Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Intraflagellar transport

Key Points

  • Flagellar assembly occurs at the distal tip of the organelle, which is far from the site of protein synthesis in the cell body. As a result, intraflagellar transport (IFT) is required to transport flagellar precursors to their assembly site. Because mature flagella continuously undergo protein turnover, IFT is also required for flagellar maintenance.

  • The movement of IFT particles to the tip of the flagellum is powered by kinesin-II, a microtubule-based molecular motor. The movement of IFT particles back to the base of the flagellum is driven by cytoplasmic dynein 1b (also known as cytoplasmic dynein 2), another microtubule-based molecular motor.

  • IFT particles in the model organism Chlamydomonas are composed of at least 16 different polypeptides, virtually all of which have homologues in other ciliated organisms, including Caenorhabditis elegans and mammals.

  • Defects in either the IFT-motor or -particle proteins prevent normal ciliary assembly. As a result, genetic disruption or modification of genes that encode IFT proteins have led to important new insights into the functions of some types of cilia that had previously received scant attention.

  • Reduced expression of an IFT-particle protein in the mouse impairs assembly of the non-motile primary cilia in the kidney, which leads to polycystic kidney disease. Further studies have shown that the polycystins — proteins that are implicated in most cases of polycystic kidney disease in humans — are located on the primary cilia. These results have led to the hypothesis that the kidney primary cilium is a sensory organelle that is involved in the control of cell differentiation and proliferation.

  • Disruption of IFT-motor and -particle protein subunits prevents normal development and maintenance of the mouse photoreceptor outer segment. This is due to impaired transport through the connecting cilium, which is the only link between the inner segment, where protein synthesis occurs, and the outer segment. The result is slow degeneration of the retina, similar to that seen in some diseases that cause blindness in humans.

  • Knockout of IFT-motor subunits in the mouse prevents the assembly of nodal cilia in the embryo, which leads to situs inversus — a condition in which left–right asymmetry is abnormal. Further studies have shown that the movement of nodal cilia causes a directional fluid flow, which is proposed to set up a morphogenetic gradient that establishes correct left–right patterning during early development.

  • IFT is essential for the formation and maintenance of all cilia and flagella, so defects in IFT probably affect several organ systems — including the kidney and eye — in humans. Therefore, defects in IFT might underlie human syndromes such as Senior–Loken syndrome, Jeune syndrome and Bardet–Biedl syndrome, which are characterized by both cystic kidneys and retinal degeneration.

  • IFT might also have a direct role in the control of flagellar length by regulating the rate at which flagellar precursors are delivered to the tip of the flagellum.

Abstract

Eukaryotic cilia and flagella, including primary cilia and sensory cilia, are highly conserved organelles that project from the surfaces of many cells. The assembly and maintenance of these nearly ubiquitous structures are dependent on a transport system — known as 'intraflagellar transport' (IFT) — which moves non-membrane-bound particles from the cell body out to the tip of the cilium or flagellum, and then returns them to the cell body. Recent results indicate that defects in IFT might be a primary cause of some human diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The structure of intraflagellar transport particles.
Figure 2: The intraflagellar transport machinery.
Figure 3: Localization of intraflagellar transport particles in Chlamydomonas.
Figure 4: Postulated roles of intraflagellar-transport-particle proteins in targeting proteins to the flagellar compartment.
Figure 5: A defect in an intraflagellar-transport-particle protein prevents assembly of kidney primary cilia.
Figure 6: The connecting cilium of the vertebrate photoreceptor cell.

Similar content being viewed by others

References

  1. Rosenbaum, J. L. & Child, F. M. Flagellar regeneration in protozoan flagellates. J. Cell Biol. 34, 345–364 (1967).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Binder, L. I., Dentler, W. L. & Rosenbaum J. L. Assembly of chick brain tubulin onto flagellar microtubules from Chlamydomonas and sea urchin sperm. Proc. Natl Acad. Sci. USA 72, 1122–1126 (1975).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Witman, G. B. The site of in vivo assembly of flagellar microtubules. Ann. NY Acad. Sci. 253, 178–191 (1975).

    CAS  PubMed  Google Scholar 

  4. Johnson, K. A. & Rosenbaum, J. L. Polarity of flagellar assembly in Chlamydomonas. J. Cell Biol. 119, 1605–1611 (1992).

    CAS  PubMed  Google Scholar 

  5. Piperno, G., Mead, K. & Henderson, S. Inner dynein arms but not outer dynein arms require the activity of kinesin homologue protein KHP1Fla10 to reach the distal part of the flagella in Chlamydomonas. J. Cell Biol. 133, 371–379 (1996).This paper showed that the IFT anterograde motor kinesin-II is required for transport of inner dynein arms to their site of assembly in the flagellum. This was the first identification of an IFT cargo.

    CAS  PubMed  Google Scholar 

  6. Kozminski, K. G., Beech, P. L. & Rosenbaum, J. L. The Chlamydomonas kinesin-like protein FLA10 is involved in motility associated with the flagellar membrane. J. Cell Biol. 131, 1517–1527 (1995).This study unequivocally correlated the IFT particles viewed by light microscopy with the linear arrays of particles seen by EM, and implicated the kinesin-like protein Fla10 in anterograde IFT.

    CAS  PubMed  Google Scholar 

  7. Pazour, G. J., Dickert, B. L. & Witman, G. B. The DHC1b (DHC2) isoform of cytoplasmic dynein is required for flagellar assembly. J. Cell Biol. 144, 473–481 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Pazour, G. J. et al. Chlamydomonas IFT88 and its mouse homologue, polycystic kidney disease gene Tg737, are required for assembly of cilia and flagella. J. Cell Biol. 151, 709–718 (2000).This work showed that the IFT-particle protein IFT88 and its mouse homologue Tg737 are necessary for assembly of Chlamydomonas flagella and mouse kidney primary cilia, respectively. This provided the first link between defects in kidney cilia and kidney disease.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Morris, R. L. & Scholey, J. M. Heterotrimeric kinesin-II is required for the assembly of motile 9+2 ciliary axonemes on sea urchin embryos. J. Cell Biol. 138, 1009–1022 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Brown, J. M., Marsala, C., Kosoy, R. & Gaertig, J. Kinesin-II is preferentially targeted to assembling cilia and is required for ciliogenesis and normal cytokinesis in Tetrahymena. Mol Biol. Cell 10, 3081–3096 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Perkins, L. A., Hedgecock, E. M., Thomson, J. N. & Culotti, J. G. Mutant sensory cilia in the nematode Caenorhabditis elegans. Dev. Biol. 117, 456–487 (1986).

    CAS  PubMed  Google Scholar 

  12. Cole, D. G. et al. Chlamydomonas kinesin-II-dependent intraflagellar transport (IFT): IFT particles contain proteins required for ciliary assembly in Caenorhabditis elegans sensory neurons. J. Cell Biol. 141, 993–1008 (1998).This paper first reported the purification and subunit composition of the Chlamydomonas anterograde IFT motor Fla10-kinesin-II, and first identified homologues of the Chlamydomonas IFT-particle proteins in C. elegans and mammals.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Collet, J., Spike, C. A., Lundquist, J. E., Shaw, J. E. & Herman, R. K. Analysis of osm-6, a gene that affects sensory cilium structure and sensory neuron function in Caenorhabditis elegans. Genetics 148, 187–200 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Signor, D. et al. Role of a class DHC1b dynein in retrograde transport of IFT motors and IFT raft particles along cilia, but not dendrites, in chemosensory neurons of living Caenorhabditis elegans. J. Cell Biol. 147, 519–530 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Wicks, S. R., de Vries, C. J., van Luenen, H. G. A. M. & Plasterk, R. H. A. CHE-3, a cytosolic dynein heavy chain, is required for sensory cilia structure and function in Caenorhabditis elegans. Dev. Biol. 221, 295–307 (2000).

    CAS  PubMed  Google Scholar 

  16. Qin, H., Rosenbaum, J. L. & Barr, M. M. An autosomal recessive polycystic kidney disease gene homolog is involved in intraflagellar transport in C. elegans ciliated sensory neurons. Curr. Biol. 11, 1–20 (2001).

    Google Scholar 

  17. Nonaka, S. et al. Randomization of left–right asymmetry due to loss of nodal cilia generating leftward flow of extraembryonic fluid in mice lacking KIF3B motor protein. Cell 95, 829–837 (1998).By knocking out a subunit of the anterograde IFT motor kinesin-II in the mouse, these authors showed that loss of nodal cilia caused situs inversus. This, and further work (references 18–20 ) led to the hypothesis that the nodal cilia set up a morphogenetic gradient that determines left–right asymmetry.

    CAS  PubMed  Google Scholar 

  18. Marszalek, J. R., Ruiz-Lozano, P., Roberts, E., Chien, K. R. & Goldstein, L. S. Situs inversus and embryonic ciliary morphogenesis defects in mouse mutants lacking the KIF3A subunit of kinesin-II. Proc. Natl Acad. Sci. USA 96, 5043–5048 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Takeda, S. et al. Left–right asymmetry and kinesin superfamily protein KIF3A: new insights in determination of laterality and mesoderm induction by kif3A−/− mice analysis. J. Cell Biol. 145, 825–836 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Murcia, N. S. et al. The oak ridge polycystic kidney (orpk) disease gene is required for left–right axis determination. Development 127, 2347–2355 (2000).

    CAS  PubMed  Google Scholar 

  21. Marszalek, J. R. et al. Genetic evidence for selective transport of opsin and arrestin by kinesin-II in mammalian photoreceptors. Cell 102, 175–187 (2000).Using Cre-loxP mutagenesis, these investigators selectively removed a subunit of kinesin-II from mouse photoreceptor cells. The results implicated kinesin-II in protein transport through the cilium that connects the inner and outer segments.

    CAS  PubMed  Google Scholar 

  22. Pazour, G. J. et al. The intraflagellar transport protein, IFT88, is essential for vertebrate photoreceptor assembly and maintenance. J. Cell Biol. 157, 103–114 (2002).This work showed that a defect in the expression of an IFT-particle protein in the mouse photoreceptor cell leads to a slow degeneration of the retina similar to that seen in some human diseases.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Sloboda, R. D. A healthy understanding of intraflagellar transport. Cell Motil. Cytoskeleton 52, 1–8 (2002).

    CAS  PubMed  Google Scholar 

  24. Kozminski, K. G., Johnson, K. A., Forscher, P. & Rosenbaum, J. L. A motility in the eukaryotic flagellum unrelated to flagellar beating. Proc. Natl Acad. Sci. USA 90, 5519–5523 (1993).The first report of IFT. It showed the existence of IFT in Chlamydomonas , described the ultrastructure of the IFT particles and reported their rates of movement in both the anterograde and retrograde directions.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Pazour, G. J., Wilkerson, C. G. & Witman, G. B. A dynein light chain is essential for the retrograde particle movement of intraflagellar transport (IFT). J. Cell Biol. 141, 979–992 (1998).This paper showed that a Chlamydomonas mutant lacking dynein light chain LC8 is defective in retrograde IFT. This set the stage for identification of cytoplasmic dynein 1b as the retrograde motor (references 7,41).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Orozco, J. T. et al. Movement of motor and cargo along cilia. Nature 398, 674 (1999).By using GFP to tag both the anterograde IFT motor kinesin-II and the IFT-particle protein OSM-6 in C. elegans , these investigators showed that both proteins moved anterogradely at the same rate in the worm's sensory cilia. This supported the hypothesis that kinesin-II is the anterograde IFT motor.

    CAS  PubMed  Google Scholar 

  27. Allen, C. & Borisy, G. G. Structural polarity and directional growth of microtubules of Chlamydomonas flagella. J. Mol. Biol. 90, 381–402 (1974).

    CAS  PubMed  Google Scholar 

  28. Hirokawa, N. Kinesin and dynein superfamily proteins and the mechanism of organelle transport. Science 279, 519–526 (1998).

    CAS  PubMed  Google Scholar 

  29. Huang, B., Rifkin, M. R. & Luck, D. J. Temperature-sensitive mutations affecting flagellar assembly and function in Chlamydomonas reinhardtii. J. Cell Biol. 72, 67–85 (1977).

    CAS  PubMed  Google Scholar 

  30. Adams, G. M. W., Huang, B. & Luck, D. J. L. Temperature-sensitive, assembly-defective flagella mutants of Chlamydomonas reinhardtii. Genetics 100, 579–586 (1982).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Harris, E. H. The Chlamydomonas Sourcebook 502 (Academic, New York, 1989).

    Google Scholar 

  32. Walther, Z., Vashishtha, M. & Hall, J. L. The Chlamydomonas FLA10 gene encodes a novel kinesin-homologous protein. J. Cell Biol. 126, 175–188 (1994).

    CAS  PubMed  Google Scholar 

  33. Goodson, H. V., Kang, S. J. & Endow, S. A. Molecular phylogeny of the kinesin family of microtubule motor proteins. J. Cell Sci. 107, 1875–1884 (1994).

    CAS  PubMed  Google Scholar 

  34. Scholey, J. M. Kinesin-II, a membrane traffic motor in axons, axonemes, and spindles. J. Cell Biol. 133, 1–4 (1996).

    CAS  PubMed  Google Scholar 

  35. Vashishtha, M., Walther, Z. & Hall, J. L. The kinesin-homologous protein encoded by the Chlamydomonas FLA10 gene is associated with basal bodies and centrioles. J. Cell Sci. 109, 541–549 (1996).

    CAS  PubMed  Google Scholar 

  36. Deane, J. A., Cole, D. G., Seeley, E. S., Diener, D. R. & Rosenbaum, J. L. Localization of intraflagellar transport protein IFT52 identifies basal body transitional fibers as the docking site for IFT particles. Curr. Biol. 11, 1586–1590 (2001).

    CAS  PubMed  Google Scholar 

  37. King, S. M. et al. Brain cytoplasmic and flagellar outer arm dyneins share a highly conserved Mr 8,000 light chain. J. Biol. Chem. 271, 19358–19366 (1996).

    CAS  PubMed  Google Scholar 

  38. Espindola, F. S. et al. The light chain composition of chicken brain myosin-Va: calmodulin, myosin-II essential light chains, and 8-kDa dynein light chain/PIN. Cell Motil. Cytoskeleton 47, 269–281 (2000).

    CAS  PubMed  Google Scholar 

  39. Gibbons, B. H., Asai, D. J., Tang, W. J., Hays, T. S. & Gibbons, I. R. Phylogeny and expression of axonemal and cytoplasmic dynein genes in sea urchins. Mol. Biol. Cell 5, 57–70 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Tanaka, Y., Zhang, Z. & Hirokawa, N. Identification and molecular evolution of new dynein-like protein sequences in rat brain. J. Cell Sci. 108, 1883–1893 (1995).

    CAS  PubMed  Google Scholar 

  41. Porter, M. E., Bower, R., Knott, J. A., Byrd, P. & Dentler, W. Cytoplasmic dynein heavy chain 1b is required for flagellar assembly in Chlamydomonas. Mol. Biol. Cell 10, 693–712 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Pazour, G. J., Dickert, B. L. & Witman, G. B. The DHC1B (DHC2) isoform of cytoplasmic dynein is necessary for flagellar maintenance as well as flagellar assembly. Mol. Biol. Cell 10, 369a (1999).

    Google Scholar 

  43. Iomini, C., Babaev-Khaimov, V., Sassaroli, M. & Piperno, G. Protein particles in Chlamydomonas flagella undergo a transport cycle consisting of four phases. J. Cell Biol. 153, 13–24 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Piperno, G. et al. Distinct mutants of retrograde intraflagellar transport (IFT) share similar morphological and molecular defects. J. Cell Biol. 143, 1591–1601 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Reese, E. L. & Haimo, L. T. Dynein, dynactin, and kinesin II's interaction with microtubules is regulated during bi-directional organelle transport. J. Cell Biol. 151, 155–166 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Dentler, W. L. & Rosenbaum, J. L. Flagellar elongation and shortening in Chlamydomonas. J. Cell Biol. 74, 747–759 (1977).

    CAS  PubMed  Google Scholar 

  47. Dentler, W. L. Structures linking the tips of ciliary and flagellar microtubules to the membrane. J. Cell Sci. 42, 207–220 (1980).

    CAS  PubMed  Google Scholar 

  48. Piperno, G. & Mead, K. Transport of a novel complex in the cytoplasmic matrix of Chlamydomonas flagella. Proc. Natl Acad. Sci. USA 94, 4457–4462 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. San Agustin, J. T., Pazour, G. J. & Witman, G. B. Intraflagellar transport is essential for mammalian sperm tail formation. Mol. Biol. Cell 12, 446a (2001).

    Google Scholar 

  50. Moyer, J. H. et al. Candidate gene associated with a mutation causing recessive polycystic kidney disease in mice. Science 264, 1329–1333 (1994).

    CAS  PubMed  Google Scholar 

  51. Pazour, G. J., San Agustin, J. T., Follit, J. A., Rosenbaum, J. L. & Witman, G. B. Polycystin-2 is localized to kidney cilia and its ciliary level is elevated in orpk mice with polycystic kidney disease. Curr. Biol. 12, R378–R380 (2002).

    CAS  PubMed  Google Scholar 

  52. Miller, M. S. & Cole, D. G. Chlamydomonas IFT172 is homologous to the rat selective LIM domain-binding (SLB) protein, a transcription factor-binding protein. Mol. Biol. Cell 12, 446a (2001).

    Google Scholar 

  53. Howard, P. W. & Maurer, R. A. Identification of a conserved protein that interacts with specific LIM homeodomain transcription factors. J. Biol. Chem. 275, 13336–13342 (2000).

    CAS  PubMed  Google Scholar 

  54. Brazelton, W. J., Amundsen, C. D., Silflow, C. D. & Lefebvre, P. A. The bld1 mutation identifies the Chlamydomonas osm-6 homolog as a gene required for flagellar assembly. Curr. Biol. 11, 1591–1594 (2001).

    CAS  PubMed  Google Scholar 

  55. Wick, M. J., Ann, D. K. & Loh, H. H. Molecular cloning of a novel protein regulated by opioid treatment of NG108-15 cells. Brain Res. Mol. Brain Res. 32, 171–175 (1995).

    CAS  PubMed  Google Scholar 

  56. Gervais, F. G. et al. Recruitment and activation of caspase-8 by the Huntingtin-interacting protein Hip-1 and a novel partner Hippi. Nature Cell Biol. 4, 95–105 (2002).

    CAS  PubMed  Google Scholar 

  57. Pazour, G. J., Dickert, B. L., Rosenbaum, J. L., Witman, G. B. & Cole, D. G. The p57 subunit of the intraflagellar transport (IFT) complex B is required for flagellar assembly in Chlamydomonas reinhardti. Mol. Biol. Cell 10, 388a (1999).

    Google Scholar 

  58. Ringo, D. L. Flagellar motion and fine structure of the flagellar apparatus in Chlamydomonas. J. Cell Biol. 33, 543–571 (1967).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Weiss, R. L., Goodenough, D. A. & Goodenough, U. W. Membrane particle arrays associated with the basal body and with contractile vacuole secretion in Chlamydomonas. J. Cell Biol. 72, 133–143 (1977).

    CAS  PubMed  Google Scholar 

  60. Bouck, G. B., Rosiere, T. K. & Levasseur, P. J. in Ciliary and Flagellar Membranes (ed. Bloodgood, R. A.), 65–90 (Plenum, New York, 1990).

    Google Scholar 

  61. Handel, M. et al. Selective targeting of somatostatin receptor 3 to neuronal cilia. Neuroscience 89, 909–926 (1999).

    CAS  PubMed  Google Scholar 

  62. Bloodgood, R. A. Protein targeting to flagella of trypanosomatid protozoa. Cell Biol. Int. 24, 857–862 (2000).

    CAS  PubMed  Google Scholar 

  63. Snapp, E. L. & Landfear, S. M. Cytoskeletal association is important for differential targeting of glucose transporter isoforms in Leishmania. J. Cell Biol. 139, 1775–1783 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Snapp, E. L. & Landfear, S. M. Characterization of a targeting motif for a flagellar membrane protein in Leishmania enriettii. J. Biol. Chem. 274, 29543–29548 (1999).

    CAS  PubMed  Google Scholar 

  65. Godsel, L. M. & Engman, D. M. Flagellar protein localization mediated by a calcium-myristoyl/palmitoyl switch mechanism. EMBO J. 18, 2057–2065 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Bouck, G. B. The structure, origin, isolation, and composition of the tubular mastigonemes of the Ochromonas flagellum. J. Cell Biol. 50, 362–384 (1971).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Deretic, D. & Papermaster, D. S. Polarized sorting of rhodopsin on post-Golgi membranes in frog retinal photoreceptor cells. J. Cell Biol. 113, 1281–1293 (1991).

    CAS  PubMed  Google Scholar 

  68. Fowkes, M. E. & Mitchell, D. R. The role of preassembled cytoplasmic complexes in assembly of flagellar dynein subunits. Mol. Biol. Cell 9, 2337–2347 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Diener, D. R., Cole, D. G. & Rosenbaum, J. L. Cytoplasmic precursors of flagellar radial spokes exist as large complexes. Mol. Biol. Cell 7, 47a (1996).

    Google Scholar 

  70. Grantham, J. J., Nair, V. & Winklhofer, F. Cystic diseases of the kidney. in Brenner & Rector's The Kidney (ed. Brenner, B. M.), 1699–1730 (W. B. Saunders, Philadelphia, 1996).

    Google Scholar 

  71. Blyth, H. & Ockenden, B. G. Polycystic disease of kidneys and liver presenting in childhood. J. Med. Genet. 8, 257–284 (1971).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Cole, B. R., Conley, S. B. & Stapleton, F. B. Polycystic kidney disease in the first year of life. J. Pediatr. 111, 693–699 (1987).

    CAS  PubMed  Google Scholar 

  73. Taulman, P. D., Haycraft, C. J., Balkovetz, D. F. & Yoder, B. K. Polaris, a protein involved in left–right axis patterning, localizes to basal bodies and cilia. Mol. Biol. Cell 12, 589–599 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Emmons, S. W. & Somlo, S. Mating, channels and kidney cysts. Nature 401, 339–340 (1999).

    CAS  PubMed  Google Scholar 

  75. Murcia, N. S., Sweeney, W. E. & Avner, E. D. New insights into the molecular pathophysiology of polycystic kidney disease. Kidney Int. 55, 1187–1197 (1999).

    CAS  PubMed  Google Scholar 

  76. Somlo, S. & Ehrlich, B. Calcium signaling in polycystic kidney disease. Curr. Biol. 11, R356–R360 (2001).

    CAS  PubMed  Google Scholar 

  77. Barr, M. M. & Sternberg, P. W. A polycystic kidney-disease gene homologue required for male mating behaviour in C. elegans. Nature 401, 386–389 (1999).A seminal paper that showed that the C. elegans homologues of polycystin 1 and polycystin 2 are located on the sensory cilia of the nematode.

    CAS  PubMed  Google Scholar 

  78. Yoder, B. K., Hou, X. & Guay-Woodford, L. M. The polycystic kidney disease proteins: polycystin-1, polycystin-2, polaris, and cystin, are co-localized in renal cilia. J. Am. Soc. Nephrol. 13, 2508–2516 (2002).

    CAS  PubMed  Google Scholar 

  79. Alberts, B. et al. Molecular Biology of the Cell 3rd Edn. (Garland, New York, 1994).

    Google Scholar 

  80. Praetorius, H. A. & Spring, K. R. Bending the MDCK cell primary cilium increases intracellular calcium. J. Membr. Biol. 184, 71–79 (2001).

    CAS  PubMed  Google Scholar 

  81. Schwartz, E. A., Leonard, M. L., Bizios, R. & Bowser, S. S. Analysis and modeling of the primary cilium bending response to fluid shear. Am. J. Physiol. 272, F132–F138 (1997).

    CAS  PubMed  Google Scholar 

  82. De Robertis, E. Morphogenesis of retinal rods: an electron microscope study. J. Biophys. Biochem. Cytol. 2 (suppl.), 209–216 (1958).

    Google Scholar 

  83. Tokuyasu, K. & Yamada, E. The fine structure of the retina studied with the electron microscope. IV. Morphogenesis of outer segments of retinal rods. J. Biophys. Biochem. Cytol. 6, 225–230 (1959).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Young, R. W. Visual cells and the concept of renewal. Invest. Ophthalmol. Vis. Sci. 15, 700–725 (1976).

    CAS  PubMed  Google Scholar 

  85. Besharse, J. C. in The Retina: A Model for Cell Biological Studies Part 1 (eds Adler, R. & Farber, D.) 297–352 (Academic, New York, 1986).

    Google Scholar 

  86. Beech, P. L. et al. Localization of kinesin superfamily proteins to the connecting cilium of fish photoreceptors. J. Cell Sci. 109, 889–897 (1996).

    CAS  PubMed  Google Scholar 

  87. Traboulsi, E. I. Genetic Diseases of the Eye (Oxford Univ. Press, Oxford, 1998).

    Google Scholar 

  88. Sung, C-H. & Tai, A. W. Rhodopsin trafficking and its role in retinal dystrophies. Int. Rev. Cytol. 195, 215–267 (2000).

    CAS  PubMed  Google Scholar 

  89. Stephens, R. E. Synthesis and turnover of embryonic sea urchin ciliary proteins during selective inhibition of tubulin synthesis and assembly. Mol. Biol. Cell 11, 2187–2198 (1997).

    Google Scholar 

  90. Song, L. & Dentler, W. L. Flagellar protein dynamics in Chlamydomonas. J. Biol. Chem. 10, 29754–29763 (2001).

    Google Scholar 

  91. Marshall, W. F. & Rosenbaum, J. L. Intraflagellar transport balances continuous turnover of outer doublet microtubules: implications for flagellar length control. J. Cell Biol. 155, 405–414 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Bergman, K., Goodenough, U. W., Goodenough, D. A., Jawitz, J. & Martin, H. Gametic differentiation in Chlamydomonas reinhardtii. II. Flagellar membranes and the agglutination reaction. J. Cell Biol. 3, 606–622 (1975).

    Google Scholar 

  93. Remillard, S. P. & Witman, G. B. Synthesis, transport, and utilization of specific flageller proteins during flagellar regeneration in Chlamydomonas. J. Cell Biol. 93, 615–631 (1982).

    CAS  PubMed  Google Scholar 

  94. Bloodgood, R. A. Preferential turnover of membrane proteins in the intact Chlamydomonas flagellum. Exp. Cell Res. 150, 488–493 (1984).

    CAS  PubMed  Google Scholar 

  95. Pan, J. & Snell, W. J. Signal transduction during fertilization in the unicellular green alga, Chlamydomonas. Curr. Opin. Microbiol. 6, 596–602 (2000).

    Google Scholar 

  96. Pan, J. & Snell, W. J. Kinesin-II is required for flagellar sensory transduction during fertilization in Chlamydomonas. Mol. Biol. Cell 13, 1417–1426 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Pan, J. & Snell, W. Regulated targeting of a protein kinase into an intact flagellum. An Aurora/Ipl1p-like protein kinase translocates from the cell body into the flagella during gamete activation in Chlamydomonas. J. Biol. Chem. 31, 24106–24114 (2000).

    Google Scholar 

  98. Pan, J. & Snell, W. J. FLA10 kinesin II and regulated translocation into intact flagella of a protein kinase in Chlamydomonas gametes. Mol. Biol. Cell 11, 368a (2000).

    Google Scholar 

  99. Witman, G. B. Introduction to cilia and flagella. in Ciliary and Flagellar Membranes (ed. Bloodgood, R. A.) 1–30 (Plenum, New York, 1990).

    Google Scholar 

  100. Wheatley, D. N. Primary cilia in normal and pathological tissues. Pathobiology 63, 222–238 (1995).

    CAS  PubMed  Google Scholar 

  101. Afzelius, B. A. & Mossberg, B. in The Metabolic and Molecular Bases of Inherited Disease Vol. III (eds Scriver, C. R. et al.) 3943–3954 (McGraw-Hill, New York, 1995).

    Google Scholar 

  102. Okada, Y. et al. Abnormal nodal flow precedes situs inversus in iv and inv mice. Mol. Cell 4, 459–468 (1999).

    CAS  PubMed  Google Scholar 

  103. Supp, D. M. et al. Targeted deletion of the ATP binding domain of left–right dynein confirms its role in specifying development of left–right asymmetries. Development 126, 5495–5504 (1999).

    CAS  PubMed  Google Scholar 

  104. Nonaka, S., Shiratori, H., Saijoh, Y. & Hamada, H. Determination of left–right patterning of the mouse embryo by artificial nodal flow. Nature 418, 96–99 (2002).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by National Institutes of Health grants (J.L.R. and G.B.W.), and by The Robert W. Booth Fund at the Greater Worcester Community Foundation (G.B.W.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George B. Witman.

Related links

Related links

DATABASES

Entrez

FLA10

IFT52

IFT88

LC8

OMIM

autosomal-dominant polycystic kidney disease

autosomal-recessive polycystic kidney disease

Bardet–Biedl syndrome

Huntington disease

Jeune syndrome

retinitis pigmentosa

Senior–Loken syndrome

Swissprot

Dhc1

DHC1a

DHC1b

Dhc2

GFP

HIPPI

KIF3A

KIF3B

Ngd5

polycystin-1

polycystin-2

SLB

Tg737

WormBase

che-3

che-11

daf-10

osm-1

osm-5

osm-6

FURTHER INFORMATION

Rosenbaum Lab Research Summary

Where Are Primary Cilia Found?

Primary Cilium Resource Page

Laboratory of Cell and Computational Biology

Glossary

NODAL CILIA

(Also called monocilia). The primary cilia that are located on the ventral surface of the node of the early mammalian embryo. They are unusual among primary cilia in that they are motile. This motility generates a directional fluid flow across the node, which initiates signalling events that lead to the normal development of left–right asymmetry in the organism.

SITUS INVERSUS

A condition in which internal body organs are in an inverse position relative to normal.

PLUS OR MINUS END

Microtubules are polar structures that grow more rapidly by the addition of new subunits to one end (the 'plus' end) than to the other end (the 'minus' end). The minus ends of flagellar outer doublet microtubules are continuous with the microtubules of the basal body, and their plus ends are at the distal tip of the flagellum.

MELANOPHORES

Pigmented cells, present in fish and other vertebrates, in which pigment granules rapidly disperse or aggregate by moving along the microtubules that radiate from the centre of the cells. This causes the skin to darken or lighten, respectively. The movement of granules is controlled by neurostimulation, and aggregation is driven by cytoplasmic dynein, whereas dispersion depends on a member of the kinesin superfamily.

TRANSITION FIBRES

The fibres that emanate from the distal end of each of the triplet microtubules that comprise the flagellar basal body, and that attach the basal body to the cell membrane at the point where the cell membrane becomes the flagellar membrane.

EF-HAND

A graphical description for the structure of a Ca2+-binding motif that was first described in parvalbumin.

PROTISTS

Unicellular eukaryotic organisms, including algae and protozoans.

SOMATOSTATIN RECEPTOR 3

One of at least five distinct G-protein-coupled receptors that bind somatostatin in mammals.

TUBULIN

A protein subunit of microtubules.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rosenbaum, J., Witman, G. Intraflagellar transport. Nat Rev Mol Cell Biol 3, 813–825 (2002). https://doi.org/10.1038/nrm952

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm952

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing