Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Dysregulation of the dopamine system in the pathophysiology of schizophrenia and depression

Abstract

The dopamine system is unique among the brain's modulatory systems in that it has discrete projections to specific brain regions involved in motor behaviour, cognition and emotion. Dopamine neurons exhibit several activity patterns — including tonic and phasic firing — that are determined by a combination of endogenous pacemaker conductances and regulation by multiple afferent systems. Emerging evidence suggests that disruptions in these regulatory systems may underlie the pathophysiology of several psychiatric disorders, including schizophrenia and depression.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Tonic and phasic dopamine neuron regulation.
Figure 2: Infralimbic prefrontal cortex-mediated modulation of dopamine neuron activity.
Figure 3: Ventral-subiculum dysfunction and schizophrenia symptomatology.
Figure 4: Depression circuitry and ketamine actions.

Similar content being viewed by others

References

  1. Lauder, J. M. & Bloom, F. E. Ontogeny of monoamine neurons in the locus coeruleus, Raphe nuclei and substantia nigra of the rat. I. Cell differentiation. J. Comp. Neurol. 155, 469–481 (1974).

    Article  CAS  PubMed  Google Scholar 

  2. Swanson, L. W. The projections of the ventral tegmental area and adjacent regions: a combined fluorescent retrograde tracer and immunofluorescence study in the rat. Brain Res. Bull. 9, 321–353 (1982).

    Article  CAS  PubMed  Google Scholar 

  3. Menegas, W. et al. Dopamine neurons projecting to the posterior striatum form an anatomically distinct subclass. eLife 4, e10032 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Sesack, S. R. & Grace, A. A. Cortico–basal ganglia reward network: microcircuitry. Neuropsychopharmacology 35, 27–47 (2010).

    Article  PubMed  Google Scholar 

  5. Ikemoto, S. Dopamine reward circuitry: two projection systems from the ventral midbrain to the nucleus accumbens–olfactory tubercle complex. Brain Res. Rev. 56, 27–78 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Lammel, S. et al. Unique properties of mesoprefrontal neurons within a dual mesocorticolimbic dopamine system. Neuron 57, 760–773 (2008).

    Article  CAS  PubMed  Google Scholar 

  7. Szabo, J. Organization of the ascending striatal afferents in monkeys. J. Comp. Neurol. 189, 307–321 (1980).

    Article  CAS  PubMed  Google Scholar 

  8. Lynd-Balta, E. & Haber, S. N. The organization of midbrain projections to the striatum in the primate: sensorimotor-related striatum versus ventral striatum. Neuroscience 59, 625–640 (1994).

    Article  CAS  PubMed  Google Scholar 

  9. Grace, A. A. & Bunney, B. S. Intracellular and extracellular electrophysiology of nigral dopaminergic neurons — 1. Identification and characterization. Neuroscience 10, 301–315 (1983).

    Article  CAS  PubMed  Google Scholar 

  10. Grace, A. A. & Onn, S. P. Morphology and electrophysiological properties of immunocytochemically identified rat dopamine neurons recorded in vitro. J. Neurosci. 9, 3463–3481 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. van Zessen, R., Phillips, J. L., Budygin, E. A. & Stuber, G. D. Activation of VTA GABA neurons disrupts reward consumption. Neuron 73, 1184–1194 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Cohen, J. Y., Haesler, S., Vong, L., Lowell, B. B. & Uchida, N. Neuron-type-specific signals for reward and punishment in the ventral tegmental area. Nature 482, 85–88 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Grace, A. A. & Bunney, B. S. Paradoxical GABA excitation of nigral dopaminergic cells: indirect mediation through reticulata inhibitory neurons. Eur. J. Pharmacol. 59, 211–218 (1979).

    Article  CAS  PubMed  Google Scholar 

  14. Grace, A. A. & Bunney, B. S. Opposing effects of striatonigral feedback pathways on midbrain dopamine cell activity. Brain Res. 333, 271–284 (1985).

    Article  CAS  PubMed  Google Scholar 

  15. Grace, A. A. & Bunney, B. S. The control of firing pattern in nigral dopamine neurons: single spike firing. J. Neurosci. 4, 2866–2876 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Watabe-Uchida, M., Zhu, L., Ogawa, S. K., Vamanrao, A. & Uchida, N. Whole-brain mapping of direct inputs to midbrain dopamine neurons. Neuron 74, 858–873 (2012).

    Article  CAS  PubMed  Google Scholar 

  17. Hjelmstad, G. O., Xia, Y., Margolis, E. B. & Fields, H. L. Opioid modulation of ventral pallidal afferents to ventral tegmental area neurons. J. Neurosci. 33, 6454–6459 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Lecca, S., Melis, M., Luchicchi, A., Muntoni, A. L. & Pistis, M. Inhibitory inputs from rostromedial tegmental neurons regulate spontaneous activity of midbrain dopamine cells and their responses to drugs of abuse. Neuropsychopharmacology 37, 1164–1176 (2016).

    Article  CAS  Google Scholar 

  19. Balcita-Pedicino, J. J., Omelchenko, N., Bell, R. & Sesack, S. R. The inhibitory influence of the lateral habenula on midbrain dopamine cells: ultrastructural evidence for indirect mediation via the rostromedial mesopontine tegmental nucleus. J. Comp. Neurol. 519, 1143–1164 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Ji, H. & Shepard, P. D. Lateral habenula stimulation inhibits rat midbrain dopamine neurons through a GABAA receptor-mediated mechanism. J. Neurosci. 27, 6923–6930 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Floresco, S. B., West, A. R., Ash, B., Moore, H. & Grace, A. A. Afferent modulation of dopamine neuron firing differentially regulates tonic and phasic dopamine transmission. Nat. Neurosci. 6, 968–973 (2003).

    Article  CAS  PubMed  Google Scholar 

  22. Bunney, B. S. & Grace, A. A. Acute and chronic haloperidol treatment: comparison of effects on nigral dopaminergic cell activity. Life Sci. 23, 1715–1727 (1978).

    Article  CAS  PubMed  Google Scholar 

  23. Freeman, A. S. & Bunney, B. S. Activity of A9 and A10 dopaminergic neurons in unrestrained rats: further characterization and effects of apomorphine and cholecystokinin. Brain Res. 405, 46–55 (1987).

    Article  CAS  PubMed  Google Scholar 

  24. Floresco, S. B., Todd, C. L. & Grace, A. A. Glutamatergic afferents from the hippocampus to the nucleus accumbens regulate activity of ventral tegmental area dopamine neurons. J. Neurosci. 21, 4915–4922 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Modinos, G., Allen, P., Grace, A. A. & McGuire, P. Translating the MAM model of psychosis to humans. Trends Neurosci. 38, 129–138 (2015).

    Article  CAS  PubMed  Google Scholar 

  26. Lodge, D. J. & Grace, A. A. The hippocampus modulates dopamine neuron responsivity by regulating the intensity of phasic neuron activation. Neuropsychopharmacology 31, 1356–1361 (2006).

    Article  CAS  PubMed  Google Scholar 

  27. Grace, A. A. Dopamine system dysregulation by the hippocampus: implications for the pathophysiology and treatment of schizophrenia. Neuropharmacology 62, 1342–1348 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Schultz, W. Reward functions of the basal ganglia. J. Neural Transm. (Vienna) http://dx.doi.org/10.1007/s00702-016-1510-0 (2016).

  29. Grace, A. A. & Bunney, B. S. The control of firing pattern in nigral dopamine neurons: burst firing. J. Neurosci. 4, 2877–2890 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Chergui, K. et al. Tonic activation of NMDA receptors causes spontaneous burst discharge of rat midbrain dopamine neurons in vivo. Eur. J. Neurosci. 5, 137–144 (1993).

    Article  CAS  PubMed  Google Scholar 

  31. Mayer, M. L., Westbrook, G. L. & Guthrie, P. B. Voltage-dependent block by Mg2+ of NMDA responses in spinal cord neurones. Nature 309, 261–263 (1984).

    Article  CAS  PubMed  Google Scholar 

  32. Belujon, P. & Grace, A. A. Regulation of dopamine system responsivity and its adaptive and pathological response to stress. Proc. Biol. Sci. 282, 20142516 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Grace, A. A. Ventral hippocampus, interneurons and schizophrenia: a new understanding of the pathophysiology of schizophrenia and its implications for treatment and prevention. Curr. Direct. Psychol. Sci. 19, 232–237 (2010).

    Article  Google Scholar 

  34. Fanselow, M. S. Contextual fear, gestalt memories, and the hippocampus. Behav. Brain Res. 110, 73–81 (2000).

    Article  CAS  PubMed  Google Scholar 

  35. Jarrard, L. E. What does the hippocampus really do? Behav. Brain Res. 71, 1–10 (1995).

    Article  CAS  PubMed  Google Scholar 

  36. Maren, S. Neurotoxic or electrolytic lesions of the ventral subiculum produce deficits in the acquisition and expression of Pavlovian fear conditioning in rats. Behav. Neurosci. 113, 283–290 (1999).

    Article  CAS  PubMed  Google Scholar 

  37. LeDoux, J. E. Emotion circuits in the brain. Annu. Rev. Neurosci. 23, 155–184 (2000).

    Article  CAS  PubMed  Google Scholar 

  38. Chang, C. H. & Grace, A. A. Amygdala–ventral pallidum pathway decreases dopamine activity after chronic mild stress in rats. Biol. Psychiatry 76, 223–230 (2014).

    Article  CAS  PubMed  Google Scholar 

  39. Patton, M. H., Bizup, B. T. & Grace, A. A. The infralimbic cortex bidirectionally modulates mesolimbic dopamine neuron activity via distinct neural pathways. J. Neurosci. 33, 16865–16873 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Bunney, B. S., Walters, J. R., Roth, R. H. & Aghajanian, G. K. Dopaminergic neurons: effect of antipsychotic drugs and amphetamine on single cell activity. J. Pharmacol. Exp. Ther. 185, 560–571 (1973).

    CAS  PubMed  Google Scholar 

  41. Ungless, M. A., Magill, P. J. & Bolam, J. P. Uniform inhibition of dopamine neurons in the ventral tegmental area by aversive stimuli. Science 303, 2040–2042 (2004).

    Article  CAS  PubMed  Google Scholar 

  42. Lammel, S. et al. Input-specific control of reward and aversion in the ventral tegmental area. Nature 491, 212–217 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Valenti, O., Gill, K. M. & Grace, A. A. Different stressors produce excitation or inhibition of mesolimbic dopamine neuron activity: response alteration by stress pre-exposure. Eur. J. Neurosci. 35, 1312–1321 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Brischoux, F., Chakraborty, S., Brierley, D. I. & Ungless, M. A. Phasic excitation of dopamine neurons in ventral VTA by noxious stimuli. Proc. Natl Acad. Sci. USA 106, 4894–4899 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Eshel, N., Tian, J., Bukwich, M. & Uchida, N. Dopamine neurons share common response function for reward prediction error. Nat. Neurosci. 19, 479–486 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Valenti, O., Lodge, D. J. & Grace, A. A. Aversive stimuli alter ventral tegmental area dopamine neuron activity via a common action in the ventral hippocampus. J. Neurosci. 31, 4280–4289 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Abercrombie, E. D., Keefe, K. A., DiFrischia, D. S. & Zigmond, M. J. Differential effect of stress on in vivo dopamine release in striatum, nucleus accumbens, and medial frontal cortex. J. Neurochem. 52, 1655–1658 (1989).

    Article  CAS  PubMed  Google Scholar 

  48. Kalivas, P. W. & Duffy, P. Selective activation of dopamine transmission in the shell of the nucleus accumbens by stress. Brain Res. 675, 325–328 (1995).

    Article  CAS  PubMed  Google Scholar 

  49. Holly, E. N. & Miczek, K. A. Ventral tegmental area dopamine revisited: effects of acute and repeated stress. Psychopharmacology (Berl.) 233, 163–186 (2016).

    Article  CAS  Google Scholar 

  50. Segal, D. S. & Mandell, A. J. Long-term administration of d-amphetamine: progressive augmentation of motor activity and stereotypy. Pharmacol. Biochem. Behav. 2, 249–255 (1974).

    Article  CAS  PubMed  Google Scholar 

  51. Lodge, D. J. & Grace, A. A. Amphetamine activation of hippocampal drive of mesolimbic dopamine neurons: a mechanism of behavioral sensitization. J. Neurosci. 28, 7876–7882 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Badiani, A., Browman, K. E. & Robinson, T. E. Influence of novel versus home environments on sensitization to the psychomotor stimulant effects of cocaine and amphetamine. Brain Res. 674, 291–298 (1995).

    Article  CAS  PubMed  Google Scholar 

  53. Antelman, S. M., Eichler, A. J., Black, C. A. & Kocan, D. Interchangeability of stress and amphetamine in sensitization. Science 207, 329–331 (1980).

    Article  CAS  PubMed  Google Scholar 

  54. Chang, C.-H. & Grace, A. A. Amygdala β-noradrenergic receptors modulate delayed down-regulation of dopamine activity following restraint. J. Neurosci. 33, 1441–1450 (2012).

    Article  CAS  Google Scholar 

  55. Belujon, P., Jakobowski, N. L., Dollish, H. K. & Grace, A. A. Withdrawal from acute amphetamine induces an amygdala-driven attenuation of dopamine neuron activity: reversal by ketamine. Neuropsychopharmacology 41, 619–627 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Koob, G. F., Stinus, L., Le Moal, M. & Bloom, F. E. Opponent process theory of motivation: neurobiological evidence from studies of opiate dependence. Neurosci. Biobehav. Rev. 13, 135–140 (1989).

    Article  CAS  PubMed  Google Scholar 

  57. Koob, G. F. & Le Moal, M. Review. Neurobiological mechanisms for opponent motivational processes in addiction. Phil. Trans. R. Soc. B 363, 3113–3123 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Kapur, S. & Remington, G. Dopamine D2 receptors and their role in atypical antipsychotic action: still necessary and may even be sufficient. Biol. Psychiatry 50, 873–883 (2001).

    Article  CAS  PubMed  Google Scholar 

  59. Janowsky, D. S., El-Yousef, K., Davis, J. M. & Sekerke, H. J. Provocation of schizophrenic symptoms by intravenous administration of methylphenidate. Arch. Gen. Psychiatry 28, 185–191 (1973).

    Article  CAS  PubMed  Google Scholar 

  60. Angrist, B., Sathananthan, G., Wilk, S. & Gershon, S. Amphetamine psychosis: behavioral and biochemical aspects. J. Psychiatr. Res. 11, 13–23 (1974).

    Article  CAS  PubMed  Google Scholar 

  61. Laruelle, M. & Abi-Dargham, A. Dopamine as the wind of psychotic fire: new evidence from brain imaging studies. J. Psychopharmacol. 13, 358–371 (1999).

    Article  CAS  PubMed  Google Scholar 

  62. Grace, A. A. Phasic versus tonic dopamine release and the modulation of dopamine system responsivity: a hypothesis for the etiology of schizophrenia. Neuroscience 41, 1–24 (1991).

    Article  CAS  PubMed  Google Scholar 

  63. Suddath, R. L., Christison, G. W., Torrey, E. F., Casanova, M. F. & Weinberger, D. R. Anatomical abnormalities in the brains of monozygotic twins discordant for schizophrenia. N. Engl. J. Med. 322, 789–794 (1990).

    Article  CAS  PubMed  Google Scholar 

  64. Grace, A. A. Dopamine system dysregulation and the pathophysiology of schizophrenia: insights from the methylazoxymethanol acetate model. Biol. Psychiatry http://dx.doi.org/10.1016/j.biopsych.2015.11.007 (2015).

  65. Heckers, S. Neuroimaging studies of the hippocampus in schizophrenia. Hippocampus 11, 520–528 (2001).

    Article  CAS  PubMed  Google Scholar 

  66. Malaspina, D. et al. SPECT study of visual fixation in schizophrenia and comparison subjects. Biol. Psychiatry 46, 89–93 (1999).

    Article  CAS  PubMed  Google Scholar 

  67. Medoff, D. R., Holcomb, H. H., Lahti, A. C. & Tamminga, C. A. Probing the human hippocampus using rCBF: contrasts in schizophrenia. Hippocampus 11, 543–550 (2001).

    Article  CAS  PubMed  Google Scholar 

  68. Silbersweig, D. A. et al. A functional neuroanatomy of hallucinations in schizophrenia. Nature 378, 176–179 (1995).

    Article  CAS  PubMed  Google Scholar 

  69. Lewis, D. A., Hashimoto, T. & Volk, D. W. Cortical inhibitory neurons and schizophrenia. Nat. Rev. Neurosci. 6, 312–324 (2005).

    Article  CAS  PubMed  Google Scholar 

  70. Benes, F. M. et al. Regulation of the GABA cell phenotype in hippocampus of schizophrenics and bipolars. Proc. Natl Acad. Sci. USA 104, 10164–10169 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Stone, J. M. et al. Altered relationship between hippocampal glutamate levels and striatal dopamine function in subjects at ultra high risk of psychosis. Biol. Psychiatry 68, 599–602 (2010).

    Article  CAS  PubMed  Google Scholar 

  72. Moore, H., Ghajarnia, M., Geyer, M., Jentsch, J. D. & Grace, A. A. Selective disruption of prefrontal and limbic corticostriatal circuits by prenatal exposure to the DNA methylation agent methylazoxymethanol acetate (MAM): anatomical, neurophysiological and behavioral studies. Schizophr. Res. 49, 48 (2001).

    Google Scholar 

  73. Hradetzky, E. et al. The methylazoxymethanol acetate (MAM-E17) rat model: molecular and functional effects in the hippocampus. Neuropsychopharmacology 37, 364–377 (2012).

    Article  CAS  PubMed  Google Scholar 

  74. Grace, A. A. in Neurodevelopment and Schizophrenia (eds Keshavan, M. S., Kennedy, J. L. & Murray, R. M.) 273–294 (Cambridge Univ. Press, 2004).

    Book  Google Scholar 

  75. Lodge, D. J., Behrens, M. M. & Grace, A. A. A loss of parvalbumin-containing interneurons is associated with diminished oscillatory activity in an animal model of schizophrenia. J. Neurosci. 29, 2344–2354 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Lodge, D. J. & Grace, A. A. Aberrant hippocampal activity underlies the dopamine dysregulation in an animal model of schizophrenia. J. Neurosci. 27, 11424–11430 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Gill, K. M. & Grace, A. A. Corresponding decrease in neuronal markers signals progressive parvalbumin neuron loss in MAM schizophrenia model. Int. J. Neuropsychopharmacol. 17, 1609–1619 (2014).

    Article  PubMed  CAS  Google Scholar 

  78. Egerton, A. et al. Presynaptic striatal dopamine dysfunction in people at ultra-high risk for psychosis: findings in a second cohort. Biol. Psychiatry 74, 106–112 (2013).

    Article  CAS  PubMed  Google Scholar 

  79. Kapur, S. Psychosis as a state of aberrant salience: a framework linking biology, phenomenology, and pharmacology in schizophrenia. Am. J. Psychiatry 160, 13e23 (2003).

    Article  Google Scholar 

  80. Herman, J. P. & Mueller, N. K. Role of the ventral subiculum in stress integration. Behav. Brain Res. 174, 215–224 (2006).

    Article  CAS  PubMed  Google Scholar 

  81. Groenewegen, H. J., Vermeulen- Van der Zee, E., te Kortschot, A. & Witter, M. P. Organization of the projections from the subiculum to the ventral striatum in the rat. A study using anterograde transport of Phaseolus vulgaris leucoagglutinin. Neuroscience 23, 103–120 (1987).

    Article  CAS  PubMed  Google Scholar 

  82. Jay, T. M. & Witter, M. P. Distribution of hippocampal CA1 and subicular efferents in the prefrontal cortex of the rat studied by means of anterograde transport of Phaseolus vulgaris-leucoagglutinin. J. Comp. Neurol. 313, 574–586 (1991).

    Article  CAS  PubMed  Google Scholar 

  83. Sirota, A. et al. Entrainment of neocortical neurons and gamma oscillations by the hippocampal theta rhythm. Neuron 60, 683–697 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Owens, D. G., Miller, P., Lawrie, S. M. & Johnstone, E. C. Pathogenesis of schizophrenia: a psychopathological perspective. Br. J. Psychiatry 186, 386–393 (2005).

    Article  PubMed  Google Scholar 

  85. Sapolsky, R. M. Stress, glucocorticoids, and damage to the nervous system: the current state of confusion. Stress 1, 1–19 (1996).

    Article  CAS  PubMed  Google Scholar 

  86. Czeh, B. et al. Chronic stress decreases the number of parvalbumin-immunoreactive interneurons in the hippocampus: prevention by treatment with a substance P receptor (NK1) antagonist. Neuropsychopharmacology 30, 67–79 (2005).

    Article  CAS  PubMed  Google Scholar 

  87. Rosenkranz, J. A. et al. Opposing influence of basolateral amygdala and footshock stimulation on neurons of the central amygdala. Biol. Psychiatry 59, 801–811 (2006).

    Article  PubMed  Google Scholar 

  88. Rosenkranz, J. A. & Grace, A. A. Dopamine attenuates prefrontal cortical suppression of sensory inputs to the basolateral amygdala of rats. J. Neurosci. 21, 4090–4103 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Berretta, S. et al. Long-term effects of amygdala GABA receptor blockade on specific subpopulations of hippocampal interneurons. Hippocampus 14, 876–894 (2004).

    Article  CAS  PubMed  Google Scholar 

  90. Zimmerman, E. C., Bellaire, M., Ewing, S. G. & Grace, A. A. Abnormal stress responsivity in a rodent developmental disruption model of schizophrenia. Neuropsychopharmacology 38, 2131–2139 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Rosenkranz, J. A., Moore, H. & Grace, A. A. The prefrontal cortex regulates lateral amygdala neuronal plasticity and responses to previously conditioned stimuli. J. Neurosci. 23, 11054–11064 (2003).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Rosenkranz, J. A. & Grace, A. A. Cellular mechanisms of infralimbic and prelimbic prefrontal cortical inhibition and dopaminergic modulation of basolateral amygdala neurons in vivo. J. Neurosci. 22, 324–337 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Lewis, D. A., Hashimoto, T. & Morris, H. M. Cell and receptor type-specific alterations in markers of GABA neurotransmission in the prefrontal cortex of subjects with schizophrenia. Neurotox. Res. 14, 237–248 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Thompson, J. L., Pogue-Geile, M. F. & Grace, A. A. The interactions among developmental pathology, dopamine, and stress as a model for the age of onset of schizophrenia symptomatology. Schizophr. Bull. 30, 875–900 (2004).

    Article  PubMed  Google Scholar 

  95. Du, Y. & Grace, A. A. Peripubertal diazepam administration prevents the emergence of dopamine system hyperresponsivity in the MAM developmental disruption model of schizophrenia. Neuropsychopharmacology 38, 1881–1888 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Menezes, P. R. et al. Incidence of first-contact psychosis in Sao Paulo, Brazil. Br. J. Psychiatry Suppl. 51, s102–s106 (2007).

    Article  PubMed  Google Scholar 

  97. Hickling, F. W. Double jeopardy: psychopathology of black mentally ill returned migrants to Jamaica. Int. J. Soc. Psychiatry 37, 80–89 (1991).

    Article  CAS  PubMed  Google Scholar 

  98. Gatt, J. M., Burton, K. L., Williams, L. M. & Schofield, P. R. Specific and common genes implicated across major mental disorders: a review of meta-analysis studies. J. Psychiatr. Res. 60, 1–13 (2015).

    Article  PubMed  Google Scholar 

  99. Carlsson, A. The contribution of drug research to investigating the nature of endogenous depression. Pharmakopsychiatr. Neuropsychopharmakol. 9, 2–10 (1976).

    Article  CAS  Google Scholar 

  100. Wise, R. A. Dopamine, learning and motivation. Nat. Rev. Neurosci. 5, 483–494 (2004).

    Article  CAS  PubMed  Google Scholar 

  101. Wise, R. A. Dopamine and reward: the anhedonia hypothesis 30 years on. Neurotox. Res. 14, 169–183 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Pandit, R. et al. Melanocortin 3 receptor signaling in midbrain dopamine neurons increases the motivation for food reward. Neuropsychopharmacology http://dx.doi.org/10.1038/npp.2016.19 (2016).

  103. Mayberg, H. S. et al. Deep brain stimulation for treatment-resistant depression. Neuron 45, 651–660 (2005).

    Article  CAS  PubMed  Google Scholar 

  104. Leppanen, J. M. Emotional information processing in mood disorders: a review of behavioral and neuroimaging findings. Curr. Opin. Psychiatry 19, 34–39 (2006).

    Article  PubMed  Google Scholar 

  105. Kalia, M. Neurobiological basis of depression: an update. Metabolism 54, 24–27 (2005).

    Article  CAS  PubMed  Google Scholar 

  106. Chaudhury, D. et al. Rapid regulation of depression-related behaviours by control of midbrain dopamine neurons. Nature 493, 532–536 (2013).

    Article  CAS  PubMed  Google Scholar 

  107. Bagot, R. C. et al. Ventral hippocampal afferents to the nucleus accumbens regulate susceptibility to depression. Nat. Commun. 6, 7062 (2015).

    Article  PubMed  CAS  Google Scholar 

  108. Tye, K. M. et al. Dopamine neurons modulate neural encoding and expression of depression-related behaviour. Nature 493, 537–541 (2013).

    Article  CAS  PubMed  Google Scholar 

  109. Friedman, A. K. et al. Enhancing depression mechanisms in midbrain dopamine neurons achieves homeostatic resilience. Science 344, 313–319 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Krishnan, V. et al. Molecular adaptations underlying susceptibility and resistance to social defeat in brain reward regions. Cell 131, 391–404 (2007).

    Article  CAS  PubMed  Google Scholar 

  111. Berman, R. M. et al. Antidepressant effects of ketamine in depressed patients. Biol. Psychiatry 47, 351–354 (2000).

    Article  CAS  PubMed  Google Scholar 

  112. Belujon, P. & Grace, A. A. Restoring mood balance in depression: ketamine reverses deficit in dopamine-dependent synaptic plasticity. Biol. Psychiatry 76, 927–936 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Sultan, K. T., Brown, K. N. & Shi, S. H. Production and organization of neocortical interneurons. Front. Cell Neurosci. 7, 221 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Buzsaki, G. & Draguhn, A. Neuronal oscillations in cortical networks. Science 304, 1926–1929 (2004).

    Article  CAS  PubMed  Google Scholar 

  115. Steullet, P. et al. Redox dysregulation, neuroinflammation, and NMDA receptor hypofunction: a “central hub” in schizophrenia pathophysiology? Schizophr. Res. http:dx.doi.org/10.1016/j.schres.2014.06.021 (2014).

  116. Cabungcal, J. H. et al. Perineuronal nets protect fast-spiking interneurons against oxidative stress. Proc. Natl Acad. Sci. USA 110, 9130–9135 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Moore, H., Todd, C. L. & Grace, A. A. Striatal extracellular dopamine levels in rats with haloperidol-induced depolarization block of substantia nigra dopamine neurons. J. Neurosci. 18, 5068–5077 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Hollerman, J. R., Abercrombie, E. D. & Grace, A. A. Electrophysiological, biochemical, and behavioral studies of acute haloperidol-induced depolarization block of nigral dopamine neurons. Neuroscience 47, 589–601 (1992).

    Article  CAS  PubMed  Google Scholar 

  119. Grace, A. A. in Stimulant Drugs and ADHD: Basic and Clinical Neuroscience (eds Solanto, M. V., Arnsten, A. F. T. & Castellanos, F. X.) 134–157 (Oxford Univ. Press, 2000).

    Google Scholar 

  120. Room, P., Russchen, F. T., Groenewegen, H. J. & Lohman, A. H. Efferent connections of the prelimbic (area 32) and the infralimbic (area 25) cortices: an anterograde tracing study in the cat. J. Comp. Neurol. 242, 40–55 (1985).

    Article  CAS  PubMed  Google Scholar 

  121. Reep, R. Relationship between prefrontal and limbic cortex: a comparative anatomical review. Brain Behav. Evol. 25, 5–80 (1984).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author thanks P. Belujon for her help in constructing the figures. This work was supported by US Public Health Service grants MH57440, MH191180 and MH104320.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony A. Grace.

Ethics declarations

Competing interests

The author has received honoraria/research support from the following organizations: Johnson & Johnson, Lundbeck, Pfizer, GSK, Merck, Takeda, Dainippon Sumitomo, Otsuka, Lilly, Roche, Asubio, Abbott, Autofony and Janssen.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grace, A. Dysregulation of the dopamine system in the pathophysiology of schizophrenia and depression. Nat Rev Neurosci 17, 524–532 (2016). https://doi.org/10.1038/nrn.2016.57

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn.2016.57

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing