Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Antibiotic resistance and its cost: is it possible to reverse resistance?

Key Points

  • Most antibiotic resistance mechanisms are associated with a fitness cost, which is a key biological parameter that influences the development of resistance.

  • The fitness cost is the main driver of resistance reversibility at the community level. Thus, the bigger the fitness cost, the faster the reversibility.

  • The rate of reversibility is expected to be slow at the community level because of compensatory evolution, cost-free mutations and genetic co-selection.

  • Knowledge about fitness costs and compensatory mutations can be used to reduce the likelihood of bacteria developing resistance, by enabling us to choose antibiotics for which the resistance mechanism confers a high fitness cost and the rate and extent of compensation mutations are low.

  • It may be possible to exploit the detailed knowledge of the physiological basis of fitness costs in the choice and design of novel therapies that could target the physiological weaknesses associated with a particular resistance mechanism.

  • An understanding of fitness costs and compensatory evolution should allow us to make better quantitative predictions about the rate and trajectory of the evolution of resistance to new and old drugs.

Abstract

Most antibiotic resistance mechanisms are associated with a fitness cost that is typically observed as a reduced bacterial growth rate. The magnitude of this cost is the main biological parameter that influences the rate of development of resistance, the stability of the resistance and the rate at which the resistance might decrease if antibiotic use were reduced. These findings suggest that the fitness costs of resistance will allow susceptible bacteria to outcompete resistant bacteria if the selective pressure from antibiotics is reduced. Unfortunately, the available data suggest that the rate of reversibility will be slow at the community level. Here, we review the factors that influence the fitness costs of antibiotic resistance, the ways by which bacteria can reduce these costs and the possibility of exploiting them.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mechanisms of resistance acquisition.
Figure 2: Determining fitness of bacterial strains.
Figure 3: Relationship between antibiotic resistance and bacterial fitness.

Similar content being viewed by others

References

  1. Wise, R. Antimicrobial resistance: priorities for action. J. Antimicrob. Chemother. 49, 585–586 (2002).

    Article  CAS  PubMed  Google Scholar 

  2. Woodford, N. & Livermore, D. M. Infections caused by Gram-positive bacteria: a review of the global challenge. J. Infect. 59 (Suppl. 1), S4–S16 (2009).

    Article  PubMed  Google Scholar 

  3. Lew, W., Pai, M., Oxlade, O., Martin, D. & Menzies, D. Initial drug resistance and tuberculosis treatment outcomes: systematic review and meta-analysis. Ann. Intern. Med. 149, 123–134 (2008).

    Article  PubMed  Google Scholar 

  4. Guay, D. R. Contemporary management of uncomplicated urinary tract infections. Drugs 68, 1169–1205 (2008).

    Article  CAS  PubMed  Google Scholar 

  5. Levin, B. R. et al. The population genetics of antibiotic resistance. Clin. Infect. Dis. 24 (Suppl. 1), S9–S16 (1997).

    Article  PubMed  Google Scholar 

  6. Andersson, D. I. & Levin, B. R. The biological cost of antibiotic resistance. Curr. Opin. Microbiol. 2, 489–493 (1999).

    Article  CAS  PubMed  Google Scholar 

  7. Levin, B. R. Models for the spread of resistant pathogens. Neth. J. Med. 60, 58–66 (2002).

    CAS  PubMed  Google Scholar 

  8. Nikaido, H. Multidrug resistance in bacteria. Annu. Rev. Biochem. 78, 119–146 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Andersson, D. I. & Hughes, D. Gene amplification and adaptive evolution in bacteria. Annu. Rev. Genet. 43, 167–195 (2009).

    Article  CAS  PubMed  Google Scholar 

  10. Sandegren, L. & Andersson, D. I. Bacterial gene amplification: implications for the evolution of antibiotic resistance. Nature Rev. Microbiol. 7, 578–588 (2009).

    Article  CAS  Google Scholar 

  11. Ince, D. & Hooper, D. C. Quinolone resistance due to reduced target enzyme expression. J. Bacteriol. 185, 6883–6892 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Robicsek, A. et al. Fluoroquinolone-modifying enzyme: a new adaptation of a common aminoglycoside acetyltransferase. Nature Med. 12, 83–88 (2006).

    Article  CAS  PubMed  Google Scholar 

  13. Li, X. Z. & Nikaido, H. Efflux-mediated drug resistance in bacteria: an update. Drugs 69, 1555–1623 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Canton, R. Antibiotic resistance genes from the environment: a perspective through newly identified antibiotic resistance mechanisms in the clinical setting. Clin. Microbiol. Infect. 15 (Suppl. 1), 20–25 (2009).

    Article  CAS  PubMed  Google Scholar 

  15. Martinez, J. L., Baquero, F. & Andersson, D. I. Predicting antibiotic resistance. Nature Rev. Microbiol. 5, 958–965 (2007).

    Article  CAS  Google Scholar 

  16. Bergman, M. et al. Effect of macrolide consumption on erythromycin resistance in Streptococcus pyogenes in Finland in 1997–2001 Clin. Infect. Dis. 38, 1251–1256 (2004).

    Article  CAS  PubMed  Google Scholar 

  17. Bergman, M., Nyberg, S. T., Huovinen, P., Paakkari, P. & Hakanen, A. J. Association between antimicrobial consumption and resistance in Escherichia coli. Antimicrob. Agents Chemother. 53, 912–917 (2009).

    Article  CAS  PubMed  Google Scholar 

  18. Sommer, M. O., Dantas, G. & Church, G. M. Functional characterization of the antibiotic resistance reservoir in the human microflora. Science 325, 1128–1131 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Dahlberg, C. & Chao, L. Amelioration of the cost of conjugative plasmid carriage in Eschericha coli K12. Genetics 165, 1641–1649 (2003). This article shows that plasmids carrying antibiotic resistance genes impose fitness costs on their bacterial hosts but that these costs can quickly be ameliorated by mutations on either the plasmid or the chromosome.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Bouma, J. E. & Lenski, R. E. Evolution of a bacteria/plasmid association. Nature 335, 351–352 (1988).

    Article  CAS  PubMed  Google Scholar 

  21. Enne, V. I., Bennett, P. M., Livermore, D. M. & Hall, L. M. Enhancement of host fitness by the sul2-coding plasmid p9123 in the absence of selective pressure. J. Antimicrob. Chemother. 53, 958–963 (2004).

    Article  CAS  PubMed  Google Scholar 

  22. Spratt, B. G. Antibiotic resistance: counting the cost. Curr. Biol. 6, 1219–1221 (1996).

    Article  CAS  PubMed  Google Scholar 

  23. Levin, B. R. Minimizing potential resistance: a population dynamics view. Clin. Infect. Dis. 33, S161–S169 (2001).

    Article  CAS  PubMed  Google Scholar 

  24. De Gelder, L. et al. Combining mathematical models and statistical methods to understand and predict the dynamics of antibiotic-sensitive mutants in a population of resistant bacteria during experimental evolution. Genetics 168, 1131–1144 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Bjorkholm, B. et al. Mutation frequency and biological cost of antibiotic resistance in Helicobacter pylori. Proc. Natl Acad. Sci. USA 98, 14607–14612 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Davies, A. P. et al. Comparison of fitness of two isolates of Mycobacterium tuberculosis, one of which had developed multi-drug resistance during the course of treatment. J. Infect. 41, 184–187 (2000).

    Article  CAS  PubMed  Google Scholar 

  27. Kanai, K., Shibayama, K., Suzuki, S., Wachino, J. & Arakawa, Y. Growth competition of macrolide-resistant and -susceptible Helicobacter pylori strains. Microbiol. Immunol. 48, 977–980 (2004).

    Article  CAS  PubMed  Google Scholar 

  28. Bjorkman, J., Nagaev, I., Berg, O. G., Hughes, D. & Andersson, D. I. Effects of environment on compensatory mutations to ameliorate costs of antibiotic resistance. Science 287, 1479–1482 (2000). This work finds that different fitness-compensating mutations are selected depending on whether the bacteria evolve in animal models or in laboratory medium.

    Article  CAS  PubMed  Google Scholar 

  29. Bjorkman, J., Hughes, D. & Andersson, D. I. Virulence of antibiotic-resistant Salmonella typhimurium. Proc. Natl Acad. Sci. USA 95, 3949–3953 (1998). This study shows that resistance mutations to different classes of antibiotic strongly reduce bacterial virulence but that second-site compensatory mutations can be selected that restore virulence without the loss of antibiotic resistance.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sander, P. et al. Fitness cost of chromosomal drug resistance-conferring mutations. Antimicrob. Agents Chemother. 46, 1204–1211 (2002). A demonstration that chromosomal drug resistance mutations with little or no cost in vitro are preferentially found in clinical isolates of mycobacteria, arguing that decreased levels of antibiotic consumption will not result in a decline in the frequency of resistant mutants.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Paulander, W., Maisnier-Patin, S. & Andersson, D. I. The fitness cost of Streptomycin resistance depends on rpsL mutation, carbon source and RpoS (σS). Genetics 183, 539–546 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ender, M., McCallum, N., Adhikari, R. & Berger-Bachi, B. Fitness cost of SCCmec and methicillin resistance levels in Staphylococcus aureus. Antimicrob. Agents Chemother. 48, 2295–2297 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hurdle, J. G., O'Neill, A. J., Ingham, E., Fishwick, C. & Chopra, I. Analysis of mupirocin resistance and fitness in Staphylococcus aureus by molecular genetic and structural modeling techniques. Antimicrob. Agents Chemother. 48, 4366–4376 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Luo, N. et al. Enhanced in vivo fitness of fluoroquinolone-resistant Campylobacter jejuni in the absence of antibiotic selection pressure. Proc. Natl Acad. Sci. USA 102, 541–546 (2005). In this article, the authors make the surprising observation that fluoroquinolone-resistant C. jejuni isolates with a mutation in gyrA outcompete clonally related fluoroquinolone-sensitive C. jejuni in the absence of antibiotic selection pressure in vivo (in the chicken). This indicates that the single point mutation not only confers a high-level resistance to fluoroquinolones but also modulates the in vivo fitness of C. jejuni.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Johnsen, P. J., Simonsen, G. S., Olsvik, O., Midtvedt, T. & Sundsfjord, A. Stability, persistence, and evolution of plasmid-encoded VanA glycopeptide resistance in enterococci in the absence of antibiotic selection in vitro and in gnotobiotic mice. Microb. Drug Resist. 8, 161–170 (2002).

    Article  CAS  PubMed  Google Scholar 

  36. Lenski, R. E. & Bouma, J. E. Effects of segregation and selection on instability of plasmid pACYC184 in Escherichia coli B. J. Bacteriol. 169, 5314–5316 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Smith, M. A. & Bidochka, M. J. Bacterial fitness and plasmid loss: the importance of culture conditions and plasmid size. Can. J. Microbiol. 44, 351–355 (1998).

    Article  CAS  PubMed  Google Scholar 

  38. Morosini, M. I., Ayala, J. A., Baquero, F., Martinez, J. L. & Blazquez, J. Biological cost of AmpC production for Salmonella enterica serotype Typhimurium. Antimicrob. Agents Chemother. 44, 3137–3143 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Nagaev, I., Bjorkman, J., Andersson, D. I. & Hughes, D. Biological cost and compensatory evolution in fusidic acid-resistant Staphylococcus aureus. Mol. Microbiol. 40, 433–439 (2001). Here, the authors provide evidence that secondary mutations that compensate the biological fitness costs of antibiotic resistance arise in nature and may contribute to the stabilization of resistance in a bacterial population.

    Article  CAS  PubMed  Google Scholar 

  40. Macvanin, M., Johanson, U., Ehrenberg, M. & Hughes, D. Fusidic acid-resistant EF-G perturbs the accumulation of ppGpp. Mol. Microbiol. 37, 98–107 (2000).

    Article  CAS  PubMed  Google Scholar 

  41. Macvanin, M. et al. Fusidic acid-resistant mutants of Salmonella enterica serovar Typhimurium with low fitness in vivo are defective in RpoS induction. Antimicrob. Agents Chemother. 47, 3743–3749 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Macvanin, M., Ballagi, A. & Hughes, D. Fusidic acid-resistant mutants of Salmonella enterica serovar Typhimurium have low levels of heme and a reduced rate of respiration and are sensitive to oxidative stress. Antimicrob. Agents Chemother. 48, 3877–3883 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Macvanin, M. & Hughes, D. Hyper-susceptibility of a fusidic acid-resistant mutant of Salmonella to different classes of antibiotics. FEMS Microbiol. Lett. 247, 215–220 (2005).

    Article  CAS  PubMed  Google Scholar 

  44. Enne, V. I., Delsol, A. A., Roe, J. M. & Bennett, P. M. Rifampicin resistance and its fitness cost in Enterococcus faecium. J. Antimicrob. Chemother. 53, 203–207 (2004).

    Article  CAS  PubMed  Google Scholar 

  45. O'Neill, A. J., Huovinen, T., Fishwick, C. W. & Chopra, I. Molecular genetic and structural modeling studies of Staphylococcus aureus RNA polymerase and the fitness of rifampin resistance genotypes in relation to clinical prevalence. Antimicrob. Agents Chemother. 50, 298–309 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Reynolds, M. G. Compensatory evolution in rifampin-resistant Escherichia coli. Genetics 156, 1471–1481 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Yu, J., Wu, J., Francis, K. P., Purchio, T. F. & Kadurugamuwa, J. L. Monitoring in vivo fitness of rifampicin-resistant Staphylococcus aureus mutants in a mouse biofilm infection model. J. Antimicrob. Chemother. 55, 528–534 (2005).

    Article  CAS  PubMed  Google Scholar 

  48. Bjedov, I. et al. Stress-induced mutagenesis in bacteria. Science 300, 1404–1409 (2003).

    Article  CAS  PubMed  Google Scholar 

  49. Wrande, M., Roth, J. R. & Hughes, D. Accumulation of mutants in “aging” bacterial colonies is due to growth under selection, not stress-induced mutagenesis. Proc. Natl Acad. Sci. USA 105, 11863–11868 (2008). This work finds that most rifampicin resistance mutations increase bacterial fitness in the environment of an ageing colony, showing that environment is a critically important determinant of relative fitness.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kurland, C. G., Hughes, D. & Ehrenberg, M. in Escherichia coli and Salmonella: Cellular and Molecular Biology (eds Neidhardt, F. C. et al.) 979–1004 (American Society for Microbiology, Washington DC, 1996).

    Google Scholar 

  51. Tubulekas, I. & Hughes, D. Suppression of rpsL phenotypes by tuf mutations reveals a unique relationship between translation elongation and growth rate. Mol. Microbiol. 7, 275–284 (1993).

    Article  CAS  PubMed  Google Scholar 

  52. Enne, V. I. et al. Assessment of the fitness impacts on Escherichia coli of acquisition of antibiotic resistance genes encoded by different types of genetic element. J. Antimicrob. Chemother. 56, 544–551 (2005).

    Article  CAS  PubMed  Google Scholar 

  53. Bottger, E. C., Springer, B., Pletschette, M. & Sander, P. Fitness of antibiotic-resistant microorganisms and compensatory mutations. Nature Med. 4, 1343–1344 (1998).

    Article  CAS  PubMed  Google Scholar 

  54. Arthur, M., Reynolds, P. & Courvalin, P. Glycopeptide resistance in enterococci. Trends Microbiol. 4, 401–407 (1996).

    Article  CAS  PubMed  Google Scholar 

  55. Bugg, T. D. et al. Molecular basis for vancomycin resistance in Enterococcus faecium BM4147: biosynthesis of a depsipeptide peptidoglycan precursor by vancomycin resistance proteins VanH and VanA. Biochemistry 30, 10408–10415 (1991).

    Article  CAS  PubMed  Google Scholar 

  56. Arthur, M., Molinas, C. & Courvalin, P. The VanS-VanR two-component regulatory system controls synthesis of depsipeptide peptidoglycan precursors in Enterococcus faecium BM4147. J. Bacteriol. 174, 2582–2591 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Foucault, M. L., Courvalin, P. & Grillot-Courvalin, C. Fitness cost of VanA-type vancomycin resistance in methicillin-resistant Staphylococcus aureus. Antimicrob. Agents Chemother. 53, 2354–2359 (2009). In this important paper, the authors demonstrate that the fitness cost of the VanA-type glycopeptide resistance cassettes that are carried by clinical methicillin-resistant S. aureus isolates is very high when induced by the presence of the antibiotic but very low in the absence of induction.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Komp Lindgren, P., Marcusson, L. L., Sandvang, D., Frimodt-Moller, N. & Hughes, D. Biological cost of single and multiple norfloxacin resistance mutations in Escherichia coli implicated in urinary tract infections. Antimicrob. Agents Chemother. 49, 2343–2351 (2005).

    Article  CAS  PubMed  Google Scholar 

  59. Komp Lindgren, P., Karlsson, Å. & Hughes, D. Mutation rate and evolution of fluoroquinolone resistance in Escherichia coli isolates from patients with urinary tract infections. Antimicrob. Agents Chemother. 47, 3222–3232 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Martinez-Martinez, L., Pascual, A. & Jacoby, G. A. Quinolone resistance from a transferable plasmid. Lancet 351, 797–799 (1998).

    Article  CAS  PubMed  Google Scholar 

  61. Robicsek, A., Jacoby, G. A. & Hooper, D. C. The worldwide emergence of plasmid-mediated quinolone resistance. Lancet Infect. Dis. 6, 629–640 (2006).

    Article  CAS  PubMed  Google Scholar 

  62. Marcusson, L. L., Frimodt-Moller, N. & Hughes, D. Interplay in the selection of fluoroquinolone resistance and bacterial fitness. PLoS Pathog. 5, e1000541 (2009). These results reveal that the acquisition of an additional fluoroquinolone resistance mutation can not only increase drug resistance (as expected) but also significantly increase bacterial fitness. Thus, Darwinian selection for improved fitness can select for increased drug resistance even in the absence of the drug.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. O'Sullivan, D. M., McHugh, T. D. & Gillespie, S. H. Analysis of rpoB and pncA mutations in the published literature: an insight into the role of oxidative stress in Mycobacterium tuberculosis evolution? J. Antimicrob. Chemother. 55, 674–679 (2005).

    Article  CAS  PubMed  Google Scholar 

  64. Norström, T., Lannergård, J. & Hughes, D. Genetic and phenotypic identification of fusidic acid-resistant mutants with the small colony-variant phenotype in Staphylococcus aureus. Antimicrob. Agents Chemother. 51, 4438–4446 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. O'Neill, A. J. & Chopra, I. Molecular basis of fusB-mediated resistance to fusidic acid in Staphylococcus aureus. Mol. Microbiol. 59, 664–676 (2006).

    Article  CAS  PubMed  Google Scholar 

  66. O'Neill, A. J., Larsen, A. R., Skov, R., Henriksen, A. S. & Chopra, I. Characterization of the epidemic European fusidic acid-resistant impetigo clone of Staphylococcus aureus. J. Clin. Microbiol. 45, 1505–1510 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. O'Neill, A. J., McLaws, F., Kahlmeter, G., Henriksen, A. S. & Chopra, I. Genetic basis of resistance to fusidic acid in staphylococci. Antimicrob. Agents Chemother. 51, 1737–1740 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Lannergard, J., Norstrom, T. & Hughes, D. Genetic determinants of resistance to fusidic acid among clinical bacteremia isolates of Staphylococcus aureus. Antimicrob. Agents Chemother. 53, 2059–2065 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Lannergard, J. et al. Identification of the genetic basis for clinical menadione-auxotrophic small-colony variant isolates of Staphylococcus aureus. Antimicrob. Agents Chemother. 52, 4017–4022 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Proctor, R. A. et al. Small colony variants: a pathogenic form of bacteria that facilitates persistent and recurrent infections. Nature Rev. Microbiol. 4, 295–305 (2006).

    Article  CAS  Google Scholar 

  71. Cohen, T., Sommers, B. & Murray, M. The effect of drug resistance on the fitness of Mycobacterium tuberculosis. Lancet Infect. Dis. 3, 13–21 (2003).

    Article  PubMed  Google Scholar 

  72. Wilson, T. M., de Lisle, G. W. & Collins, D. M. Effect of inhA and katG on isoniazid resistance and virulence of Mycobacterium bovis. Mol. Microbiol. 15, 1009–1015 (1995).

    Article  CAS  PubMed  Google Scholar 

  73. Li, Z., Kelley, C., Collins, F., Rouse, D. & Morris, S. Expression of katG in Mycobacterium tuberculosis is associated with its growth and persistence in mice and guinea pigs. J. Infect. Dis. 177, 1030–1035 (1998).

    Article  CAS  PubMed  Google Scholar 

  74. Pym, A. S., Saint-Joanis, B. & Cole, S. T. Effect of katG mutations on the virulence of Mycobacterium tuberculosis and the implication for transmission in humans. Infect. Immun. 70, 4955–4960 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Cohen, T., Becerra, M. C. & Murray, M. B. Isoniazid resistance and the future of drug-resistant tuberculosis. Microb. Drug Resist. 10, 280–285 (2004).

    Article  CAS  PubMed  Google Scholar 

  76. Normark, S. β-Lactamase induction in Gram-negative bacteria is intimately linked to peptidoglycan recycling. Microb. Drug Resist. 1, 111–114 (1995).

    Article  CAS  PubMed  Google Scholar 

  77. Jacobs, C., Huang, L. J., Bartowsky, E., Normark, S. & Park, J. T. Bacterial cell wall recycling provides cytosolic muropeptides as effectors for β-lactamase induction. EMBO J. 13, 4684–4694 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Jacobs, C., Frere, J. M. & Normark, S. Cytosolic intermediates for cell wall biosynthesis and degradation control inducible β-lactam resistance in gram-negative bacteria. Cell 88, 823–832 (1997).

    Article  CAS  PubMed  Google Scholar 

  79. Tuomanen, E. et al. Coordinate regulation of beta-lactamase induction and peptidoglycan composition by the amp operon. Science 251, 201–204 (1991).

    Article  CAS  PubMed  Google Scholar 

  80. Folkesson, A., Eriksson, S., Andersson, M., Park, J. T. & Normark, S. Components of the peptidoglycan-recycling pathway modulate invasion and intracellular survival of Salmonella enterica serovar Typhimurium. Cell. Microbiol. 7, 147–155 (2005).

    Article  CAS  PubMed  Google Scholar 

  81. Tan, M. W. & Ausubel, F. M. Caenorhabditis elegans: a model genetic host to study Pseudomonas aeruginosa pathogenesis. Curr. Opin. Microbiol. 3, 29–34 (2000).

    Article  CAS  PubMed  Google Scholar 

  82. Sanchez, P. et al. Fitness of in vitro selected Pseudomonas aeruginosa nalB and nfxB multidrug resistant mutants. J. Antimicrob. Chemother. 50, 657–664 (2002).

    Article  CAS  PubMed  Google Scholar 

  83. May, R. M., Gupta, S. & McLean, A. R. Infectious disease dynamics: what characterizes a successful invader? Philos. Trans. R. Soc. Lond. B Biol. Sci. 356, 901–910 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Burgos, M., DeRiemer, K., Small, P. M., Hopewell, P. C. & Daley, C. L. Effect of drug resistance on the generation of secondary cases of tuberculosis. J. Infect. Dis. 188, 1878–1884 (2003).

    Article  PubMed  Google Scholar 

  85. Bottger, E. C., Pletschette, M. & Andersson, D. Drug resistance and fitness in Mycobacterium tuberculosis infection. J. Infect. Dis. 191, 823–824 (2005).

    Article  PubMed  Google Scholar 

  86. Lloyd-Smith, J. O., Schreiber, S. J., Kopp, P. E. & Getz, W. M. Superspreading and the effect of individual variation on disease emergence. Nature 438, 355–359 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Luciani, F., Sisson, S. A., Jiang, H., Francis, A. R. & Tanaka, M. M. The epidemiological fitness cost of drug resistance in Mycobacterium tuberculosis. Proc. Natl Acad. Sci. USA 106, 14711–14715 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Maisnier-Patin, S., Berg, O. G., Liljas, L. & Andersson, D. I. Compensatory adaptation to the deleterious effect of antibiotic resistance in Salmonella typhimurium. Mol. Microbiol. 46, 355–366 (2002).

    Article  CAS  PubMed  Google Scholar 

  89. Levin, B. R., Perrot, V. & Walker, N. Compensatory mutations, antibiotic resistance and the population genetics of adaptive evolution in bacteria. Genetics 154, 985–997 (2000). Here, the authors use modelling to show that the trajectory of the adaptive evolution of low-fitness antibiotic-resistant bacteria will be strongly influenced by the relative rates of different mutations (reversion and compensatory mutations) and the population bottlenecks that these bacteria experience.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Handel, A., Regoes, R. R. & Antia, R. The role of compensatory mutations in the emergence of drug resistance. PLoS Comput. Biol. 2, e137 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Bjorkman, J., Samuelsson, P., Andersson, D. I. & Hughes, D. Novel ribosomal mutations affecting translational accuracy, antibiotic resistance and virulence of Salmonella typhimurium. Mol. Microbiol. 31, 53–58 (1999).

    Article  CAS  PubMed  Google Scholar 

  92. Johanson, U., Aevarsson, A., Liljas, A. & Hughes, D. The dynamic structure of EF-G studied by fusidic acid resistance and internal revertants. J. Mol. Biol. 258, 420–432 (1996).

    Article  CAS  PubMed  Google Scholar 

  93. Meka, V. G. et al. Reversion to susceptibility in a linezolid-resistant clinical isolate of Staphylococcus aureus. J. Antimicrob. Chemother. 54, 818–820 (2004).

    Article  CAS  PubMed  Google Scholar 

  94. Meka, V. G. et al. Linezolid resistance in sequential Staphylococcus aureus isolates associated with a T2500A mutation in the 23S rRNA gene and loss of a single copy of rRNA. J. Infect. Dis. 190, 311–317 (2004).

    Article  CAS  PubMed  Google Scholar 

  95. Wolter, N., Smith, A. M., Farrell, D. J. & Klugman, K. P. Heterogeneous macrolide resistance and gene conversion in the pneumococcus. Antimicrob. Agents Chemother. 50, 359–361 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Nilsson, A. I. et al. Reducing the fitness cost of antibiotic resistance by amplification of initiator tRNA genes. Proc. Natl Acad. Sci. USA 103, 6976–6981 (2006). An important paper showing that amplification of an unrelated wild-type gene can restore growth fitness to an antibiotic-resistant mutant.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Rozen, D. E., McGee, L., Levin, B. R. & Klugman, K. P. Fitness costs of fluoroquinolone resistance in Streptococcus pneumoniae. Antimicrob. Agents Chemother. 51, 412–416 (2007).

    Article  CAS  PubMed  Google Scholar 

  98. Gillespie, S. H., Billington, O. J., Breathnach, A. & McHugh, T. D. Multiple drug-resistant Mycobacterium tuberculosis: evidence for changing fitness following passage through human hosts. Microb. Drug Resist. 8, 273–279 (2002).

    Article  PubMed  Google Scholar 

  99. Heym, B. et al. Effects of overexpression of the alkyl hydroperoxide reductase AhpC on the virulence and isoniazid resistance of Mycobacterium tuberculosis. Infect. Immun. 65, 1395–1401 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Gagneux, S. et al. The competitive cost of antibiotic resistance in Mycobacterium tuberculosis. Science 312, 1944–1946 (2006).

    Article  CAS  PubMed  Google Scholar 

  101. Sherman, D. R. et al. Compensatory ahpC gene expression in isoniazid-resistant Mycobacterium tuberculosis. Science 272, 1641–1643 (1996).

    Article  CAS  PubMed  Google Scholar 

  102. Lipsitch, M., Bergstrom, C. T. & Levin, B. R. The epidemiology of antibiotic resistance in hospitals: paradoxes and prescriptions. Proc. Natl Acad. Sci. USA 97, 1938–1943 (2000). This article describes the mathematical modelling that is used to propose practical measures to control or reduce the prevalence of antibiotic-resistant bacteria in hospital settings. It also discusses why it will be easier to control resistance in hospitals that in the community.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Bonten, M. J., Austin, D. J. & Lipsitch, M. Understanding the spread of antibiotic resistant pathogens in hospitals: mathematical models as tools for control. Clin. Infect. Dis. 33, 1739–1746 (2001).

    Article  CAS  PubMed  Google Scholar 

  104. Austin, D. J. & Anderson, R. M. Studies of antibiotic resistance within the patient, hospitals and the community using simple mathematical models. Philos. Trans. R. Soc. Lond. B Biol. Sci. 354, 721–738 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Aldeyab, M. A. et al. Modelling the impact of antibiotic use and infection control practices on the incidence of hospital-acquired methicillin-resistant Staphylococcus aureus: a time-series analysis. J. Antimicrob. Chemother. 62, 593–600 (2008).

    Article  CAS  PubMed  Google Scholar 

  106. Mahamat, A. et al. Impact of infection control interventions and antibiotic use on hospital MRSA: a multivariate interrupted time-series analysis. Int. J. Antimicrob. Agents 30, 169–176 (2007).

    Article  CAS  PubMed  Google Scholar 

  107. McGowan, J. E. Jr. Minimizing antimicrobial resistance in hospital bacteria: can switching or cycling drugs help? Infect. Control 7, 573–576 (1986).

    Article  PubMed  Google Scholar 

  108. Sjölund, M., Tano, E., Blaser, M. J., Andersson, D. I. & Engstrand, L. Persistence of resistant Staphylococcus epidermidis after single course of clarithromycin. Emerg. Infect. Dis. 11, 1389–1393 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Sjölund, M., Wreiber, K., Andersson, D. I., Blaser, M. J. & Engstrand, L. Long-term persistence of resistant Enterococcus species after antibiotics to eradicate Helicobacter pylori. Ann. Intern. Med. 139, 483–487 (2003). This article shows that an antibiotic treatment that successfully eradicates H. pylori in patients also selects for resistant entercocci that persist in the patients for up to 3 years without any further selection.

    Article  PubMed  Google Scholar 

  110. Sullivan, A., Edlund, C. & Nord, C. E. Effect of antimicrobial agents on the ecological balance of human microflora. Lancet Infect. Dis. 1, 101–114 (2001).

    Article  CAS  PubMed  Google Scholar 

  111. Seppälä, H. et al. The effect of changes in the consumption of macrolide antibiotics on erythromycin resistance in group A streptococci in Finland. N. Engl. J. Med. 337, 441–446 (1997).

    Article  PubMed  Google Scholar 

  112. Kristinsson, K. G. Effect of antimicrobial use and other risk factors on antimicrobial resistance in pneumococci. Microb. Drug Resist. 3, 117–123 (1997).

    Article  CAS  PubMed  Google Scholar 

  113. Kataja, J. et al. Erythromycin resistance genes in group A streptococci in Finland. Antimicrob. Agents Chemother. 43, 48–52 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Arason, V. A. et al. Clonal spread of resistant pneumococci despite diminished antimicrobial use. Microb. Drug Resist. 8, 187–192 (2002).

    Article  PubMed  Google Scholar 

  115. Austin, D. J., Bonten, M. J., Weinstein, R. A., Slaughter, S. & Anderson, R. M. Vancomycin-resistant enterococci in intensive-care hospital settings: transmission dynamics, persistence, and the impact of infection control programs. Proc. Natl Acad. Sci. USA 96, 6908–6913 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Enne, V. I., Livermore, D. M., Stephens, P. & Hall, L. M. Persistence of sulphonamide resistance in Escherichia coli in the UK despite national prescribing restriction. Lancet 357, 1325–1328 (2001). In this article, the authors show that reduced prescription of sulphonamides in the United Kingdom did not reduce resistance within a period of years, probably because of genetic linkage to other resistance determinants that continued to be under selection.

    Article  CAS  PubMed  Google Scholar 

  117. Bean, D. C., Livermore, D. M., Papa, I. & Hall, L. M. Resistance among Escherichia coli to sulphonamides and other antimicrobials now little used in man. J. Antimicrob. Chemother. 56, 962–964 (2005).

    Article  CAS  PubMed  Google Scholar 

  118. Sundqvist, M. et al. Little evidence for reversibility of trimethoprim resistance after a drastic reduction in trimethoprim use. J. Antimicrob. Chemother. 65, 350–360 (2010). A key prospective intervention study in which trimethoprim consumption in a Swedish county was reduced by 85% for a period of 2 years. The authors conclude that reduced antibiotic consumption is unlikely to significantly reduce resistance levels in the community.

    Article  CAS  PubMed  Google Scholar 

  119. Lenski, R. E. Quantifying fitness and gene stability in microorganisms. Biotechnology 15, 173–192 (1991).

    CAS  PubMed  Google Scholar 

  120. Lambertsen, L., Sternberg, C. & Molin, S. Mini-Tn7 transposons for site-specific tagging of bacteria with fluorescent proteins. Environ. Microbiol. 6, 726–732 (2004).

    Article  CAS  PubMed  Google Scholar 

  121. Kadurugamuwa, J. L. et al. Noninvasive monitoring of pneumococcal meningitis and evaluation of treatment efficacy in an experimental mouse model. Mol. Imaging 4, 137–142 (2005).

    Article  PubMed  Google Scholar 

  122. Kadurugamuwa, J. L. et al. Noninvasive biophotonic imaging for monitoring of catheter-associated urinary tract infections and therapy in mice. Infect. Immun. 73, 3878–3887 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Xiong, Y. Q. et al. Real-time in vivo bioluminescent imaging for evaluating the efficacy of antibiotics in a rat Staphylococcus aureus endocarditis model. Antimicrob. Agents Chemother. 49, 380–387 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Giraud, E., Cloeckaert, A., Baucheron, S., Mouline, C. & Chaslus-Dancla, E. Fitness cost of fluoroquinolone resistance in Salmonella enterica serovar Typhimurium. J. Med. Microbiol. 52, 697–703 (2003).

    Article  PubMed  Google Scholar 

  125. Paulander, W., Maisnier-Patin, S. & Andersson, D. I. Multiple mechanisms to ameliorate the fitness burden of mupirocin resistance in Salmonella typhimurium. Mol. Microbiol. 64, 1038–1048 (2007).

    Article  CAS  PubMed  Google Scholar 

  126. Schrag, S. J., Perrot, V. & Levin, B. R. Adaptation to the fitness costs of antibiotic resistance in Escherichia coli. Proc. Biol. Sci. 264, 1287–1291 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Schrag, S. J. & Perrot, V. Reducing antibiotic resistance. Nature 381, 120–121 (1996). This is pioneering work demonstrating that the initially high cost of chromosomal streptomycin resistance mutations is rapidly compensated for in the absence of drug selection without a clinically significant reduction in the level of streptomycin resistance. The results argue that prudent antibiotic use alone may not be sufficient to reduce the prevalence of antibiotic resistance.

    Article  CAS  PubMed  Google Scholar 

  128. Nilsson, A. I., Berg, O. G., Aspevall, O., Kahlmeter, G. & Andersson, D. I. Biological costs and mechanisms of fosfomycin resistance in Escherichia coli. Antimicrob. Agents Chemother. 47, 2850–2858 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Mariam, D. H., Mengistu, Y., Hoffner, S. E. & Andersson, D. I. Effect of rpoB mutations conferring rifampin resistance on fitness of Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 48, 1289–1294 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Billington, O. J., McHugh, T. D. & Gillespie, S. H. Physiological cost of rifampin resistance induced in vitro in Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 43, 1866–1869 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Besier, S., Ludwig, A., Brade, V. & Wichelhaus, T. A. Molecular analysis of fusidic acid resistance in Staphylococcus aureus. Mol. Microbiol. 47, 463–469 (2003).

    Article  CAS  PubMed  Google Scholar 

  132. Besier, S., Ludwig, A., Brade, V. & Wichelhaus, T. A. Compensatory adaptation to the loss of biological fitness associated with acquisition of fusidic acid resistance in Staphylococcus aureus. Antimicrob. Agents Chemother. 49, 1426–1431 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Wichelhaus, T. A. et al. Biological cost of rifampin resistance from the perspective of Staphylococcus aureus. Antimicrob. Agents Chemother. 46, 3381–3385 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Hurdle, J. G., O'Neill, A. J. & Chopra, I. The isoleucyl-tRNA synthetase mutation V588F conferring mupirocin resistance in glycopeptide-intermediate Staphylococcus aureus is not associated with a significant fitness burden. J. Antimicrob. Chemother. 53, 102–104 (2004).

    Article  CAS  PubMed  Google Scholar 

  135. Gustafsson, I., Cars, O. & Andersson, D. I. Fitness of antibiotic resistant Staphylococcus epidermidis assessed by competition on the skin of human volunteers. J. Antimicrob. Chemother. 52, 258–263 (2003).

    Article  CAS  PubMed  Google Scholar 

  136. Johnson, C. N., Briles, D. E., Benjamin, W. H. Jr, Hollingshead, S. K. & Waites, K. B. Relative fitness of fluoroquinolone-resistant Streptococcus pneumoniae. Emerg. Infect. Dis. 11, 814–820 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Binet, R. & Maurelli, A. T. Fitness cost due to mutations in the 16S rRNA associated with spectinomycin resistance in Chlamydia psittaci 6BC. Antimicrob. Agents Chemother. 49, 4455–4464 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Kugelberg, E., Lofmark, S., Wretlind, B. & Andersson, D. I. Reduction of the fitness burden of quinolone resistance in Pseudomonas aeruginosa. J. Antimicrob. Chemother. 55, 22–30 (2005).

    Article  CAS  PubMed  Google Scholar 

  139. Compeau, G., Al-Achi, B. J., Platsouka, E. & Levy, S. B. Survival of rifampin-resistant mutants of Pseudomonas fluorescens and Pseudomonas putida in soil systems. Appl. Environ. Microbiol. 54, 2432–2438 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Dykes, G. A. & Hastings, J. W. Fitness costs associated with class IIa bacteriocin resistance in Listeria monocytogenes B73. Lett. Appl. Microbiol. 26, 5–8 (1998).

    Article  CAS  PubMed  Google Scholar 

  141. Fermer, C. & Swedberg, G. Adaptation to sulfonamide resistance in Neisseria meningitidis may have required compensatory changes to retain enzyme function: kinetic analysis of dihydropteroate synthases from N. meningitidis expressed in a knockout mutant of Escherichia coli. J. Bacteriol. 179, 831–837 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Swedish Research Council, the European Union 5th, 6th and 7th Framework Programmes and the Swedish Agency for Innovations Systems (VINNOVA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dan I. Andersson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

Entrez Genome Project

Caenorhabditis elegans

Campylobacter jejuni

Escherichia coli

Helicobacter pylori

Mycobacterium bovis

Mycobacterium smegmatis

Mycobacterium tuberculosis

Pseudomonas aeruginosa

Salmonella enterica subsp. enterica serovar Typhimurium

Staphylococcus aureus

Staphylococcus epidermidis

Streptococcus pneumoniae

Streptococcus pyogenes

FURTHER INFORMATION

Dan Andersson's homepage

Glossary

Fitness

The capability of a genotype or individual to survive and reproduce.

Bypass resistance

The replacement (bypass) of a metabolic step that is normally inhibited by an antibiotic with a new, drug-resistant metabolic enzyme.

Pharmacokinetic properties

Characteristics of a drug that include: its mechanisms of absorption and distribution; the rate at which its action begins and the duration of the effect; the chemical changes of the agent in the body; and the effects and routes of excretion of drug metabolites. Often summarized as what the body does to a drug.

Pharmacodynamic properties

Characteristics of a drug that include: the physiological effects of a drug on the body, on microorganisms or on parasites in or on the body; the mechanisms of drug action; and the relationship between drug concentration and effect. Often summarized as what a drug does to the body.

Selection coefficient

A measure of the fitness of a phenotype relative to wild type (often denoted s), having a value between 0 and 1. When s = 0, there is no fitness reduction, and when s = 1, the mutation is lethal.

Epistasis

An interaction between genes such that the effect of one gene is modified by one or several other genes.

Gene conversion

A recombination event in which one strand of DNA is changed or repaired using information from another strand.

Baseline

Value for the frequency of resistance before the intervention.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andersson, D., Hughes, D. Antibiotic resistance and its cost: is it possible to reverse resistance?. Nat Rev Microbiol 8, 260–271 (2010). https://doi.org/10.1038/nrmicro2319

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro2319

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing