physiol. 271, E1–E14 (1996).

    CAS  PubMed  Google Scholar 

  32. Roberg, K. J., Rowley, N. & Kaiser, C. A. Physiological regulation of membrane protein sorting late in the secretory pathway of Saccharomyces cerevisiae. J. Cell Biol. 137, 1469–1482 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Hein, C. & Andre, B. A C-terminal di-leucine motif and nearby sequences are required for NH4+-induced inactivation and degradation of the general amino acid permease, Gap1p, of Saccharomyces cerevisiae. Mol. Microbiol. 24, 607–616 (1997).

    CAS  PubMed  Google Scholar 

  34. Giorgino, F. et al. The sentrin-conjugating enzyme mUbc9 interacts with GLUT4 and GLUT1 glucose transporters and regulates transporter levels in skeletal muscle cells. Proc. Natl Acad. Sci. USA 97, 1125–1130 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Piper, R. C. & Luzio, J. P. Late endosomes: sorting and partitioning in multivesicular bodies. Traffic 2, 612–621 (2001).

    CAS  PubMed  Google Scholar 

  36. Sargeant, R. J. & Paquet, M. R. Effect of insulin on the rates of synthesis and degradation of GLUT1 and GLUT4 glucose transporters in 3T3-L1 adipocytes. Biochem. J. 290, 913–919 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Ploug, T. et al. Analysis of GLUT4 distribution in whole skeletal muscle fibers: identification of distinct storage compartments that are recruited by insulin and muscle contractions. J. Cell Biol. 142, 1429–1446 (1998).This study provided the first quantitative analysis of the distribution of GLUT4 in skeletal muscle after activation by either insulin, exercise or exercise plus insulin.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Millar, C. A. et al. Differential regulation of secretory compartments containing the insulin-responsive glucose transporter 4 in 3T3-L1 adipocytes. Mol. Biol. Cell 10, 3675–3688 (1999).This paper shows that in 3T3-L1 adipocytes, GLUT4 movement to the cell surface can be triggered from different intracellular pools.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Brozinick, J. T. Jr & Birnbaum, M. J. Insulin, but not contraction, activates Akt/PKB in isolated rat skeletal muscle. J. Biol. Chem. 273, 14679–14682 (1998).

    CAS  PubMed  Google Scholar 

  40. Foran, P. G. et al. Protein kinase B stimulates the translocation of GLUT4 but not GLUT1 or transferrin receptors in 3T3-L1 adipocytes by a pathway involving SNAP-23, synaptobrevin-2, and/or cellubrevin. J. Biol. Chem. 274, 28087–28095 (1999).

    CAS  PubMed  Google Scholar 

  41. Somwar, R. et al. GLUT4 translocation precedes the stimulation of glucose uptake by insulin in muscle cells: potential activation of GLUT4 via p38 mitogen-activated protein kinase. Biochem. J. 359, 639–649 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Karnielli, E. et al. Insulin-stimulated translocation of glucose transport systems in the isolated rat adipose cell. J. Biol. Chem. 256, 4772–4777 (1981).

    Google Scholar 

  43. Molero, J. C. et al. Nocodazole inhibits insulin-stimulated glucose transport in 3T3-L1 adipocytes via a microtubule-independent mechanism. J. Biol. Chem. 276, 43829–43835 (2001).

    CAS  PubMed  Google Scholar 

  44. Hausdorff, S. F. et al. Identification of wortmannin-sensitive targets in 3T3-L1 adipocytes. Dissociation of insulin-stimulated glucose uptake and GLUT4 translocation. J. Biol. Chem. 274, 24677–24684 (1999).

    CAS  PubMed  Google Scholar 

  45. Somwar, R. et al. Differential effects of phosphatidylinositol 3-kinase inhibition on intracellular signals regulating GLUT4 translocation and glucose transport. J. Biol. Chem. 276, 46079–46087 (2001).

    CAS  PubMed  Google Scholar 

  46. Sweeney, G. et al. An inhibitor of p38 mitogen-activated protein kinase prevents insulin-stimulated glucose transport but not glucose transporter translocation in 3T3-L1 adipocytes and L6 myotubes. J. Biol. Chem. 274, 10071–10078 (1999).

    CAS  PubMed  Google Scholar 

  47. Sweeney, G. et al. High leptin levels acutely inhibit insulin-stimulated glucose uptake without affecting glucose transporter 4 translocation in L6 rat skeletal muscle cells. Endocrinology 142, 4806–4812 (2001).

    CAS  PubMed  Google Scholar 

  48. Joost, H. G. et al. Insulin-stimulated glucose transport in rat adipose cells. Modulation of transporter intrinsic activity by isoproterenol and adenosine. J. Biol. Chem. 261, 10033–10036 (1986).

    CAS  PubMed  Google Scholar 

  49. Lawrence, J. C. et al. GLUT4 facilitates insulin stimulation and cAMP-mediated inhibition of glucose transport. Proc. Natl Acad. Sci. USA 89, 3493–3497 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Clancy, B. M. et al. Protein synthesis inhibitors activate glucose transport without increasing plasma membrane glucose transporters in 3T3-L1 adipocytes. J. Biol. Chem. 266, 10122–10130 (1991).

    CAS  PubMed  Google Scholar 

  51. James, D. E., Hiken, J. & Lawrence, J. C. Isoproterenol stimulates phosphorylation of the insulin-regulatable glucose transporter in rat adipocytes. Proc. Natl Acad. Sci. USA 86, 8368–8372 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Piper, R. C. et al. GLUT4 phosphorylation and inhibition of glucose transport by dibutyryl cAMP. J. Biol. Chem. 268, 16557–16563 (1993).

    CAS  PubMed  Google Scholar 

  53. Zottola, R. J. et al. Glucose transporter function is controlled by transporter oligomeric structure. A single, intramolecular disulfide promotes GLUT1 tetramerization. Biochemistry 34, 9734–9747 (1995).

    CAS  PubMed  Google Scholar 

  54. Robinson, L. J. et al. Translocation of the glucose transporter (GLUT4) to the cell surface in permeabilized 3T3-L1 adipocytes: effects of ATP, insulin and GTPγS and localization of GLUT4 to clathrin lattices. J. Cell Biol. 117, 1181–1196 (1992).

    CAS  PubMed  Google Scholar 

  55. Ros-Baro, A. et al. Lipid rafts are required for GLUT4 internalization in adipose cells. Proc. Natl Acad. Sci. USA 98, 12050–12055 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Inoue, G., Cheatham, B. & Kahn, C. R. Development of an in vitro reconstitution assay for glucose transporter 4 translocation. Proc. Natl Acad. Sci. USA 96, 14919–14924 (1999).This paper was the first to show that it is feasible to reconstitute the docking and fusion of intracellular GLUT4 vesicles with the plasma membrane in vitro.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Sanchez, P. et al. Localization of atypical protein kinase C isoforms into lysosome-targeted endosomes through interaction with p62. Mol. Cell. Biol. 18, 3069–3080 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Min, J. et al. Synip: a novel insulin-regulated syntaxin 4-binding protein mediating GLUT4 translocation in adipocytes. Mol. Cell 3, 751–760 (1999).

    CAS  PubMed  Google Scholar 

  59. Brooks, C. C. et al. Pantophysin is a phosphoprotein component of adipocyte transport vesicles and associates with GLUT4-containing vesicles. J. Biol. Chem. 275, 2029–2036 (2000).

    CAS  PubMed  Google Scholar 

  60. Foster, L. J. et al. A functional role for VAP-33 in insulin-stimulated GLUT4 traffic. Traffic 1, 512–521 (2000).

    CAS  PubMed  Google Scholar 

  61. Shibata, H., Omata, W. & Kojima, I. Insulin stimulates guanine nucleotide exchange on Rab4 via a wortmannin-sensitive signaling pathway in rat adipocytes. J. Biol. Chem. 272, 14542–14546 (1997).

    CAS  PubMed  Google Scholar 

  62. Li, L. et al. Direct interaction of Rab4 with syntaxin 4. J. Biol. Chem. 276, 5265–5273 (2001).

    CAS  PubMed  Google Scholar 

  63. Braiman, L. et al. Activation of protein kinase Cζ induces serine phosphorylation of VAMP2 in the GLUT4 compartment and increases glucose transport in skeletal muscle. Mol. Cell. Biol. 21, 7852–7861 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Martin, S. S. et al. Activated phosphatidylinositol 3-kinase is sufficient to mediate actin rearrangement and GLUT4 translocation in 3T3-L1 adipocytes. J. Biol. Chem. 271, 17605–17608 (1996).

    CAS  PubMed  Google Scholar 

  65. Kohn, A. D. et al. Expression of a constitutively active Akt Ser/Thr kinase in 3T3-L1 adipocytes stimulates glucose uptake and glucose transporter 4 translocation. J. Biol. Chem. 271, 31372–31378 (1996).

    CAS  PubMed  Google Scholar 

  66. Chiang, S. H. et al. Insulin-stimulated GLUT4 translocation requires the CAP-dependent activation of TC10. Nature 410, 944–948 (2001).

    CAS  PubMed  Google Scholar 

  67. Tong, P. et al. Insulin-induced cortical actin remodeling promotes GLUT4 insertion at muscle cell membrane ruffles. J. Clin. Invest. 108, 371–381 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Emoto, M., Langille, S. E. & Czech, M. P. A role for kinesin in insulin-stimulated GLUT4 glucose transporter translocation in 3T3-L1 adipocytes. J. Biol. Chem. 276, 10677–10682 (2001).

    CAS  PubMed  Google Scholar 

  69. Kanzaki, M. & Pessin, J. E. Insulin-stimulated GLUT4 translocation in adipocytes is dependent upon cortical actin remodeling. J. Biol. Chem. 276, 42436–42444 (2001).

    CAS  PubMed  Google Scholar 

  70. Kanzaki, M. et al. Insulin stimulates actin comet tails on intracellular GLUT4-containing compartments in differentiated 3T3L1 adipocytes. J. Biol. Chem. 276, 49331–49336 (2001).

    CAS  PubMed  Google Scholar 

  71. Harris, M. I. et al. Prevalence of diabetes, impaired fasting glucose, and impaired glucose tolerance in U.S. adults. The Third National Health and Nutrition Examination Survey, 1988–1994. Diabetes Care 21, 518–524 (1998).

    CAS  PubMed  Google Scholar 

  72. Watson, R. T. et al. Lipid raft microdomain compartmentalization of TC10 is required for insulin signaling and GLUT4 translocation. J. Cell Biol. 154, 829–840 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Foster, L. J. & Klip, A. Mechanism and regulation of GLUT-4 vesicle fusion in muscle and fat cells. Am. J. Physiol. Cell Physiol. 279, C877–C890 (2000).

    CAS  PubMed  Google Scholar 

  74. Zerial, M. & McBride, H. Rab proteins as membrane organizers. Nature Rev. Mol. Cell Biol. 2, 107–117 (2001).

    CAS  Google Scholar 

  75. Kuboshima, S. et al. Hyperosmotic stimuli induces recruitment of aquaporin-1 to plasma membrane in cultured rat peritoneal mesothelial cells. Adv. Perit. Dial. 17, 47–52 (2001).

    CAS  PubMed  Google Scholar 

  76. Marinelli, R. A. et al. Secretin promotes osmotic water transport in rat cholangiocytes by increasing aquaporin-1 water channels in plasma membrane. Evidence for a secretin-induced vesicular translocation of aquaporin-1. J. Biol. Chem. 272, 12984–12988 (1997).

    CAS  PubMed  Google Scholar 

  77. Kamsteeg, E. J. et al. The subcellular localization of an aquaporin-2 tetramer depends on the stoichiometry of phosphorylated and nonphosphorylated monomers. J. Cell Biol. 151, 919–930 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Gustafson, C. E. et al. Recycling of AQP2 occurs through a temperature- and bafilomycin-sensitive trans-Golgi-associated compartment. Am. J. Physiol. Renal Physiol. 278, F317–F326 (2000).

    CAS  PubMed  Google Scholar 

  79. Mandon, B. et al. Syntaxin-4 is localized to the apical plasma membrane of rat renal collecting duct cells: possible role in aquaporin-2 trafficking. J. Clin. Invest. 98, 906–913 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Valenti, G. et al. The phosphatase inhibitor okadaic acid induces AQP2 translocation independently from AQP2 phosphorylation in renal collecting duct cells. J. Cell Sci. 113, 1985–1992 (2000).

    CAS  PubMed  Google Scholar 

  81. Klussmann, E. et al. Protein kinase A anchoring proteins are required for vasopressin-mediated translocation of aquaporin-2 into cell membranes of renal principal cells. J. Biol. Chem. 274, 4934–4938 (1999).

    CAS  PubMed  Google Scholar 

  82. Katsura, T. et al. Protein kinase A phosphorylation is involved in regulated exocytosis of aquaporin-2 in transfected LLC-PK1 cells. Am. J. Physiol. 272, F817–F822 (1997).

    CAS  PubMed  Google Scholar 

  83. Valenti, G. et al. A heterotrimeric G protein of the Gi family is required for cAMP- triggered trafficking of aquaporin 2 in kidney epithelial cells. J. Biol. Chem. 273, 22627–22634 (1998).

    CAS  PubMed  Google Scholar 

  84. Mulders, S. M. et al. An aquaporin-2 water channel mutant which causes autosomal dominant nephrogenic diabetes insipidus is retained in the Golgi complex. J. Clin. Invest. 102, 57–66 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Snyder, P. M. Liddle's syndrome mutations disrupt cAMP-mediated translocation of the epithelial Na+ channel to the cell surface. J. Clin. Invest. 105, 45–53 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Loffing, J. et al. Aldosterone induces rapid apical translocation of ENaC in early portion of renal collecting system: possible role of SGK. Am. J. Physiol. Renal. Physiol. 280, F675–F682 (2001).

    CAS  PubMed  Google Scholar 

  87. Djelidi, S. et al. Basolateral translocation by vasopressin of the aldosterone-induced pool of latent Na-K-ATPases is accompanied by α1 subunit dephosphorylation: study in a new aldosterone-sensitive rat cortical collecting duct cell line. J. Am. Soc. Nephrol. 12, 1805–1818 (2001).

    CAS  PubMed  Google Scholar 

  88. Juel, C., Nielsen, J. J. & Bangsbo, J. Exercise-induced translocation of Na+-K+ pump subunits to the plasma membrane in human skeletal muscle. Am. J. Physiol. Regul. Integr. Comp. Physiol. 278, R1107–R1110 (2000).

    CAS  PubMed  Google Scholar 

  89. Lavoie, L. et al. Insulin-induced translocation of Na+-K+-ATPase subunits to the plasma membrane is muscle fiber type specific. Am. J. Physiol. 270, C1421–C1429 (1996).

    CAS  PubMed  Google Scholar 

  90. Omatsu-Kanbe, M. & Kitasato, H. Insulin stimulates the translocation of Na+/K+-dependent ATPase molecules from intracellular stores to the plasma membrane in frog skeletal muscle. Biochem. J. 272, 727–733 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Aledo, J. C. & Hundal, H. S. Sedimentation and immunological analyses of GLUT4 and α2-Na,K-ATPase subunit-containing vesicles from rat skeletal muscle: evidence for segregation. FEBS Lett. 376, 211–215 (1995).

    CAS  PubMed  Google Scholar 

  92. Janecki, A. J. et al. Basic fibroblast growth factor stimulates surface expression and activity of Na+/H+ exchanger NHE3 via mechanism involving phosphatidylinositol 3-kinase. J. Biol. Chem. 275, 8133–8142 (2000).

    CAS  PubMed  Google Scholar 

  93. D'Souza, S. et al. The epithelial sodium-hydrogen antiporter Na+/H+ exchanger 3 accumulates and is functional in recycling endosomes. J. Biol. Chem. 273, 2035–2043 (1998).

    CAS  PubMed  Google Scholar 

  94. Boels, K. et al. The neuropeptide head activator induces activation and translocation of the growth-factor-regulated Ca2+-permeable channel GRC. J. Cell Sci. 114, 3599–3606 (2001).

    CAS  PubMed  Google Scholar 

  95. Kanzaki, M. et al. Translocation of a calcium-permeable cation channel induced by insulin-like growth factor-1. Nature Cell Biol. 1, 165–170 (1999).

    CAS  PubMed  Google Scholar 

  96. Passafaro, M. et al. N-type Ca2+ channels are present in secretory granules and are transiently translocated to the plasma membrane during regulated exocytosis. J. Biol. Chem. 271, 30096–30104 (1996).

    CAS  PubMed  Google Scholar 

  97. Shintani, Y. & Marunaka, Y. Regulation of chloride channel trafficking by cyclic AMP via protein kinase A-independent pathway in A6 renal epithelial cells. Biochem. Biophys. Res. Commun. 223, 234–239 (1996).

    CAS  PubMed  Google Scholar 

  98. Agnew, B. J. et al. Cytological transformations associated with parietal cell stimulation: critical steps in the activation cascade. J. Cell Sci. 112, 2639–2646 (1999).

    CAS  PubMed  Google Scholar 

  99. Petris, M. J. & Mercer, J. F. The Menkes protein (ATP7A; MNK) cycles via the plasma membrane both in basal and elevated extracellular copper using a C-terminal di-leucine endocytic signal. Hum. Mol. Genet. 8, 2107–2115 (1999).

    CAS  PubMed  Google Scholar 

  100. Yamaguchi, Y. et al. Biochemical characterization and intracellular localization of the Menkes disease protein. Proc. Natl Acad. Sci. USA 93, 14030–14035 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Quick, M. W. et al. Second messengers, trafficking-related proteins, and amino acid residues that contribute to the functional regulation of the rat brain GABA transporter GAT1. J. Neurosci. 17, 2967–2979 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Sims, K. D., Straff, D. J. & Robinson, M. B. Platelet-derived growth factor rapidly increases activity and cell surface expression of the EAAC1 subtype of glutamate transporter through activation of phosphatidylinositol 3-kinase. J. Biol. Chem. 275, 5228–5237 (2000).

    CAS  PubMed  Google Scholar 

  103. Chklovskaia, E. et al. Mechanism of flt3 ligand expression in bone marrow failure: translocation from intracellular stores to the surface of T lymphocytes after chemotherapy-induced suppression of hematopoiesis. Blood 93, 2595–2604 (1999).

    CAS  PubMed  Google Scholar 

  104. Chklovskaia, E. et al. Cell-surface trafficking and release of flt3 ligand from T lymphocytes is induced by common cytokine receptor γ-chain signaling and inhibited by cyclosporin A. Blood 97, 1027–1034 (2001).

    CAS  PubMed  Google Scholar 

  105. Shuster, S. J. et al. Stimulus-dependent translocation of κ opioid receptors to the plasma membrane. J. Neurosci. 19, 2658–2664 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David E. James.

Related links

Related links

DATABASES

Interpro

pleckstrin homology domain

LocusLink

Akt

TfR

OMIM

Type II diabetes

Swiss-Prot

ACRP30

adipsin

ANF

c-Cbl

Gap1

GLUT1

GLUT4

GLUT5

GLUT8

GLUT9

GLUT10

GLUT11

IRAP

IRS-1

IRS-2

p38

PKCζ

Rab4

sentrin

SNAP23

Syntaxin 4

Syntaxin 6

Syntaxin 16

Synip

TC10

TGN38

VAMP2

VAP33

Glossary

FACILITATIVE SUGAR TRANSPORTER

A polytopic membrane protein that transports sugars down a concentration gradient in an energy-independent manner.

TYPE II DIABETES

Also known as non-insulin-dependent diabetes or maturity onset diabetes.

DB/DB MOUSE

A genetic mouse model of type II diabetes and obesity. The defect has been mapped to the gene for the leptin receptor.

EVANESCENCE WAVE MICROSCOPY

A technique in which only fluorophores within a 100–220 nm field above a glass coverslip are excited, which allows localization of molecules very close to the cell surface.

ATRIAL CARDIOMYOCYTE

A heart muscle cell.

AP-1

(Adaptor protein complex 1). Adaptor proteins link cargo molecules on membranes with coat proteins such as clathrin. Several classes of adaptor proteins have been identified and shown to be involved in different transport steps. AP-1 is thought to regulate transport from the trans-Golgi network to endosomes.

SNARE

(soluble N-ethylmaleimide sensitive factor attachment protein receptor). A family of membrane-tethered coiled-coil proteins that regulate fusion reactions and target specificity in the vacuolar system. They can be divided into v-SNAREs (vesicle) and t-SNAREs (target) on the basis of their localization, or into Q-SNAREs and R-SNAREs on the basis of a highly conserved amino acid.

CONVERTASE

An enzyme that is responsible for protein activation through proteolytic activity.

COAT-ASSOCIATED PROTEIN

A protein that links cargo molecules to vesicle coats.

ARNO

(ARF nucleotide binding-site opener). This activates ADP-ribosylating factors (ARFs), which are known to have a role in protein sorting and vesicle budding.

γ-EAR-CONTAINING

This represents a protein domain within the γ-subunit of coat adaptor proteins.

CD-MPR

(Cation-dependent mannose-6-phosphate receptor). This protein shuttles between the trans-Golgi network and endosomes.

GTPγS

A non-hydrolysable analogue of GTP.

BREFELDIN A

A fungal metabolite that affects membrane transport and the structure of the Golgi apparatus.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bryant, N., Govers, R. & James, D. Regulated transport of the glucose transporter GLUT4. Nat Rev Mol Cell Biol 3, 267–277 (2002). https://doi.org/10.1038/nrm782

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm782

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing