Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

How death shapes life during development

Key Points

  • Programmed cell death plays a normal, formative role in developing animals.

  • Programmed cell death is involved in the formation and deletion of structures, the control of cell numbers and the elimination of abnormal cells.

  • Apoptosis and cell death with autophagy are the most common morphological forms of programmed cell death in developing animals. Apoptosis is regulated by a core cell-death machinery that involves the caspase proteases.

  • Although they are distinct, apoptosis and autophagic cell death use some common regulatory mechanisms.

  • Studies of programmed cell death have focused on the mechanisms of apoptosis and less is known about autophagic removal of cells.

  • Several factors are involved in the activation of cell death during development, including cell-lineage information, extracellular survival factors and steroid hormones.

  • The removal and degradation of dying cells during development by phagocytosis and autophagy is a crucial step downstream of the core cell-death machinery.

  • Detailed understanding of the mechanisms that regulate apoptotic and autophagic cell death will be useful in the diagnosis of abnormal cell growth and the design of rational therapies to treat human syndromes.

Abstract

The formation of an adult animal from a fertilized embryo involves the production and death of cells. Surprisingly, many cells are produced during development with an ultimate fate of death, and defects in programmed cell death can result in developmental abnormalities. Recent studies indicate that cells can die by many different mechanisms, and these differences have implications for proper animal development and disorders such as cancer and autoimmunity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Programmed cell death during development.
Figure 2: Apoptotic and autophagic cell death are regulated at distinct steps.
Figure 3: Pathways leading to programmed cell death.

Similar content being viewed by others

References

  1. Glücksmann, A. Cell deaths in normal vertebrate ontogeny. Biol. Rev. 29, 59–86 (1951).First recognition that cell death is a normal component of animal development.

    Google Scholar 

  2. Kerr, J. F., Wyllie, A. H. & Currie, A. R. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br. J. Cancer 26, 239–257 (1972).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Schweichel, J.-U. & Merker, H.-J. The morphology of various types of cell death in prenatal tissues. Teratology 7, 253–266 (1973).Definition of the morphological types of cell death that occur during animal development based on the role and location of the lysosome.

    CAS  PubMed  Google Scholar 

  4. Clarke, P. G. H. Developmental cell death: morphological diversity and multiple mechanisms. Anat. Embryol. 181, 195–213 (1990).

    CAS  Google Scholar 

  5. Hengartner, M. O. The biochemistry of apoptosis. Nature 407, 770–776 (2000).

    CAS  PubMed  Google Scholar 

  6. Lockshin, R. A. & Williams, C. M. Programmed cell death. I. Cytology of degeneration in the intersegmental muscles of the pernyi silkmoth. J. Insect Physiol. 11, 123–133 (1965).

    CAS  PubMed  Google Scholar 

  7. Shi, Y. Mechanisms of caspase activation and inhibition during apoptosis. Mol. Cell 9, 459–470 (2002).

    CAS  PubMed  Google Scholar 

  8. Lee, C.-Y. & Baehrecke, E. H. Steroid regulation of autophagic programmed cell death during development. Development 128, 1443–1455 (2001).This study reports that apoptotic and autophagic cell death have some similar mechanisms.

    CAS  PubMed  Google Scholar 

  9. Krammer, P. H. CD95's deadly mission in the immune system. Nature 407, 789–795 (2000).

    CAS  PubMed  Google Scholar 

  10. Thompson, C. B. Apoptosis in the pathogenesis and treatment of disease. Science 267, 1456–1462 (1995).

    CAS  PubMed  Google Scholar 

  11. Yuan, J. & Yanker, B. A. Apoptosis in the nervous system. Nature 407, 802–809 (2000).

    CAS  PubMed  Google Scholar 

  12. Vaux, D. L., Cory, S. & Adams, J. M. Bcl-2 gene promotes haemopoietic cell survival and cooperates with c-myc to immortalize pre-B cells. Nature 335, 440–442 (1988).

    CAS  PubMed  Google Scholar 

  13. Soengas, M. S. et al. Inactivation of the apoptosis effector Apaf-1 in malignant melanoma. Nature 409, 207–211 (2001).

    CAS  PubMed  Google Scholar 

  14. Stassi, G. & De Maria, R. Autoimmune thyroid disease: new models of cell death in autoimmunity. Nature Rev. Immunol. 2, 195–204 (2002).

    CAS  Google Scholar 

  15. Aravind, L., Dixit, V. M. & Koonin, E. V. Apoptotic molecular machinery: vastly increased complexity in vertebrates revealed by genome comparisons. Science 291, 1279–1284 (2001).

    CAS  PubMed  Google Scholar 

  16. Jacobson, M. D., Weil, M. & Raff, M. C. Programmed cell death in animal development. Cell 88, 347–354 (1997).

    CAS  PubMed  Google Scholar 

  17. Meier, P., Finch, A. & Evan, G. Apoptosis in development. Nature 407, 796–801 (2000).

    CAS  PubMed  Google Scholar 

  18. Vaux, D. L. & Korsmeyer, S. J. Cell death in development. Cell 96, 245–254 (1999).

    CAS  PubMed  Google Scholar 

  19. Saunders, J. W. Death in embryonic systems. Science 154, 604–612 (1966).

    PubMed  Google Scholar 

  20. Zakeri, Z., Quaglino, D. & Ahuja, H. S. Apoptotic cell death in the mouse limb and its suppression in the hammertoe mutant. Dev. Biol. 165, 294–297 (1994).

    CAS  PubMed  Google Scholar 

  21. Farbman, A. I. Electron microscope study of palate fusion in mouse embryos. Dev. Biol. 18, 93–116 (1968).

    CAS  PubMed  Google Scholar 

  22. Smiley, G. R. & Dixon, A. D. Fine structure of midline epithelium in the developing palate of the mouse. Anat. Rec. 161, 293–310 (1968).

    CAS  PubMed  Google Scholar 

  23. Chautan, M. et al. Interdigital cell death can occur through a necrotic and caspase-independent pathway. Curr. Biol. 9, 967–970 (1999).

    CAS  PubMed  Google Scholar 

  24. Shi, Y.-B. & Ishizuya-Oka, A. Biphasic intestinal development in amphibians: embryogenesis and remodeling during metamorphosis. Curr. Top. Dev. Biol. 32, 205–235 (1996).

    CAS  PubMed  Google Scholar 

  25. Baehrecke, E. H. Steroid regulation of programmed cell death during Drosophila development. Cell Death Differ. 7, 1057–1062 (2000).

    CAS  PubMed  Google Scholar 

  26. Kratochwil, K. & Schwartz, P. Tissue interaction in androgen response of embryonic mammary rudiment of mouse: identification of target tissue for testosterone. Proc. Natl Acad. Sci. USA 73, 4041–4044 (1976).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Barres, B. A. et al. Cell death and control of cell survival in the oligodendrocyte lineage. Cell 70, 31–46 (1992).

    CAS  PubMed  Google Scholar 

  28. Klämbt, C., Jacobs, J. R. & Goodman, C. S. The midline of the Drosophila central nervous system: a model for the genetic analysis of cell fate, cell migration, and growth cone guidance. Cell 64, 801–815 (1991).

    PubMed  Google Scholar 

  29. Watanabe, M., Jafri, A. & Fisher, S. A. Apoptosis is required for the proper formation of the ventriculo-arterial connections. Dev. Biol. 240, 274–288 (2001).

    CAS  PubMed  Google Scholar 

  30. Chu-Wang, I. W. & Oppenheim, R. W. Cell death of motoneurons in the chick embryo spinal cord. I. A light and electron microscopic study of naturally occurring and induced cell loss during development. J. Comp. Neurol. 177, 33–57 (1978).

    CAS  PubMed  Google Scholar 

  31. Schwartz, L. M., Smith, S. W., Jones, M. E. E. & Osborne, B. A. Do all programmed cell deaths occur via apoptosis? Proc. Natl Acad. Sci. USA 90, 980–984 (1993).This study identified molecular differences between apoptotic and autophagic cells.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Jiang, C., Baehrecke, E. H. & Thummel, C. S. Steroid regulated programmed cell death during Drosophila metamorphosis. Development 124, 4673–4683 (1997).

    CAS  PubMed  Google Scholar 

  33. Jochova, J., Zakeri, Z. & Lockshin, R. A. Rearrangement of the tubulin and actin cytoskeleton during programmed cell death in Drosophila salivary glands. Cell Death Differ. 4, 140–149 (1997).

    CAS  PubMed  Google Scholar 

  34. Jesenberger, V. & Jentsch, S. Deadly encounter: ubiquitin meets apoptosis. Nature Rev. Mol. Cell Biol. 3, 112–121 (2002).

    CAS  Google Scholar 

  35. Yang, Y. et al. Ubiquitin protein ligase activity of IAPs and their degradation in proteasomes in response to apoptotic stimuli. Science 288, 874–877 (2000).

    CAS  PubMed  Google Scholar 

  36. Hays, R., Wickline, L. & Cagan, R. Morgue mediates apoptosis in the Drosophila retina by promoting degradation of DIAP1. Nature Cell Biol. 4, 425–431 (2002).

    CAS  PubMed  Google Scholar 

  37. Ryoo, H. D. et al. Regulation of Drosophila IAP1 degradation and apoptosis by reaper and ubcD1. Nature Cell Biol. 4, 432–438 (2002).

    CAS  PubMed  Google Scholar 

  38. Ellis, R. E., Yuan, J. & Horvitz, R. H. Mechanisms and functions of cell death. Annu. Rev. Cell Biol. 7, 663–698 (1991).

    CAS  PubMed  Google Scholar 

  39. Lee, C.-Y. et al. E93 directs steroid-triggered programmed cell death in Drosophila. Mol. Cell 6, 433–443 (2000).

    CAS  PubMed  Google Scholar 

  40. Jiang, C., Lamblin, A.-F. J., Steller, H. & Thummel, C. S. A steroid-triggered transcriptional hierarchy controls salivary gland cell death during Drosophila metamorphosis. Mol. Cell 5, 445–455 (2000).

    CAS  PubMed  Google Scholar 

  41. Paglin, S. et al. A novel response of cancer cells to radiation involves autophagy and formation of acidic vesicles. Cancer Res. 61, 439–444 (2001).

    CAS  PubMed  Google Scholar 

  42. Leist, M. & Jäätelä, M. Four deaths and a funeral: from caspases to alternative mechanisms. Nature Rev. Mol. Cell Biol. 2, 589–598 (2001).

    CAS  Google Scholar 

  43. Conradt, B. & Horvitz, H. R. The TRA-1A sex determination protein of C. elegans regulates sexually dimorphic cell deaths by repressing the egl-1 cell death activator gene. Cell 98, 317–327 (1999).

    CAS  PubMed  Google Scholar 

  44. Conradt, B. & Horvitz, H. R. The C. elegans protein EGL-1 is required for programmed cell death and interacts with the Bcl-2-like protein CED-9. Cell 93, 519–529 (1998).

    CAS  PubMed  Google Scholar 

  45. Adams, J. M. & Cory, S. The Bcl-2 protein family: arbiters of cell survival. Science 281, 1322–1326 (1998).

    CAS  PubMed  Google Scholar 

  46. Hamburger, V. & Levi-Montalcini, R. Proliferation, differentiation, and degeneration in the spinal ganglia of the chick embryo under normal and experimental conditions. J. Exp. Zool. 111, 457–502 (1949).

    CAS  PubMed  Google Scholar 

  47. Raff, M. C. et al. Programmed cell death and the control of cell survival: lessons from the nervous system. Science 262, 695–700 (1993).

    CAS  PubMed  Google Scholar 

  48. Bergmann, A., Tugentman, M., Shilo, B. Z. & Steller, H. Regulation of cell number by MAPK-dependent control of apoptosis: a mechanism for trophic survival signaling. Dev. Cell 2, 159–170 (2002).

    CAS  PubMed  Google Scholar 

  49. Wang, S. L. et al. The Drosophila caspase inhibitor DIAP1 is essential for cell survival and is negatively regulated by HID. Cell 98, 453–463 (1999).

    CAS  PubMed  Google Scholar 

  50. Goyal, L. et al. Induction of apoptosis by Drosophila reaper, hid and grim through inhibition of IAP function. EMBO J. 19, 589–597 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Salvesen, G. S. & Duckett, C. S. IAP proteins: blocking the road to death's door. Nature Rev. Mol. Cell Biol. 3, 401–410 (2002).

    CAS  Google Scholar 

  52. Christich, A. et al. Damage-responsive Drosophila gene sickle encodes a novel IAP binding protein similar to but distinct from reaper, grim, and hid. Curr. Biol. 12, 137–140 (2002).

    CAS  PubMed  Google Scholar 

  53. Srinivasula, S. M. et al. sickle, a novel Drosophila death gene in the reaper/hid/grim region, encodes an IAP-inhibitory protein. Curr. Biol. 12, 125–130 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Wing, J. P. et al. Drosophila sickle is a novel grim-reaper cell death activator. Curr. Biol. 12, 131–135 (2002).

    CAS  PubMed  Google Scholar 

  55. Verhagen, A. M. et al. HtrA2 promotes cell death through its serine protease activity and its ability to antagonize inhibitor of apoptosis proteins. J. Biol. Chem. 277, 445–454 (2002).

    CAS  PubMed  Google Scholar 

  56. Hegde, R. et al. Identification of Omi/HtrA2 as a mitochondrial apoptotic serine protease that disrupts inhibitor of apoptosis protein–caspase interaction. J. Biol. Chem. 277, 432–438 (2002).

    CAS  PubMed  Google Scholar 

  57. Martins, L. M. et al. The serine protease Omi/HtrA2 regulates apoptosis by binding XIAP through a reaper-like motif. J. Biol. Chem. 277, 439–444 (2002).

    CAS  PubMed  Google Scholar 

  58. Lisi, S., Mazzon, I. & White, K. Diverse domains of THREAD/DIAP1 are required to inhibit apoptosis induced by REAPER and HID in Drosophila. Genetics 154, 669–678 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Suzuki, Y. et al. A serine protease, HtrA2, is released from the mitochondria and interacts with XIAP, inducing cell death. Mol. Cell 8, 613–621 (2001).

    CAS  PubMed  Google Scholar 

  60. Isaacs, J. T. Antagonistic effect of androgen on prostatic cell death. Prostate 5, 547–557 (1984).

    Google Scholar 

  61. Robinow, S., Talbot, W. S., Hogness, D. S. & Truman, J. W. Programmed cell death in the Drosophila CNS is ecdysone-regulated and coupled with a specific ecdysone receptor isoform. Development 119, 1251–1259 (1993).

    CAS  PubMed  Google Scholar 

  62. Thomas, H. E., Stunnenberg, H. G. & Stewart, A. F. Heterodimerization of the Drosophila ecdysone receptor with retinoid X receptor and ultraspiracle. Nature 362, 471–475 (1993).

    CAS  PubMed  Google Scholar 

  63. Yao, T.-P. et al. Drosophila ultraspiracle modulates ecdysone receptor function via heterodimer formation. Cell 71, 63–72 (1992).

    CAS  PubMed  Google Scholar 

  64. Woodard, C. T., Baehrecke, E. H. & Thummel, C. S. A molecular mechanism for the stage-specificity of the Drosophila prepupal genetic response to ecdysone. Cell 79, 607–615 (1994).

    CAS  PubMed  Google Scholar 

  65. Broadus, J. et al. The Drosophila βFTZ-F1 orphan nuclear receptor provides competence for stage-specific responses to the steroid hormone ecdysone. Mol. Cell 3, 143–149 (1999).

    CAS  PubMed  Google Scholar 

  66. Cryns, V. & Yuan, J. Proteases to die for. Genes Dev. 12, 1551–1570 (1998).

    CAS  PubMed  Google Scholar 

  67. Wu, Y.-C., Stanfield, G. M. & Horvitz, H. R. NUC-1, a Caenorhabditis elegans DNase II homolog, functions in an intermediate step of DNA degradation during apoptosis. Genes Dev. 14, 536–548 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. McIlroy, D. et al. An auxiliary mode of apoptotic DNA fragmentation provided by phagocytes. Genes Dev. 14, 549–558 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Fadok, V. A. et al. A receptor for phosphatidylserine-specific clearance of apoptotic cells. Nature 405, 85–90 (2000).

    CAS  PubMed  Google Scholar 

  70. Henson, P. M., Bratton, D. L. & Fadok, V. A. The phosphatidylserine receptor: a crucial molecular switch? Nature Rev. Mol. Cell Biol. 2, 627–633 (2001).

    CAS  Google Scholar 

  71. Savill, J. & Fadok, V. Corpse clearance defines the meaning of cell death. Nature 407, 784–788 (2000).

    CAS  PubMed  Google Scholar 

  72. Franc, N. C., Heitzler, P., Ezekowitz, A. B. & White, K. Requirement for Croquemort in phagocytosis of apoptotic cells in Drosophila. Science 284, 1991–1994 (1999).

    CAS  PubMed  Google Scholar 

  73. Ellis, R. E., Jacobson, D. & Horvitz, R. H. Genes required for the engulfment of cell corpses during programmed cell death in Caenorhabditis elegans. Genetics 129, 79–94 (1991).Identification of mutations in genes that are required for engulfment of dying cells.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Hedgecock, E. M., Sulston, J. E. & Thomson, J. N. Mutations affecting programmed cell deaths in the nematode Caenorhabditis elegans. Science 220, 1277–1279 (1983).First genetic screen to identify mutations in cell death genes.

    CAS  PubMed  Google Scholar 

  75. Zhou, Z., Hartwieg, E. & Horvitz, H. R. CED-1 is a transmembrane receptor that mediates cell corpse engulfment in C. elegans. Cell 104, 43–56 (2001).

    CAS  PubMed  Google Scholar 

  76. Liu, Q. A. & Hengartner, M. O. Candidate adaptor protein CED-6 promotes the engulfment of apoptotic cells in C. elegans. Cell 93, 961–972 (1998).

    CAS  PubMed  Google Scholar 

  77. Wu, Y.-C. & Horvitz, H. R. The C. elegans cell corpse engulfment gene ced-7 encodes a protein similar to ABC transporters. Cell 93, 951–960 (1998).

    CAS  PubMed  Google Scholar 

  78. Wu, Y.-C. & Horvitz, H. R. C. elegans phagocytosis and cell-migration protein CED-5 is similar to human DOCK180. Nature 392, 501–504 (1998).

    CAS  PubMed  Google Scholar 

  79. Reddien, P. W. & Horvitz, H. R. CED-2/CrkII and CED-10/Rac control phagocytosis and cell migration in Caenorhabditis elegans. Nature Cell Biol. 2, 131–136 (2000).

    CAS  PubMed  Google Scholar 

  80. Gumienny, T. L. et al. CED-12/ELMO, a novel member of the CrkII/Dock180/Rac pathway, is required for phagocytosis and cell migration. Cell 107, 27–41 (2001).

    CAS  PubMed  Google Scholar 

  81. Chung, S., Gumienny, T. L., Hengartner, M. O. & Driscoll, M. A common set of engulfment genes mediates removal of both apoptotic and necrotic cell corpses in C. elegans. Nature Cell Biol. 2, 931–937 (2000).

    CAS  PubMed  Google Scholar 

  82. Hirt, U. A., Gantner, F. & Leist, M. Phagocytosis of nonapoptotic cells dying by caspase independent mechanisms. J. Immunol. 164, 6520–6529 (2000).

    CAS  PubMed  Google Scholar 

  83. Johnstone, R. W., Ruefli, A. A. & Lowe, S. W. Apoptosis: a link between cancer genetics and chemotherapy. Cell 108, 153–164 (2002).

    CAS  PubMed  Google Scholar 

  84. Flemming, W. Über die bildung von richtungsfiguren in säugethiereiern beim utergang Graaf'scher folikel. Arch. Anat. Physiol. 221–244 (1885).

  85. Ellis, R. E. & Horvitz, R. H. Genetic control of programmed cell death in the nematode C. elegans. Cell 44, 817–829 (1986).This study identified mutations in genes that would later be known as the core cell-death machinery, including ced-3, ced-4 and ced-9.

    CAS  PubMed  Google Scholar 

  86. Alnemri, E. S. et al. Human ICE/CED–3 protease nomenclature. Cell 87, 171 (1996).

    CAS  PubMed  Google Scholar 

  87. Villa, P., Kaufmann, S. H. & Earnshaw, W. C. Caspases and caspase inhibitors. Trends Biochem. Sci. 22, 388–393 (1997).

    CAS  PubMed  Google Scholar 

  88. Li, P. et al. Cytochrome c and dATP-dependent formation of Apaf-1/Caspase-9 complex initiates an apoptotic protease cascade. Cell 91, 479–489 (1997).

    CAS  PubMed  Google Scholar 

  89. Zou, H. et al. Apaf-1, a human protein homologous to C. elegans CED-4, participates in cytochrome c-dependent activation of caspase-3. Cell 90, 405–413 (1997).

    CAS  PubMed  Google Scholar 

  90. Vaux, D. L., Weissman, I. L. & Kim, S. K. Prevention of programmed cell death in Caenorhabditis elegans by human bcl-2. Science 258, 1955–1957 (1992).

    CAS  PubMed  Google Scholar 

  91. Hengartner, M. O. & Horvitz, H. R. C. elegans cell survival gene ced-9 encodes a functional homolog of the mammalian proto-oncogene bcl-2. Cell 76, 665–676 (1994).

    CAS  PubMed  Google Scholar 

  92. Hengartner, M. O., Ellis, R. E. & Horvitz, H. R. Caenorhabditis elegans gene ced-9 protects cells from programmed cell death. Nature 9, 494–499 (1992).

    Google Scholar 

  93. McCall, K. & Steller, H. Requirement for DCP-1 caspase during Drosophila oogenesis. Science 279, 230–234 (1998).

    CAS  PubMed  Google Scholar 

  94. Song, Z., McCall, K. & Steller, H. DCP-1, a Drosophila cell death protease essential for development. Science 275, 536–540 (1997).

    CAS  PubMed  Google Scholar 

  95. Rodriguez, A. et al. Dark is a Drosophila homologue of Apaf-1/CED-4 and functions in an evolutionarily conserved death pathway. Nature Cell Biol. 1, 272–279 (1999).

    CAS  PubMed  Google Scholar 

  96. Rodriguez, A., Chen, P., Oliver, H. & Abrams, J. M. Unrestricted caspase-dependent cell death caused by loss of Diap1 function requires the Drosophila Apaf-1 homolog, dark. EMBO J. 21, 2189–2197 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Cecconi, F. et al. Apaf1 (CED-4 homolog) regulates programmed cell death in mammalian development. Cell 94, 727–737 (1998).

    CAS  PubMed  Google Scholar 

  98. Yoshida, H. et al. Apaf1 is required for mitochondrial pathways of apoptosis and brain development. Cell 94, 739–750 (1998).

    CAS  PubMed  Google Scholar 

  99. Varfolomeev, E. E. et al. Targeted disruption of the mouse caspase 8 gene ablates cell death induction by the TNF receptors, Fas/Apo1, and DR3 and is lethal prenatally. Immunity 9, 267–276 (1998).

    CAS  PubMed  Google Scholar 

  100. Kuida, K. et al. Decreased apoptosis in the brain and premature lethality in CPP32-deficient mice. Nature 384, 368–372 (1996).

    CAS  PubMed  Google Scholar 

  101. Kuida, K. et al. Reduced apoptosis and cytochrome c-mediated caspase activation in mice lacking caspase 9. Cell 94, 325–337 (1998).

    CAS  PubMed  Google Scholar 

  102. Motoyama, N. et al. Massive cell death of immature hematopoietic cells and neurons in Bcl-x-deficient mice. Science 267, 1506–1510 (1995).

    CAS  PubMed  Google Scholar 

  103. Rinkenberger, J. L. et al. Mcl-1 deficiency results in peri-implantation embryonic lethality. Genes Dev. 14, 23–27 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Takeshige, K. et al. Autophagy in yeast demonstrated with proteinase-deficient mutants and conditions for its induction. J. Cell Biol. 119, 301–311 (1992).

    CAS  PubMed  Google Scholar 

  105. Klionsky, D. J. & Emr, S. D. Autophagy as a regulated pathway of cellular degradation. Science 290, 1717–1721 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Ohsumi, Y. Molecular dissection of autophagy: two ubiquitin-like systems. Nature Rev. Mol. Cell Biol. 2, 211–216 (2001).

    CAS  Google Scholar 

  107. Liang, X. H. et al. Induction of autophagy and inhibition of tumorigenes is by beclin 1. Nature 402, 672–676 (1999).

    CAS  PubMed  Google Scholar 

  108. Manasek, F. J. Myocardial cell death in the embryonic chick ventricle. J. Embryol. Exp. Morphol. 21, 271–284 (1969).

    CAS  PubMed  Google Scholar 

  109. Young, R. W. Cell death during differentiation of the retina in the mouse. J. Comp. Neurol. 229, 362–373 (1984).

    CAS  PubMed  Google Scholar 

  110. Fox, H. Aspects of tail muscle ultrastructure and its degeneration in Rana temporaria. J. Embryol. Exp. Morphol. 34, 191–207 (1975).

    CAS  PubMed  Google Scholar 

  111. Fox, H. Degeneration of the nerve cord in the tail of Rana temporaria during metamorphic climax: study by electron microscopy. J. Embryol. Exp. Morphol. 30, 377–396 (1973).

    CAS  PubMed  Google Scholar 

  112. Bodenstein, D. in Biology of Drosophila (ed. Demerec, M.) 275–367 (Hafner Publishing, New York, 1965).

    Google Scholar 

  113. Robertson, C. W. The metamorphosis of Drosophila melanogaster, including an accurately timed account of the principal morphological changes. J. Morphol. 59, 351–399 (1936).

    Google Scholar 

  114. Sulston, J. E. & Horvitz, H. R. Post-embryonic cell lineages of the nematode, Caenorhabditis elegans. Dev. Biol. 56, 110–156 (1977).

    CAS  PubMed  Google Scholar 

  115. Wolff, T. & Ready, D. F. Cell death in normal and rough eye mutants of Drosophila. Development 113, 825–839 (1991).

    CAS  PubMed  Google Scholar 

  116. Seinsch, W. & Schweichel, J. U. Physiologic cell necroses during the early development of muscles of the back in embryonic mice. Z. Anat. Entwicklungsgesch 145, 101–112 (1974).

    CAS  PubMed  Google Scholar 

  117. Abrams, J. M., White, K., Fessler, L. I. & Steller, H. Programmed cell death during Drosophila embryogenesis. Development 117, 29–43 (1993).

    CAS  PubMed  Google Scholar 

  118. MacCallum, D. E. et al. The p53 response to ionising radiation in adult and developing murine tissues. Oncogene 13, 2575–2587 (1996).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I apologize to the many researchers who were not cited in this report because of space limitations. I thank the past and present members of my laboratory, collaborators and many colleagues for helpful discussions. Studies of cell death in my laboratory are supported by NSF grant BES-9908942 and NIH grant GM59136.

Author information

Authors and Affiliations

Authors

Related links

Related links

DATABASES

Flybase

p35

SPITZ

HID

reaper

grim

sickle

EcR

usp

βFTZ-F1

BR-C

E74

E93

ark

dronc

croquemort

dcp-1

dark

Wormbase

tra-1

egl-1

CED-9

LocusLink

Bcl-2

Smac/DIABLO

XIAP

Omi/HatA2

CD36

DOCK180

Rac1

Apaf-1

caspase 3

caspase 8

caspase 9

BclX

ProSite

BH3

Glossary

BCL-2 FAMILY

Family of proteins that contain BH1–4 domains and regulate cell death.

EPISTASIS

Interaction between nonallelic genes such that the relationship within a hierarchy can be determined

NULL MUTATIONS

Mutations in genes that eliminate the protein's function.

UBIQUITIN

Polypeptide that is attached to proteins and targets them for degradation.

ECTOPIC

Event that occurs either in the wrong place or at the wrong time.

ZINC FINGER

Conserved protein domain that requires zinc nucleation to bind DNA and regulate RNA transcription.

BCL-HOMOLOGY-3 DOMAIN

Conserved domain within Bcl-2-family proteins.

TROPHIC SIGNALS

Molecules that are required for survival.

GLIA

Support cells of the nervous system.

AXON TRACTS

Group of neural-cell projections.

COMPETENCE FACTOR

Factor that enables a specific response to a stimulus at a specific location or time.

REDUNDANT

Gene or pathway that is duplicated; elimination of one therefore does not result in a defect.

SH2 AND SH3 DOMAINS

Conserved Src-homology-2 and -3 domains are found in signalling and cytoskeleton proteins, and are thought to mediate protein–protein interactions.

TRANSCRIPTOME

All of the messenger RNA species that are present in a cell, tissue or organism at a point in time.

PROTEOME

All of the protein species that are present in a cell, tissue or organism at a point in time.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baehrecke, E. How death shapes life during development. Nat Rev Mol Cell Biol 3, 779–787 (2002). https://doi.org/10.1038/nrm931

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm931

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing