Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Taste buds: cells, signals and synapses

Key Points

  • Taste buds are composed of two excitable cell types and a glia-like cell; each type of cell has distinct functions.

  • Basic taste qualities are detected by G protein-coupled type 1 and type 2 taste receptors, by other receptors and ion channels, and possibly by transporters.

  • ATP is an afferent taste transmitter and is secreted by taste bud cells through an unconventional, non-vesicular release mechanism.

  • ATP, serotonin and GABA mediate cell–cell interactions in the taste bud that may shape transmission to sensory afferent fibres.

  • Controversy remains regarding whether peripheral taste coding follows a labelled-line or combinatorial pattern.

  • Taste preferences and appetites seem to have a genetic component that is being revealed by molecular and population studies.

Abstract

The past decade has witnessed a consolidation and refinement of the extraordinary progress made in taste research. This Review describes recent advances in our understanding of taste receptors, taste buds, and the connections between taste buds and sensory afferent fibres. The article discusses new findings regarding the cellular mechanisms for detecting tastes, new data on the transmitters involved in taste processing and new studies that address longstanding arguments about taste coding.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Membrane proteins that transduce taste.
Figure 2: The combinatorial model of taste coding.

Similar content being viewed by others

References

  1. Zhang, Y. et al. Coding of sweet, bitter, and umami tastes: different receptor cells sharing similar signaling pathways. Cell 112, 293–301 (2003). This study demonstrates that sweet-taste and bitter-taste receptors signal via a common pathway that includes PLCβ2 and TRPM5. Mice lacking the genes that encode these signalling proteins are shown to lose taste sensitivity for sweet, bitter and umami.

    Article  CAS  PubMed  Google Scholar 

  2. Clapp, T. R., Yang, R., Stoick, C. L., Kinnamon, S. C. & Kinnamon, J. C. Morphologic characterization of rat taste receptor cells that express components of the phospholipase C signaling pathway. J. Comp. Neurol. 468, 311–321 (2004).

    Article  CAS  PubMed  Google Scholar 

  3. DeFazio, R. A. et al. Separate populations of receptor cells and presynaptic cells in mouse taste buds. J. Neurosci. 26, 3971–3980 (2006). This study uses Ca2+ imaging and single-cell reverse transcription PCR to show that cells with taste GPCRs (T1Rs and T2Rs) and their downstream effectors are distinct from taste cells that express proteins for vesicular neurotransmitter release.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Huang, A. L. et al. The cells and logic for mammalian sour taste detection. Nature 442, 934–938 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Huang, Y. A., Maruyama, Y., Stimac, R. & Roper, S. D. Presynaptic (type III) cells in mouse taste buds sense sour (acid) taste. J. Physiol. 586, 2903–2912 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Ye, W. et al. The K+ channel KIR2.1 functions in tandem with proton influx to mediate sour taste transduction. Proc. Natl Acad. Sci. USA 113, E229–E238 (2016). This patch-clamp study shows that cytoplasmic acidification excites sour-sensing taste bud cells by blocking the inwardly rectifying K+ channel KIR2.1.

    Article  CAS  PubMed  Google Scholar 

  7. Chandrashekar, J. et al. The cells and peripheral representation of sodium taste in mice. Nature 464, 297–301 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Hoon, M. A. et al. Putative mammalian taste receptors: a class of taste-specific GPCRs with distinct topographic selectivity. Cell 96, 541–551 (1999).

    Article  CAS  PubMed  Google Scholar 

  9. Max, M. et al. Tas1r3, encoding a new candidate taste receptor, is allelic to the sweet responsiveness locus Sac. Nat. Genet. 28, 58–63 (2001).

    CAS  PubMed  Google Scholar 

  10. Montmayeur, J. P., Liberles, S. D., Matsunami, H. & Buck, L. B. A candidate taste receptor gene near a sweet taste locus. Nat. Neurosci. 4, 492–498 (2001).

    Article  CAS  PubMed  Google Scholar 

  11. Sainz, E., Korley, J. N., Battey, J. F. & Sullivan, S. L. Identification of a novel member of the T1R family of putative taste receptors. J. Neurochem. 77, 896–903 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. Nelson, G. et al. Mammalian sweet taste receptors. Cell 106, 381–390 (2001). This study shows that the heterologous expression of T1R2 and T1R3 confers sensitivity to sugars and synthetic sweeteners.

    Article  CAS  PubMed  Google Scholar 

  13. Nelson, G. et al. An amino-acid taste receptor. Nature 416, 199–202 (2002). This study shows that the heterologous expression of taste GPCRs T1R1 and T1R3 confers sensitivity to many amino acids, including glutamate.

    Article  CAS  PubMed  Google Scholar 

  14. Pin, J. P., Galvez, T. & Prezeau, L. Evolution, structure, and activation mechanism of family 3/C G-protein-coupled receptors. Pharmacol. Ther. 98, 325–354 (2003).

    Article  CAS  PubMed  Google Scholar 

  15. Nie, Y., Vigues, S., Hobbs, J. R., Conn, G. L. & Munger, S. D. Distinct contributions of T1R2 and T1R3 taste receptor subunits to the detection of sweet stimuli. Curr. Biol. 15, 1948–1952 (2005).

    Article  CAS  PubMed  Google Scholar 

  16. Xu, H. et al. Different functional roles of T1R subunits in the heteromeric taste receptors. Proc. Natl Acad. Sci. USA 101, 14258–14263 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Cui, M. et al. The heterodimeric sweet taste receptor has multiple potential ligand binding sites. Curr. Pharm. Des. 12, 4591–4600 (2006).

    Article  CAS  PubMed  Google Scholar 

  18. Masuda, K. et al. Characterization of the modes of binding between human sweet taste receptor and low-molecular-weight sweet compounds. PLoS ONE 7, e35380 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Assadi-Porter, F. M. et al. Key amino acid residues involved in multi-point binding interactions between brazzein, a sweet protein, and the T1R2–T1R3 human sweet receptor. J. Mol. Biol. 398, 584–599 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Jiang, P. et al. The cysteine-rich region of T1R3 determines responses to intensely sweet proteins. J. Biol. Chem. 279, 45068–45075 (2004).

    Article  CAS  PubMed  Google Scholar 

  21. Zhao, G. Q. et al. The receptors for mammalian sweet and umami taste. Cell 115, 255–266 (2003). This study involves the genetic ablation of the taste receptors T1R1, T1R2 or T1R3, and the results suggested that these receptors are necessary and sufficient for behavioural responses to sweet and umami tastes in mice (but see reference 22).

    Article  CAS  PubMed  Google Scholar 

  22. Damak, S. et al. Detection of sweet and umami taste in the absence of taste receptor T1r3. Science 301, 850–853 (2003). This study shows that knockout of the gene that encodes T1R3 results in a selective loss of taste sensitivity to artificial sweeteners but does not abolish responses to sugars and umami (but see reference 21).

    Article  CAS  PubMed  Google Scholar 

  23. Treesukosol, Y., Smith, K. R. & Spector, A. C. The functional role of the T1R family of receptors in sweet taste and feeding. Physiol. Behav. 105, 14–26 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Yee, K. K., Sukumaran, S. K., Kotha, R., Gilbertson, T. A. & Margolskee, R. F. Glucose transporters and ATP-gated K+ (KATP) metabolic sensors are present in type 1 taste receptor 3 (T1r3)-expressing taste cells. Proc. Natl Acad. Sci. USA 108, 5431–5436 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sukumaran, S. K. et al. Taste cell-expressed α-glucosidase enzymes contribute to gustatory responses to disaccharides. Proc. Natl Acad. Sci. USA 113, 6035–6040 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kumazawa, T. & Kurihara, K. Large enhancement of canine taste responses to sugars by salts. J. Gen. Physiol. 95, 1007–1018 (1990).

    Article  CAS  PubMed  Google Scholar 

  27. Grill, H. J., Berridge, K. C. & Ganster, D. J. Oral glucose is the prime elicitor of preabsorptive insulin secretion. Am. J. Physiol. 246, R88–R95 (1984).

    CAS  PubMed  Google Scholar 

  28. Tonosaki, K., Hori, Y., Shimizu, Y. & Tonosaki, K. Relationships between insulin release and taste. Biomed. Res. 28, 79–83 (2007).

    Article  CAS  PubMed  Google Scholar 

  29. Teff, K. L. How neural mediation of anticipatory and compensatory insulin release helps us tolerate food. Physiol. Behav. 103, 44–50 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Kokrashvili, Z. et al. Endocrine taste cells. Br. J. Nutr. 111 (Suppl. 1), S23–S29 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Takai, S. et al. Glucagon-like peptide-1 is specifically involved in sweet taste transmission. FASEB J. 29, 2268–2280 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Glendinning, J. I. et al. Sugar-induced cephalic-phase insulin release is mediated by a T1r2+T1r3- independent taste transduction pathway in mice. Am. J. Physiol. Regul. Integr. Comp. Physiol. 309, R552–R560 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Glendinning, J. I. et al. Glucose elicits cephalic-phase insulin release in mice by activating KATP channels in taste cells. Am. J. Physiol. Regul. Integr. Comp. Physiol. 312, R597–R610 (2017). References 32 and 33 demonstrate the involvement of taste buds in stimulating insulin release immediately following sugar ingestion. The mechanism is independent of the sweet-taste receptors T1R2 and T1R3, and instead uses a transduction pathway similar to that used in pancreatic islet β cells.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Lapis, T. J., Penner, M. H. & Lim, J. Humans can taste glucose oligomers independent of the hT1R2/hT1R3 sweet taste receptor. Chem. Senses 41, 755–762 (2016).

    Article  CAS  PubMed  Google Scholar 

  35. Sclafani, A. Carbohydrate taste, appetite, and obesity: an overview. Neurosci. Biobehav. Rev. 11, 131–153 (1987).

    Article  CAS  PubMed  Google Scholar 

  36. Zukerman, S., Glendinning, J. I., Margolskee, R. F. & Sclafani, A. T1R3 taste receptor is critical for sucrose but not Polycose taste. Am. J. Physiol. Regul. Integr. Comp. Physiol. 296, R866–R876 (2009).

    Article  CAS  PubMed  Google Scholar 

  37. Treesukosol, Y. & Spector, A. C. Orosensory detection of sucrose, maltose, and glucose is severely impaired in mice lacking T1R2 or T1R3, but Polycose sensitivity remains relatively normal. Am. J. Physiol. Regul. Integr. Comp. Physiol. 303, R218–R235 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Yamaguchi, S. Basic properties of umami and effects on humans. Physiol. Behav. 49, 833–841 (1991).

    Article  CAS  PubMed  Google Scholar 

  39. Li, X. et al. Human receptors for sweet and umami taste. Proc. Natl Acad. Sci. USA 99, 4692–4696 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Delay, E. R., Hernandez, N. P., Bromley, K. & Margolskee, R. F. Sucrose and monosodium glutamate taste thresholds and discrimination ability of T1R3 knockout mice. Chem. Senses 31, 351–357 (2006).

    Article  CAS  PubMed  Google Scholar 

  41. Kusuhara, Y. et al. Taste responses in mice lacking taste receptor subunit T1R1. J. Physiol. 591, 1967–1985 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Chaudhari, N., Landin, A. M. & Roper, S. D. A metabotropic glutamate receptor variant functions as a taste receptor. Nat. Neurosci. 3, 113–119 (2000).

    Article  CAS  PubMed  Google Scholar 

  43. Chaudhari, N., Pereira, E. & Roper, S. D. Taste receptors for umami: the case for multiple receptors. Am. J. Clin. Nutr. 90, 738S–742S (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. San Gabriel, A., Maekawa, T., Uneyama, H. & Torii, K. Metabotropic glutamate receptor type 1 in taste tissue. Am. J. Clin. Nutr. 90, 743S–746S (2009).

    Article  CAS  PubMed  Google Scholar 

  45. Yasumatsu, K. et al. Involvement of multiple taste receptors in umami taste: analysis of gustatory nerve responses in metabotropic glutamate receptor 4 knockout mice. J. Physiol. 593, 1021–1034 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Behrens, M. & Meyerhof, W. Bitter taste receptor research comes of age: from characterization to modulation of TAS2Rs. Semin. Cell Dev. Biol. 24, 215–221 (2013).

    Article  CAS  PubMed  Google Scholar 

  47. Kuhn, C., Bufe, B., Batram, C. & Meyerhof, W. Oligomerization of TAS2R bitter taste receptors. Chem. Senses 35, 395–406 (2010).

    Article  CAS  PubMed  Google Scholar 

  48. Matsunami, H., Montmayeur, J. P. & Buck, L. B. A family of candidate taste receptors in human and mouse. Nature 404, 601–604 (2000).

    Article  CAS  PubMed  Google Scholar 

  49. Behrens, M., Foerster, S., Staehler, F., Raguse, J. D. & Meyerhof, W. Gustatory expression pattern of the human TAS2R bitter receptor gene family reveals a heterogenous population of bitter responsive taste receptor cells. J. Neurosci. 27, 12630–12640 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Adler, E. et al. A novel family of mammalian taste receptors. Cell 100, 693–702 (2000).

    Article  CAS  PubMed  Google Scholar 

  51. Meyerhof, W. et al. The molecular receptive ranges of human TAS2R bitter taste receptors. Chem. Senses 35, 157–170 (2010). This study comprehensively expresses human bitter-taste receptors in heterologous cells to de-orphan them and catalogue the compounds that active them.

    Article  CAS  PubMed  Google Scholar 

  52. Kuhn, C. et al. Bitter taste receptors for saccharin and acesulfame K. J. Neurosci. 24, 10260–10265 (2004).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Sainz, E. et al. Functional characterization of human bitter taste receptors. Biochem. J. 403, 537–543 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Lossow, K. et al. Comprehensive analysis of mouse bitter taste receptors reveals different molecular receptive ranges for orthologous receptors in mice and humans. J. Biol. Chem. 291, 15358–15377 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Risso, D., Tofanelli, S., Morini, G., Luiselli, D. & Drayna, D. Genetic variation in taste receptor pseudogenes provides evidence for a dynamic role in human evolution. BMC Evol. Biol. 14, 198 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Bufe, B. et al. The molecular basis of individual differences in phenylthiocarbamide and propylthiouracil bitterness perception. Curr. Biol. 15, 322–327 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Dotson, C. D., Shaw, H. L., Mitchell, B. D., Munger, S. D. & Steinle, N. I. Variation in the gene TAS2R38 is associated with the eating behavior disinhibition in Old Order Amish women. Appetite 54, 93–99 (2010).

    Article  CAS  PubMed  Google Scholar 

  58. Huang, L. et al. Gγ13 colocalizes with gustducin in taste receptor cells and mediates IP3 responses to bitter denatonium. Nat. Neurosci. 2, 1055–1062 (1999).

    Article  CAS  PubMed  Google Scholar 

  59. McLaughlin, S. K., McKinnon, P. J. & Margolskee, R. F. Gustducin is a taste-cell-specific G protein closely related to the transducins. Nature 357, 563–569 (1992).

    Article  CAS  PubMed  Google Scholar 

  60. Tizzano, M. et al. Expression of Gα14 in sweet-transducing taste cells of the posterior tongue. BMC Neurosci. 9, 110 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Wong, G. T., Gannon, K. S. & Margolskee, R. F. Transduction of bitter and sweet taste by gustducin. Nature 381, 796–800 (1996).

    Article  CAS  PubMed  Google Scholar 

  62. Clapp, T. R. et al. Tonic activity of Gα-gustducin regulates taste cell responsivity. FEBS Lett. 582, 3783–3787 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Perez, C. A. et al. A transient receptor potential channel expressed in taste receptor cells. Nat. Neurosci. 5, 1169–1176 (2002).

    Article  CAS  PubMed  Google Scholar 

  64. Zhang, Z., Zhao, Z., Margolskee, R. & Liman, E. The transduction channel TRPM5 is gated by intracellular calcium in taste cells. J. Neurosci. 27, 5777–5786 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Liu, D. & Liman, E. R. Intracellular Ca2+ and the phospholipid PIP2 regulate the taste transduction ion channel TRPM5. Proc. Natl Acad. Sci. USA 100, 15160–15165 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Lyall, V. et al. Decrease in rat taste receptor cell intracellular pH is the proximate stimulus in sour taste transduction. Am. J. Physiol. Cell Physiol. 281, C1005–C1013 (2001). This study shows that cytosolic acidification is a prerequisite for the sour taste-induced stimulation of taste bud cells.

    Article  CAS  PubMed  Google Scholar 

  67. Richter, T. A., Caicedo, A. & Roper, S. D. Sour taste stimuli evoke Ca2+ and pH responses in mouse taste cells. J. Physiol. 547, 475–483 (2003).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Chang, R. B., Waters, H. & Liman, E. R. A proton current drives action potentials in genetically identified sour taste cells. Proc. Natl Acad. Sci. USA 107, 22320–22325 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Gilbertson, T. A., Avenet, P., Kinnamon, S. C. & Roper, S. D. Proton currents through amiloride-sensitive Na channels in hamster taste cells. Role in acid transduction. J. Gen. Physiol. 100, 803–824 (1992).

    Article  CAS  PubMed  Google Scholar 

  70. Stevens, D. R. et al. Hyperpolarization-activated channels HCN1 and HCN4 mediate responses to sour stimuli. Nature 413, 631–635 (2001).

    Article  CAS  PubMed  Google Scholar 

  71. Ugawa, S. et al. Amiloride-insensitive currents of the acid-sensing ion channel-2a (ASIC2a)/ASIC2b heteromeric sour-taste receptor channel. J. Neurosci. 23, 3616–3622 (2003).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Ishimaru, Y. et al. Transient receptor potential family members PKD1L3 and PKD2L1 form a candidate sour taste receptor. Proc. Natl Acad. Sci. USA 103, 12569–12574 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Richter, T. A., Dvoryanchikov, G. A., Roper, S. D. & Chaudhari, N. Acid-sensing ion channel-2 is not necessary for sour taste in mice. J. Neurosci. 24, 4088–4091 (2004).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Horio, N. et al. Sour taste responses in mice lacking PKD channels. PLoS ONE 6, e20007 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Richter, T. A., Dvoryanchikov, G. A., Chaudhari, N. & Roper, S. D. Acid-sensitive two-pore domain potassium (K2P) channels in mouse taste buds. J. Neurophysiol. 92, 1928–1936 (2004).

    Article  CAS  PubMed  Google Scholar 

  76. Heck, G. L., Mierson, S. & DeSimone, J. A. Salt taste transduction occurs through an amiloride-sensitive sodium transport pathway. Science 223, 403–405 (1984).

    Article  CAS  PubMed  Google Scholar 

  77. Halpern, B. P. Amiloride and vertebrate gustatory responses to NaCl. Neurosci. Biobehav. Rev. 23, 5–47 (1998).

    Article  CAS  PubMed  Google Scholar 

  78. Ossebaard, C. A. & Smith, D. V. Amiloride suppresses the sourness of NaCl and LiCl. Physiol. Behav. 60, 1317–1322 (1996).

    Article  CAS  PubMed  Google Scholar 

  79. Oka, Y., Butnaru, M., von Buchholtz, L., Ryba, N. J. & Zuker, C. S. High salt recruits aversive taste pathways. Nature 494, 472–475 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Kretz, O., Barbry, P. & Bock, R. Differential expression of RNA and protein of the three pore-forming subunits of the amiloride-sensitive epithelial sodium channel in taste buds of the rat. J. Histochem. Cytochem. 47, 51–64 (1999).

    Article  CAS  PubMed  Google Scholar 

  81. Wu, A., Dvoryanchikov, G., Pereira, E., Chaudhari, N. & Roper, S. D. Breadth of tuning in taste afferent neurons varies with stimulus strength. Nat. Commun. 6, 8171 (2015). This study uses Ca2+ imaging in anaesthetized mice to show that gustatory afferent neurons respond to single or multiple taste quality stimuli depending on their concentration; this finding provides support for combinatorial taste coding (but see reference 141).

    Article  PubMed  CAS  Google Scholar 

  82. Vandenbeuch, A., Clapp, T. R. & Kinnamon, S. C. Amiloride-sensitive channels in type I fungiform taste cells in mouse. BMC Neurosci. 9, 1 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Bigiani, A. & Cuoghi, V. Localization of amiloride-sensitive sodium current and voltage-gated calcium currents in rat fungiform taste cells. J. Neurophysiol. 98, 2483–2487 (2007).

    Article  CAS  PubMed  Google Scholar 

  84. Lewandowski, B. C., Sukumaran, S. K., Margolskee, R. F. & Bachmanov, A. A. Amiloride-insensitive salt taste is mediated by two populations of type III taste cells with distinct transduction mechanisms. J. Neurosci. 36, 1942–1953 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Stratford, J. M., Curtis, K. S. & Contreras, R. J. Chorda tympani nerve transection alters linoleic acid taste discrimination by male and female rats. Physiol. Behav. 89, 311–319 (2006).

    Article  CAS  PubMed  Google Scholar 

  86. Kawai, T. & Fushiki, T. Importance of lipolysis in oral cavity for orosensory detection of fat. Am. J. Physiol. Regul. Integr. Comp. Physiol. 285, R447–R454 (2003).

    Article  CAS  PubMed  Google Scholar 

  87. Voigt, N. et al. The role of lipolysis in human orosensory fat perception. J. Lipid Res. 55, 870–882 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Kulkarni, B. V. & Mattes, R. D. Lingual lipase activity in the orosensory detection of fat by humans. Am. J. Physiol. Regul. Integr. Comp. Physiol. 306, R879–R885 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Galindo, M. M. et al. G protein-coupled receptors in human fat taste perception. Chem. Senses 37, 123–139 (2012).

    Article  CAS  PubMed  Google Scholar 

  90. Gilbertson, T. A., Fontenot, D. T., Liu, L., Zhang, H. & Monroe, W. T. Fatty acid modulation of K+ channels in taste receptor cells: gustatory cues for dietary fat. Am. J. Physiol. 272, C1203–C1210 (1997).

    Article  CAS  PubMed  Google Scholar 

  91. Fukuwatari, T. et al. Expression of the putative membrane fatty acid transporter (FAT) in taste buds of the circumvallate papillae in rats. FEBS Lett. 414, 461–464 (1997).

    Article  CAS  PubMed  Google Scholar 

  92. Laugerette, F. et al. CD36 involvement in orosensory detection of dietary lipids, spontaneous fat preference, and digestive secretions. J. Clin. Invest. 115, 3177–3184 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Matsumura, S. et al. Colocalization of GPR120 with phospholipase-Cβ2 and α-gustducin in the taste bud cells in mice. Neurosci. Lett. 450, 186–190 (2009).

    Article  CAS  PubMed  Google Scholar 

  94. Cartoni, C. et al. Taste preference for fatty acids is mediated by GPR40 and GPR120. J. Neurosci. 30, 8376–8382 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Avau, B. & Depoortere, I. The bitter truth about bitter taste receptors: beyond sensing bitter in the oral cavity. Acta Physiol. (Oxf.) 216, 407–420 (2016).

    Article  CAS  Google Scholar 

  96. Gaillard, D. et al. The gustatory pathway is involved in CD36-mediated orosensory perception of long-chain fatty acids in the mouse. FASEB J. 22, 1458–1468 (2008).

    Article  CAS  PubMed  Google Scholar 

  97. Adachi, S. et al. Behavioral palatability of dietary fatty acids correlates with the intracellular calcium ion levels induced by the fatty acids in GPR120-expressing cells. Biomed. Res. 35, 357–367 (2014).

    Article  CAS  PubMed  Google Scholar 

  98. Calvo, S. S. & Egan, J. M. The endocrinology of taste receptors. Nat. Rev. Endocrinol. 11, 213–227 (2015).

    Article  CAS  PubMed  Google Scholar 

  99. Bo, X. et al. Localization of ATP-gated P2X2 and P2X3 receptor immunoreactive nerves in rat taste buds. Neuroreport 10, 1107–1111 (1999).

    Article  CAS  PubMed  Google Scholar 

  100. Finger, T. E. et al. ATP signaling is crucial for communication from taste buds to gustatory nerves. Science 310, 1495–1499 (2005). The authors of this study identify ATP as a taste neurotransmitter that acts on P2X 2 and P2X 3 receptors expressed by sensory afferent fibres that innervate taste buds.

    Article  CAS  PubMed  Google Scholar 

  101. Huang, Y. A. et al. Knocking out P2X receptors reduces transmitter secretion in taste buds. J. Neurosci. 31, 13654–13661 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Huang, Y. J. et al. The role of pannexin 1 hemichannels in ATP release and cell–cell communication in mouse taste buds. Proc. Natl Acad. Sci. USA 104, 6436–6441 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Romanov, R. A. et al. Afferent neurotransmission mediated by hemichannels in mammalian taste cells. EMBO J. 26, 657–667 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Huang, Y. A., Dando, R. & Roper, S. D. Autocrine and paracrine roles for ATP and serotonin in mouse taste buds. J. Neurosci. 29, 13909–13918 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Taruno, A. et al. CALHM1 ion channel mediates purinergic neurotransmission of sweet, bitter and umami tastes. Nature 495, 223–226 (2013). In this paper, patch clamp, molecular biological and genetic knockout studies demonstrate that ATP is released from taste bud cells during gustatory stimulation through CALHM1 channels.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Locovei, S., Wang, J. & Dahl, G. Activation of pannexin 1 channels by ATP through P2Y receptors and by cytoplasmic calcium. FEBS Lett. 580, 239–244 (2006).

    Article  CAS  PubMed  Google Scholar 

  107. Ma, Z., Tanis, J. E., Taruno, A. & Foskett, J. K. Calcium homeostasis modulator (CALHM) ion channels. Pflugers Arch. 468, 395–403 (2016).

    Article  CAS  PubMed  Google Scholar 

  108. Tordoff, M. G. et al. Normal taste acceptance and preference of PANX1 knockout mice. Chem. Senses 40, 453–459 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Vandenbeuch, A., Anderson, C. B. & Kinnamon, S. C. Mice lacking pannexin 1 release ATP and respond normally to all taste qualities. Chem. Senses 40, 461–467 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Tordoff, M. G. et al. Salty taste deficits in CALHM1 knockout mice. Chem. Senses 39, 515–528 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Yang, R., Montoya, A., Bond, A., Walton, J. & Kinnamon, J. C. Immunocytochemical analysis of P2X2 in rat circumvallate taste buds. BMC Neurosci. 13, 51 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Bartel, D. L., Sullivan, S. L., Lavoie, E. G., Sevigny, J. & Finger, T. E. Nucleoside triphosphate diphosphohydrolase-2 is the ecto-ATPase of type I cells in taste buds. J. Comp. Neurol. 497, 1–12 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Vandenbeuch, A. et al. Role of the ectonucleotidase NTPDase2 in taste bud function. Proc. Natl Acad. Sci. USA 110, 14789–14794 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Dando, R., Dvoryanchikov, G., Pereira, E., Chaudhari, N. & Roper, S. D. Adenosine enhances sweet taste through A2B receptors in the taste bud. J. Neurosci. 32, 322–330 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Huang, Y. J. et al. Mouse taste buds use serotonin as a neurotransmitter. J. Neurosci. 25, 843–847 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Nada, O. & Hirata, K. The monoamine-containing cell in the gustatory epithelium of some vertebrates. Arch. Histol. Jpn 40, 197–206 (1977).

    Article  CAS  PubMed  Google Scholar 

  117. Dvoryanchikov, G., Tomchik, S. M. & Chaudhari, N. Biogenic amine synthesis and uptake in rodent taste buds. J. Comp. Neurol. 505, 302–313 (2007).

    Article  CAS  PubMed  Google Scholar 

  118. Kim, D. J. & Roper, S. D. Localization of serotonin in taste buds: a comparative study in four vertebrates. J. Comp. Neurol. 353, 364–370 (1995).

    Article  CAS  PubMed  Google Scholar 

  119. Huang, Y. A., Pereira, E. & Roper, S. D. Acid stimulation (sour taste) elicits GABA and serotonin release from mouse taste cells. PLoS ONE 6, e25471 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Vandenbeuch, A., Zorec, R. & Kinnamon, S. C. Capacitance measurements of regulated exocytosis in mouse taste cells. J. Neurosci. 30, 14695–14701 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  121. Jaber, L., Zhao, F. L., Kolli, T. & Herness, S. A physiologic role for serotonergic transmission in adult rat taste buds. PLoS ONE 9, e112152 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Fujita, T., Kanno, T. & Kobayashi, S. The Paraneuron (Springer Science & Business Media, 2012).

    Google Scholar 

  123. Larson, E. D. et al. The role of 5-HT3 receptors in signaling from taste buds to nerves. J. Neurosci. 35, 15984–15995 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. Obata, H., Shimada, K., Sakai, N. & Saito, N. GABAergic neurotransmission in rat taste buds: immunocytochemical study for GABA and GABA transporter subtypes. Brain Res. Mol. Brain Res. 49, 29–36 (1997).

    Article  CAS  PubMed  Google Scholar 

  125. Dvoryanchikov, G., Huang, Y. A., Barro-Soria, R., Chaudhari, N. & Roper, S. D. GABA, its receptors, and GABAergic inhibition in mouse taste buds. J. Neurosci. 31, 5782–5791 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  126. Dvoryanchikov, G., Pereira, E., Williams, C., Roper, S. D. & Chaudhari, N. GABA as afferent taste neurotransmitter. Chem. Senses 38, 643 (2013).

    Google Scholar 

  127. Koga, T. & Bradley, R. M. Biophysical properties and responses to neurotransmitters of petrosal and geniculate ganglion neurons innervating the tongue. J. Neurophysiol. 84, 1404–1413 (2000).

    Article  CAS  PubMed  Google Scholar 

  128. Paran, N. & Mattern, C. F. The distribution of acetylcholinesterase in buds of the rat vallate papilla as determined by electron microscope histochemistry. J. Comp. Neurol. 159, 29–44 (1975).

    Article  CAS  PubMed  Google Scholar 

  129. Dando, R. & Roper, S. D. Acetylcholine is released from taste cells, enhancing taste signalling. J. Physiol. 590, 3009–3017 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  130. Huang, Y. A., Maruyama, Y. & Roper, S. D. Norepinephrine is coreleased with serotonin in mouse taste buds. J. Neurosci. 28, 13088–13093 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  131. Tomchik, S. M., Berg, S., Kim, J. W., Chaudhari, N. & Roper, S. D. Breadth of tuning and taste coding in mammalian taste buds. J. Neurosci. 27, 10840–10848 (2007). This study uses Ca2+ imaging in lingual slice preparations to show that GPCR-expressing type II taste bud cells are tuned to single taste qualities, whereas type III cells respond to and integrate signals from multiple cells in the taste bud.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  132. Yoshida, R. et al. Discrimination of taste qualities among mouse fungiform taste bud cells. J. Physiol. 587, 4425–4439 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  133. Chaudhari, N. Synaptic communication and signal processing among sensory cells in taste buds. J. Physiol. 592, 3387–3392 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  134. Murayama, N. Interaction among different sensory units within a single fungiform papilla in the frog tongue. J. Gen. Physiol. 91, 685–701 (1988).

    Article  CAS  PubMed  Google Scholar 

  135. Riddle, D. R., Hughes, S. E., Belczynski, C. R., DeSibour, C. L. & Oakley, B. Inhibitory interactions among rodent taste axons. Brain Res. 533, 113–124 (1990).

    Article  CAS  PubMed  Google Scholar 

  136. Vandenbeuch, A., Pillias, A. M. & Faurion, A. Modulation of taste peripheral signal through interpapillar inhibition in hamsters. Neurosci. Lett. 358, 137–141 (2004).

    Article  CAS  PubMed  Google Scholar 

  137. Huang, Y. A., Grant, J. & Roper, S. Glutamate may be an efferent transmitter that elicits inhibition in mouse taste buds. PLoS ONE 7, e30662 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  138. Vandenbeuch, A. et al. Evidence for a role of glutamate as an efferent transmitter in taste buds. BMC Neurosci. 11, 77 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  139. Zaidi, F. N. & Whitehead, M. C. Discrete innervation of murine taste buds by peripheral taste neurons. J. Neurosci. 26, 8243–8253 (2006). This study uses retrograde labelling to show that mouse taste buds are innervated by only three, four or five sensory afferent neurons. Conversely, the authors estimate that a sensory afferent neuron in mice innervates only a single taste bud.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  140. Roper, S. D. & Chaudhari, N. in Handbook of Brain Microcircuits 2nd edn Ch. 26 (eds Shepherd, G. & Grillner, S.) 277–283 (Oxford Univ. Press, 2017).

    Google Scholar 

  141. Yarmolinsky, D. A., Zuker, C. S. & Ryba, N. J. Common sense about taste: from mammals to insects. Cell 139, 234–244 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  142. Barretto, R. P. et al. The neural representation of taste quality at the periphery. Nature 517, 373–376 (2014). This study uses Ca2+ imaging in anaesthetized mice to show that taste-detecting afferent neurons respond predominantly to single taste quality stimuli, which supports the idea of labelled-line taste coding (but see reference 80).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  143. Frank, M. An analysis of hamster afferent taste nerve response functions. J. Gen. Physiol. 61, 588–618 (1973).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  144. Hellekant, G., Ninomiya, Y. & Danilova, V. Taste in chimpanzees II: single chorda tympani fibers. Physiol. Behav. 61, 829–841 (1997).

    Article  CAS  PubMed  Google Scholar 

  145. Mueller, K. L. et al. The receptors and coding logic for bitter taste. Nature 434, 225–229 (2005).

    Article  CAS  PubMed  Google Scholar 

  146. Erickson, R. P. in Olfaction and Taste. Proceedings of the First International Symposium (ed. Zotterman, Y. ) 205–213 (Pergamon Press, 1963).

  147. Erickson, R. P. A study of the science of taste: on the origins and influence of the core ideas. Behav. Brain Sci. 31, 59–75 (2008).

    Article  PubMed  Google Scholar 

  148. Malnic, B., Hirono, J., Sato, T. & Buck, L. B. Combinatorial receptor codes for odors. Cell 96, 713–723 (1999).

    Article  CAS  PubMed  Google Scholar 

  149. Pfaffmann, C. Gustatory afferent impulses. J. Cell. Comp. Physiol. 17, 243–258 (1941).

    Article  Google Scholar 

  150. Lundy, R. F. Jr & Contreras, R. J. Gustatory neuron types in rat geniculate ganglion. J. Neurophysiol. 82, 2970–2988 (1999).

    Article  CAS  PubMed  Google Scholar 

  151. Sollars, S. I. & Hill, D. L. In vivo recordings from rat geniculate ganglia: taste response properties of individual greater superficial petrosal and chorda tympani neurones. J. Physiol. 564, 877–893 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  152. Breza, J. M., Curtis, K. S. & Contreras, R. J. Temperature modulates taste responsiveness and stimulates gustatory neurons in the rat geniculate ganglion. J. Neurophysiol. 95, 674–685 (2006).

    Article  PubMed  Google Scholar 

  153. Yoshida, R. et al. Taste responsiveness of fungiform taste cells with action potentials. J. Neurophysiol. 96, 3088–3095 (2006).

    Article  PubMed  Google Scholar 

  154. Katz, D. B., Simon, S. A. & Nicolelis, M. A. Dynamic and multimodal responses of gustatory cortical neurons in awake rats. J. Neurosci. 21, 4478–4489 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Di Lorenzo, P. M. & Victor, J. D. Taste response variability and temporal coding in the nucleus of the solitary tract of the rat. J. Neurophysiol. 90, 1418–1431 (2003).

    Article  PubMed  Google Scholar 

  156. Geran, L. & Travers, S. Temporal characteristics of gustatory responses in rat parabrachial neurons vary by stimulus and chemosensitive neuron type. PLoS ONE 8, e76828 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  157. Wilson, D. M., Boughter, J. D. Jr & Lemon, C. H. Bitter taste stimuli induce differential neural codes in mouse brain. PLoS ONE 7, e41597 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  158. Von Bekesy, G. Sweetness produced electrically on the tongue and its relation to taste theories. J. Appl. Physiol. 19, 1105–1113 (1964).

    Article  CAS  Google Scholar 

  159. Spector, A. C. & Travers, S. P. The representation of taste quality in the mammalian nervous system. Behav. Cogn. Neuroci. Rev. 4, 143–191 (2005).

    Article  Google Scholar 

  160. Carleton, A., Accolla, R. & Simon, S. A. Coding in the mammalian gustatory system. Trends Neurosci. 33, 326–334 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  161. Simon, S. A., de Araujo, I. E., Gutierrez, R. & Nicolelis, M. A. The neural mechanisms of gustation: a distributed processing code. Nat. Rev. Neurosci. 7, 890–901 (2006).

    Article  CAS  PubMed  Google Scholar 

  162. Murray, R. G. Cellular relations in mouse circumvallate taste buds. Microsc. Res. Tech. 26, 209–224 (1993). This is an early compilation of high-resolution electron micrographs that support current interpretations of the structure and function of the different types of taste cell that are described in this Review.

    Article  CAS  PubMed  Google Scholar 

  163. Pumplin, D. W., Yu, C. & Smith, D. V. Light and dark cells of rat vallate taste buds are morphologically distinct cell types. J. Comp. Neurol. 378, 389–410 (1997).

    Article  CAS  PubMed  Google Scholar 

  164. Lawton, D. M., Furness, D. N., Lindemann, B. & Hackney, C. M. Localization of the glutamate–aspartate transporter, GLAST, in rat taste buds. Eur. J. Neurosci. 12, 3163–3171 (2000).

    Article  CAS  PubMed  Google Scholar 

  165. Dvoryanchikov, G., Sinclair, M. S., Perea-Martinez, I., Wang, T. & Chaudhari, N. Inward rectifier channel, ROMK, is localized to the apical tips of glial-like cells in mouse taste buds. J. Comp. Neurol. 517, 1–14 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  166. Yang, R., Crowley, H. H., Rock, M. E. & Kinnamon, J. C. Taste cells with synapses in rat circumvallate papillae display SNAP-25-like immunoreactivity. J. Comp. Neurol. 424, 205–215 (2000).

    Article  CAS  PubMed  Google Scholar 

  167. Yang, R., Stoick, C. L. & Kinnamon, J. C. Synaptobrevin-2-like immunoreactivity is associated with vesicles at synapses in rat circumvallate taste buds. J. Comp. Neurol. 471, 59–71 (2004).

    Article  CAS  PubMed  Google Scholar 

  168. Holland, V. F., Zampighi, G. A. & Simon, S. A. Morphology of fungiform papillae in canine lingual epithelium: location of intercellular junctions in the epithelium. J. Comp. Neurol. 279, 13–27 (1989).

    Article  CAS  PubMed  Google Scholar 

  169. Witt, M. & Kasper, M. Immunohistochemical distribution of CD44 and some of its isoforms during human taste bud development. Histochem. Cell Biol. 110, 95–103 (1998).

    Article  CAS  PubMed  Google Scholar 

  170. Michlig, S., Damak, S. & Le Coutre, J. Claudin-based permeability barriers in taste buds. J. Comp. Neurol. 502, 1003–1011 (2007).

    Article  CAS  PubMed  Google Scholar 

  171. Dando, R. et al. A permeability barrier surrounds taste buds in lingual epithelia. Am. J. Physiol. Cell Physiol. 308, C21–C32 (2015).

    Article  CAS  PubMed  Google Scholar 

  172. Dahl, M., Erickson, R. P. & Simon, S. A. Neural responses to bitter compounds in rats. Brain Res. 756, 22–34 (1997).

    Article  CAS  PubMed  Google Scholar 

  173. Caicedo, A. & Roper, S. D. Taste receptor cells that discriminate between bitter stimuli. Science 291, 1557–1560 (2001).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  174. Geran, L. C. & Travers, S. P. Bitter-responsive gustatory neurons in the rat parabrachial nucleus. J. Neurophysiol. 101, 1598–1612 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  175. Oliveira-Maia, A. J. et al. Nicotine activates TRPM5-dependent and independent taste pathways. Proc. Natl Acad. Sci. USA 106, 1596–1601 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Delwiche, J. F., Buletic, Z. & Breslin, P. A. Covariation in individuals' sensitivities to bitter compounds: evidence supporting multiple receptor/transduction mechanisms. Percept. Psychophys. 63, 761–776 (2001).

    Article  CAS  PubMed  Google Scholar 

  177. Spector, A. C. & Kopka, S. L. Rats fail to discriminate quinine from denatonium: implications for the neural coding of bitter-tasting compounds. J. Neurosci. 22, 1937–1941 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Blakeslee, A. F. Genetics of sensory thresholds: taste for phenyl thio carbamide. Proc. Natl Acad. Sci. USA 18, 120–130 (1932).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Kim, U. K. et al. Positional cloning of the human quantitative trait locus underlying taste sensitivity to phenylthiocarbamide. Science 299, 1221–1225 (2003). This genetic study identifies the human locus responsible for the inheritance of the taster and non-taster phenotypes for the bitter compound PTC.

    Article  CAS  PubMed  Google Scholar 

  180. Wooding, S. et al. Natural selection and molecular evolution in PTC, a bitter-taste receptor gene. Am. J. Hum. Genet. 74, 637–646 (2004).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  181. Soranzo, N. et al. Positive selection on a high-sensitivity allele of the human bitter-taste receptor TAS2R16. Curr. Biol. 15, 1257–1265 (2005).

    Article  CAS  PubMed  Google Scholar 

  182. Campbell, M. C. et al. Limited evidence for adaptive evolution and functional effect of allelic variation at rs702424 in the promoter of the TAS2R16 bitter taste receptor gene in Africa. J. Hum. Genet. 59, 349–352 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  183. Campa, D. et al. A gene-wide investigation on polymorphisms in the taste receptor 2R14 (TAS2R14) and susceptibility to colorectal cancer. BMC Med. Genet. 11, 88 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  184. Nolden, A. A., McGeary, J. E. & Hayes, J. E. Differential bitterness in capsaicin, piperine, and ethanol associates with polymorphisms in multiple bitter taste receptor genes. Physiol Behav. 156, 117–127 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  185. Schembre, S. M., Cheng, I., Wilkens, L. R., Albright, C. L. & Marchand le, L. Variations in bitter-taste receptor genes, dietary intake, and colorectal adenoma risk. Nutr. Cancer 65, 982–990 (2013).

    Article  CAS  PubMed  Google Scholar 

  186. Carrai, M. et al. Association between TAS2R38 gene polymorphisms and colorectal cancer risk: a case-control study in two independent populations of Caucasian origin. PLoS ONE 6, e20464 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  187. Kim, U. K., Wooding, S., Riaz, N., Jorde, L. B. & Drayna, D. Variation in the human TAS1R taste receptor genes. Chem. Senses 31, 599–611 (2006).

    Article  CAS  PubMed  Google Scholar 

  188. Fushan, A. A., Simons, C. T., Slack, J. P., Manichaikul, A. & Drayna, D. Allelic polymorphism within the TAS1R3 promoter is associated with human taste sensitivity to sucrose. Curr. Biol. 19, 1288–1293 (2009). The human psychophysics and signal detection analyses carried out in this study indicate that a TAS1R3 allele is associated with an increased sensitivity to sucrose.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  189. Eny, K. M., Wolever, T. M., Corey, P. N. & El-Sohemy, A. Genetic variation in TAS1R2 (Ile191Val) is associated with consumption of sugars in overweight and obese individuals in 2 distinct populations. Am. J. Clin. Nutr. 92, 1501–1510 (2010).

    Article  CAS  PubMed  Google Scholar 

  190. Ramos-Lopez, O., Panduro, A., Martinez-Lopez, E. & Roman, S. Sweet taste receptor TAS1R2 polymorphism (Val191Val) is associated with a higher carbohydrate intake and hypertriglyceridemia among the population of West Mexico. Nutrients 8, 101 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  191. Haznedaroglu, E. et al. Association of sweet taste receptor gene polymorphisms with dental caries experience in school children. Caries Res. 49, 275–281 (2015).

    Article  CAS  PubMed  Google Scholar 

  192. Chen, Q. Y. et al. Perceptual variation in umami taste and polymorphisms in TAS1R taste receptor genes. Am. J. Clin. Nutr. 90, 770S–779S (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  193. Finger, T. E. & Kinnamon, S. C. Taste isn't just for taste buds anymore. F1000 Biol. Rep. 3, 20 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  194. Janssen, S. & Depoortere, I. Nutrient sensing in the gut: new roads to therapeutics? Trends Endocrinol. Metab. 24, 92–100 (2013).

    Article  CAS  PubMed  Google Scholar 

  195. Shah, A. S., Ben-Shahar, Y., Moninger, T. O., Kline, J. N. & Welsh, M. J. Motile cilia of human airway epithelia are chemosensory. Science 325, 1131–1134 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  196. Lee, R. J., Chen, B., Redding, K. M., Margolskee, R. F. & Cohen, N. A. Mouse nasal epithelial innate immune responses to Pseudomonas aeruginosa quorum-sensing molecules require taste signaling components. Innate Immun. 20, 606–617 (2014).

    Article  CAS  PubMed  Google Scholar 

  197. Lee, R. J. et al. T2R38 taste receptor polymorphisms underlie susceptibility to upper respiratory infection. J. Clin. Invest. 122, 4145–4159 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  198. Lee, R. J. et al. Bitter and sweet taste receptors regulate human upper respiratory innate immunity. J. Clin. Invest. 124, 1393–1405 (2014). This study shows that bitter-taste receptors expressed in upper airway cells sense bacteria that cause sinusitis and trigger an innate immunity. It also shows that sweet-taste receptors expressed in the same cells regulate this pathway.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  199. Finger, T. E. et al. Solitary chemoreceptor cells in the nasal cavity serve as sentinels of respiration. Proc. Natl Acad. Sci. USA 100, 8981–8986 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Saunders, C. J., Christensen, M., Finger, T. E. & Tizzano, M. Cholinergic neurotransmission links solitary chemosensory cells to nasal inflammation. Proc. Natl Acad. Sci. USA 111, 6075–6080 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Tizzano, M. et al. Nasal chemosensory cells use bitter taste signaling to detect irritants and bacterial signals. Proc. Natl Acad. Sci. USA 107, 3210–3215 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Wu, S. V. et al. Expression of bitter taste receptors of the T2R family in the gastrointestinal tract and enteroendocrine STC-1 cells. Proc. Natl Acad. Sci. USA 99, 2392–2397 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Rozengurt, E. & Sternini, C. Taste receptor signaling in the mammalian gut. Curr. Opin. Pharmacol. 7, 557–562 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  204. Prandi, S. et al. A subset of mouse colonic goblet cells expresses the bitter taste receptor Tas2r131. PLoS ONE 8, e82820 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  205. Bezencon, C., le Coutre, J. & Damak, S. Taste-signaling proteins are coexpressed in solitary intestinal epithelial cells. Chem. Senses 32, 41–49 (2007).

    Article  CAS  PubMed  Google Scholar 

  206. Schutz, B. et al. Chemical coding and chemosensory properties of cholinergic brush cells in the mouse gastrointestinal and biliary tract. Front. Physiol. 6, 87 (2015).

    PubMed  PubMed Central  Google Scholar 

  207. Deshpande, D. A. et al. Bitter taste receptors on airway smooth muscle bronchodilate by localized calcium signaling and reverse obstruction. Nat. Med. 16, 1299–1234 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  208. Ren, X., Zhou, L., Terwilliger, R., Newton, S. S. & de Araujo, I. E. Sweet taste signaling functions as a hypothalamic glucose sensor. Front. Integr. Neurosci. 3, 12 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  209. Singh, N., Vrontakis, M., Parkinson, F. & Chelikani, P. Functional bitter taste receptors are expressed in brain cells. Biochem. Biophys. Res. Commun. 406, 146–151 (2011).

    Article  CAS  PubMed  Google Scholar 

  210. Tomas, J., Santos, C. R., Quintela, T. & Goncalves, I. “Tasting” the cerebrospinal fluid: another function of the choroid plexus? Neuroscience 320, 160–171 (2016).

    Article  CAS  PubMed  Google Scholar 

  211. Foster, S. R. et al. Expression, regulation and putative nutrient-sensing function of taste GPCRs in the heart. PLoS ONE 8, e64579 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  212. Dyer, J., Salmon, K. S., Zibrik, L. & Shirazi-Beechey, S. P. Expression of sweet taste receptors of the T1R family in the intestinal tract and enteroendocrine cells. Biochem. Soc. Trans. 33, 302–305 (2005).

    Article  CAS  PubMed  Google Scholar 

  213. Wolfle, U. et al. Expression and functional activity of the bitter taste receptors TAS2R1 and TAS2R38 in human keratinocytes. Skin Pharmacol. Physiol. 28, 137–146 (2015).

    Article  CAS  PubMed  Google Scholar 

  214. Kiuchi, S. et al. Genomic structure of swine taste receptor family 1 member 3, TAS1R3, and its expression in tissues. Cytogenet. Genome Res. 115, 51–61 (2006).

    Article  CAS  PubMed  Google Scholar 

  215. Taniguchi, K. Expression of the sweet receptor protein, T1R3, in the human liver and pancreas. J. Vet. Med. Sci. 66, 1311–1314 (2004).

    Article  CAS  PubMed  Google Scholar 

  216. Lee, N. et al. Mouse neutrophils express functional umami taste receptor T1R1/T1R3. BMB Rep. 47, 649–654 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  217. Maurer, S. et al. Tasting Pseudomonas aeruginosa biofilms: human neutrophils express the bitter receptor T2R38 as sensor for the quorum sensing molecule N-(3-oxododecanoyl)-L-homoserine lactone. Front. Immunol. 6, 369 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  218. Reimann, F. et al. Glucose sensing in L cells: a primary cell study. Cell Metab. 8, 532–539 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  219. Mosinger, B. et al. Genetic loss or pharmacological blockade of testes-expressed taste genes causes male sterility. Proc. Natl Acad. Sci. USA 110, 12319–12324 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Xu, J., Cao, J., Iguchi, N., Riethmacher, D. & Huang, L. Functional characterization of bitter-taste receptors expressed in mammalian testis. Mol. Hum. Reprod. 19, 17–28 (2013).

    Article  CAS  PubMed  Google Scholar 

  221. Clark, A. A. et al. TAS2R bitter taste receptors regulate thyroid function. FASEB J. 29, 164–172 (2015).

    Article  CAS  PubMed  Google Scholar 

  222. Caterina, M. J. et al. The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 389, 816–824 (1997).

    Article  CAS  PubMed  Google Scholar 

  223. Everaerts, W. et al. The capsaicin receptor TRPV1 is a crucial mediator of the noxious effects of mustard oil. Curr. Biol. 21, 316–321 (2011).

    Article  CAS  PubMed  Google Scholar 

  224. Bautista, D. M. et al. Pungent products from garlic activate the sensory ion channel TRPA1. Proc. Natl Acad. Sci. USA 102, 12248–12252 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Roper, S. D. TRPs in taste and chemesthesis. Handb. Exp. Pharmacol. 223, 827–871 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  226. Liu, L. & Simon, S. A. Capsaicin, acid and heat-evoked currents in rat trigeminal ganglion neurons: relationship to functional VR1 receptors. Physiol. Behav. 69, 363–378 (2000).

    Article  CAS  PubMed  Google Scholar 

  227. Katsura, H., Tsuzuki, K., Noguchi, K. & Sakagami, M. Differential expression of capsaicin-, menthol-, and mustard oil-sensitive receptors in naive rat geniculate ganglion neurons. Chem. Senses 31, 681–688 (2006).

    Article  CAS  PubMed  Google Scholar 

  228. Nakamura, S. & Bradley, R. M. Characteristics of sodium currents in rat geniculate ganglion neurons. J. Neurophysiol. 106, 2982–2991 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  229. Finger, T. E. Peptide immunohistochemistry demonstrates multiple classes of perigemmal nerve fibers in the circumvallate papilla of the rat. Chem. Senses 11, 135–144 (1986).

    Article  CAS  Google Scholar 

  230. Wang, Y., Erickson, R. P. & Simon, S. A. Modulation of rat chorda tympani nerve activity by lingual nerve stimulation. J. Neurophysiol. 73, 1468–1483 (1995).

    Article  CAS  PubMed  Google Scholar 

  231. Simon, S. A., Liu, L. & Erickson, R. P. Neuropeptides modulate rat chorda tympani responses. Am. J. Physiol. Regul. Integr. Comp. Physiol. 284, R1494–R1505 (2003).

    Article  CAS  PubMed  Google Scholar 

  232. Grant, J. Tachykinins stimulate a subset of mouse taste cells. PLoS ONE 7, e31697 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  233. Huang, A. Y. & Wu, S. Y. Calcitonin gene-related peptide reduces taste-evoked ATP secretion from mouse taste buds. J. Neurosci. 35, 12714–12724 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Lumpkin, E. A. & Caterina, M. J. Mechanisms of sensory transduction in the skin. Nature 445, 858–865 (2007).

    Article  CAS  PubMed  Google Scholar 

  235. Baumbauer, K. M. et al. Keratinocytes can modulate and directly initiate nociceptive responses. eLife 4, e09674 (2015).

    Article  PubMed Central  Google Scholar 

  236. Ueda, Y., Sakaguchi, M., Hirayama, K., Miyajima, R. & Kimizuka, A. Characteristic flavor constituents in water extract of garlic. Agric. Biol. Chem. 54, 163–169 (1990).

    CAS  Google Scholar 

  237. Dunkel, A., Köster, J. & Hofmann, T. Molecular and sensory characterization of γ-glutamyl peptides as key contributors to the kokumi taste of edible beans (Phaseolus vulgaris L.). J. Agric. Food Chem. 55, 6712–6719 (2007).

    Article  CAS  PubMed  Google Scholar 

  238. Ohsu, T. et al. Involvement of the calcium-sensing receptor in human taste perception. J. Biol. Chem. 285, 1016–1022 (2010).

    Article  CAS  PubMed  Google Scholar 

  239. Maruyama, Y., Yasuda, R., Kuroda, M. & Eto, Y. Kokumi substances, enhancers of basic tastes, induce responses in calcium-sensing receptor expressing taste cells. PLoS ONE 7, e34489 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  240. Medina, J. et al. Positive allosteric modulation of the calcium-sensing receptor by physiological concentrations of glucose. J. Biol. Chem. 291, 23126–23135 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  241. Tordoff, M. G. Some basic psychophysics of calcium salt solutions. Chem. Senses 21, 417–424 (1996).

    Article  CAS  PubMed  Google Scholar 

  242. McCaughey, S. A., Forestell, C. A. & Tordoff, M. G. Calcium deprivation increases the palatability of calcium solutions in rats. Physiol. Behav. 84, 335–342 (2005).

    Article  CAS  PubMed  Google Scholar 

  243. Tordoff, M. G. et al. Involvement of T1R3 in calcium-magnesium taste. Physiol. Genom. 34, 338–348 (2008).

    Article  CAS  Google Scholar 

  244. Tordoff, M. G., Alarcon, L. K., Valmeki, S. & Jiang, P. T1R3: a human calcium taste receptor. Sci. Rep. 2, 496 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge support from the US National Institutes of Health (grants R01DC000374 and R01DC007630 (to S.D.R.), R01DC006308 (to N.C.), and R21DC012746 and R01DC014420 (to S.D.R. and N.C.), and Ajinomoto Co., Inc.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Stephen D. Roper or Nirupa Chaudhari.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Intracellular acidification

The increased concentration of cytosolic hydrogen ions, which corresponds to a decrease in cytoplasmic pH. Intracellular acidification can result from metabolic processes, the dissociation of organic (weak) acids, or the influx of protons through channels or transporters.

Taste coding

The computational system by which trains of action potentials in sensory cells convey information about the quality, concentration and other features of a sensory stimulus.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roper, S., Chaudhari, N. Taste buds: cells, signals and synapses. Nat Rev Neurosci 18, 485–497 (2017). https://doi.org/10.1038/nrn.2017.68

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn.2017.68

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing