Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Plasticity of intrinsic neuronal properties in CNS disorders

Key Points

  • In many chronic neurological disorders, manifold changes in intrinsic membrane properties have been associated with disease pathophysiology.

  • These changes are termed intrinsic plasticity and can affect neuronal dendrites, somata or axons.

  • Depending on the cellular compartment in which intrinsic plasticity occurs, local dendritic integration processes or global functional parameters, such as action-potential threshold or firing mode, are altered.

  • The underlying cellular mechanisms of intrinsic plasticity comprise altered expression, trafficking or modulation of dendritic, somatic and axonal voltage-gated ion channels.

  • In many cases, there is a striking similarity between the underlying molecular mechanisms mediating physiological forms intrinsic plasticity, and the intrinsic-plasticity mechanisms that are invoked in neurological disorders.

Abstract

The input–output relationship of neuronal networks depends both on their synaptic connectivity and on the intrinsic properties of their neuronal elements. In addition to altered synaptic properties, profound changes in intrinsic neuronal properties are observed in many CNS disorders. These changes reflect alterations in the functional properties of dendritic and somatic voltage- and Ca2+-gated ion channels. The molecular mechanisms underlying this intrinsic plasticity comprise the highly specific transcriptional or post-transcriptional regulation of ion-channel expression, trafficking and function. The studies reviewed here show that intrinsic plasticity, in conjunction with synaptic plasticity, can fundamentally alter the input–output properties of neuronal networks in CNS disorders.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Ion channel distribution and signal processing in cortical neurons.
Figure 2: Regulation of dendritic ion channels by physiological activity and in CNS disorders.
Figure 3: Changes in intrinsic firing properties of CA1 neurons after status epilepticus.
Figure 4: Somatic and dendritic mechanisms controlling firing behaviour and spike ADPs in hippocampal CA1 pyramidal neurons.
Figure 5: Behaviour of regular-firing and spontaneously bursting neurons in relation to epileptiform population activity.

Similar content being viewed by others

References

  1. Bliss, T. V. P. & Lomo, T. Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J. Physiol. (Lond.) 232, 331–356 (1973).

    Article  CAS  Google Scholar 

  2. Andersen, P., Sundberg, S. H., Sveen, O., Swann, J. W. & Wigström, H. Possible mechanisms for long-lasting potentiation of synaptic transmission in hippocampal slices from guinea-pigs. J. Physiol. (Lond.) 302, 463–482 (1980).

    Article  CAS  Google Scholar 

  3. Steinlein, O. K. Genetic mechanisms that underlie epilepsy. Nature Rev. Neurosci. 5, 400–408 (2004).

    Article  CAS  Google Scholar 

  4. Hanna, M. G. Genetic neurological channelopathies. Nature Clin. Pract. Neurol. 2, 252–263 (2006).

    Article  CAS  Google Scholar 

  5. Hausser, M., Spruston, N. & Stuart, G. J. Diversity and dynamics of dendritic signaling. Science 290, 739–744 (2000). This is an authoritative review on dendritic signal processing.

    Article  CAS  PubMed  Google Scholar 

  6. Stuart, G., Spruston, N., Sakmann, B. & Hausser, M. Action potential initiation and backpropagation in neurons of the mammalian CNS. Trends Neurosci. 20, 125–131 (1997).

    Article  CAS  PubMed  Google Scholar 

  7. Levy, W. B. & Steward, O. Temporal contiguity requirements for long-term associative potentiation/ depression in the hippocampus. Neuroscience 8, 791–797 (1983).

    Article  CAS  PubMed  Google Scholar 

  8. Gustafsson, B., Wigström, H., Abraham, W. C. & Huang, Y.-Y. Long-term potentiation in the hippocampus using depolarizing current pulses as the conditioning stimulus to single volley synaptic potentials. J. Neurosci. 7, 774–780 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Debanne, D., Gähwiler, B. H. & Thompson, S. M. Asynchronous pre- and postsynaptic activity induces associative long-term depression in area CA1 of the rat hippocampus in vitro. Proc. Natl Acad. Sci. USA 91, 1148–1152 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Markram, H., Lübke, J., Frotscher, M. & Sakmann, B. Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs. Science 275, 213–215 (1997).

    Article  CAS  PubMed  Google Scholar 

  11. Magee, J. C. & Johnston, D. A synaptically controlled, associative signal for hebbian plasticity in hippocampal neurons. Science 275, 209–212 (1997).

    Article  CAS  PubMed  Google Scholar 

  12. Golding, N. L., Staff, N. P. & Spruston, N. Dendritic spikes as a mechanism for cooperative long-term potentiation. Nature 418, 326–331 (2002).

    Article  CAS  PubMed  Google Scholar 

  13. Remy, S. & Spruston, N. Dendritic spikes induce single-burst long-term potentiation. Proc. Natl Acad. Sci. USA 104, 17192–17197 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Golding, N. L. & Spruston, N. Dendritic sodium spikes are variable triggers of axonal action potentials in hippocampal CA1 pyramidal neurons. Neuron 21, 1189–1200 (1998).

    Article  CAS  PubMed  Google Scholar 

  15. Jarsky, T., Roxin, A., Kath, W. L. & Spruston, N. Conditional dendritic spike propagation following distal synaptic activation of hippocampal CA1 pyramidal neurons. Nature Neurosci. 8, 1667–1676 (2005).

    Article  CAS  PubMed  Google Scholar 

  16. Hoffman, D. A., Magee, J. C., Colbert, C. M. & Johnston, D. K+ channel regulation of signal propagation in dendrites of hippocampal pyramidal neurons. Nature 387, 869–875 (1997).

    Article  CAS  PubMed  Google Scholar 

  17. Chen, X. et al. Deletion of Kv4.2 gene eliminates dendritic A-type K+ current and enhances induction of long-term potentiation in hippocampal CA1 pyramidal neurons. J. Neurosci. 26, 12143–12151 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kim, J., Wei, D. S. & Hoffman, D. A. Kv4 potassium channel subunits control action potential repolarization and frequency-dependent broadening in rat hippocampal CA1 pyramidal neurones. J. Physiol. 569, 41–57 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ramakers, G. M. & Storm, J. F. A postsynaptic transient K+ current modulated by arachidonic acid regulates synaptic integration and threshold for LTP induction in hippocampal pyramidal cells. Proc. Natl Acad. Sci. USA 99, 10144–10149 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Cai, X. et al. Unique roles of SK and Kv4.2 potassium channels in dendritic integration. Neuron 44, 351–364 (2004).

    Article  CAS  PubMed  Google Scholar 

  21. Frick, A., Magee, J. & Johnston, D. LTP is accompanied by an enhanced local excitability of pyramidal neuron dendrites. Nature Neurosci. 7, 126–135 (2004). This paper described an altered voltage-dependence of dendritic A-type K+ currents following LTP-inducing stimulation, which resulted in increased dendritic excitability.

    Article  CAS  PubMed  Google Scholar 

  22. Hoffman, D. A. & Johnston, D. Downregulation of transient K+ channels in dendrites of hippocampal CA1 pyramidal neurons by activation of PKA and PKC. J. Neurosci. 18, 3521–3528 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kim, J., Jung, S. C., Clemens, A. M., Petralia, R. S. & Hoffman, D. A. Regulation of dendritic excitability by activity-dependent trafficking of the A-type K+ channel subunit Kv4.2 in hippocampal neurons. Neuron 54, 933–947 (2007). This paper demonstrated that activity modulates the trafficking of A-type K v 4.2 channels, resulting in altered dendritic excitability.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bernard, C. et al. Acquired dendritic channelopathy in temporal lobe epilepsy. Science 305, 532–535 (2004). This study provided the first description of altered dendritic channels in chronic epilepsy. In this case the alteration was a downregulation of A-type K+ channels.

    Article  CAS  PubMed  Google Scholar 

  25. Castro, P. A., Cooper, E. C., Lowenstein, D. H. & Baraban, S. C. Hippocampal heterotopia lack functional Kv4.2 potassium channels in the methylazoxymethanol model of cortical malformations and epilepsy. J. Neurosci. 21, 6626–6634 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Good, T. A., Smith, D. O. & Murphy, R. M. β-amyloid peptide blocks the fast-inactivating K+ current in rat hippocampal neurons. Biophys. J. 70, 296–304 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Chen, C. β-Amyloid increases dendritic Ca2+ influx by inhibiting the A-type K+ current in hippocampal CA1 pyramidal neurons. Biochem. Biophys. Res. Commun. 338, 1913–1919 (2005).

    Article  CAS  PubMed  Google Scholar 

  28. Berger, T., Larkum, M. E. & Lüscher, H. R. High Ih channel density in the distal apical dendrite of layer V pyramidal cells increases bidirectional attenuation of EPSPs. J. Neurophysiol. 85, 855–868 (2001).

    Article  CAS  PubMed  Google Scholar 

  29. Lorincz, A., Notomi, T., Tamas, G., Shigemoto, R. & Nusser, Z. Polarized and compartment-dependent distribution of HCN1 in pyramidal cell dendrites. Nature Neurosci. 5, 1185–1193 (2002).

    Article  PubMed  CAS  Google Scholar 

  30. Williams, S. R. & Stuart, G. J. Site independence of EPSP time course is mediated by dendritic Ih in neocortical pyramidal neurons. J. Neurophysiol. 83, 3177–3182 (2000).

    Article  CAS  PubMed  Google Scholar 

  31. Magee, J. C. Dendritic hyperpolarization-activated currents modify the integrative properties of hippocampal CA1 pyramidal neurons. J. Neurosci. 18, 7613–7624 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kaupp, U. B. & Seifert, R. Cyclic nucleotide-gated ion channels. Physiol. Rev. 82, 769–824 (2002).

    Article  CAS  PubMed  Google Scholar 

  33. Berger, T. & Luscher, H. R. Timing and precision of spike initiation in layer V pyramidal cells of the rat somatosensory cortex. Cereb. Cortex 13, 274–281 (2003).

    Article  PubMed  Google Scholar 

  34. Berger, T., Senn, W. & Lüscher, H. R. Hyperpolarization-activated current Ih disconnects somatic and dendritic spike initiation zones in layer V pyramidal neurons. J. Neurophysiol. 90, 2428–2437 (2003).

    Article  PubMed  Google Scholar 

  35. Wang, Z., Xu, N. L., Wu, C. P., Duan, S. & Poo, M. M. Bidirectional changes in spatial dendritic integration accompanying long-term synaptic modifications. Neuron 37, 463–472 (2003).

    Article  CAS  PubMed  Google Scholar 

  36. Fan, Y. et al. Activity-dependent decrease of excitability in rat hippocampal neurons through increases in Ih . Nature Neurosci. 8, 1542–1551 (2005). This paper described a modulation of h-currents in dendrites by LTP-inducing synaptic stimulation that resulted in increased magnitude of I h and decreased dendritic excitability.

    Article  CAS  PubMed  Google Scholar 

  37. Narayanan, R. & Johnston, D. Long-term potentiation in rat hippocampal neurons is accompanied by spatially widespread changes in intrinsic oscillatory dynamics and excitability. Neuron 56, 1061–1075 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Jung, S. et al. Progressive dendritic HCN channelopathy during epileptogenesis in the rat pilocarpine model of epilepsy. J. Neurosci. 27, 13012–13021 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Shah, M. M., Anderson, A. E., Leung, V., Lin, X. & Johnston, D. Seizure-induced plasticity of h channels in entorhinal cortical layer III pyramidal neurons. Neuron 44, 495–508 (2004). This paper provided the first description of changes in dendritic I h in chronic epilepsy, and the associated changes in dendritic signal processing.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Bender, R. A. et al. Enhanced expression of a specific hyperpolarization-activated cyclic nucleotide-gated cation channel (HCN) in surviving dentate gyrus granule cells of human and experimental epileptic hippocampus. J. Neurosci. 23, 6826–6836 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Chen, K. et al. Persistently modified h-channels after complex febrile seizures convert the seizure-induced enhancement of inhibition to hyperexcitability. Nature Med. 7, 331–337 (2001).

    Article  CAS  PubMed  Google Scholar 

  42. Brewster, A. et al. Developmental febrile seizures modulate hippocampal gene expression of hyperpolarization-activated channels in an isoform- and cell-specific manner. J. Neurosci. 22, 4591–4599 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Colbert, C. M. & Johnston, D. Axonal action-potential initiation and Na+ channel densities in the soma and axon initial segment of subicular pyramidal neurons. J. Neurosci. 16, 6676–6686 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Stuart, G. J. & Sakmann, B. Active propagation of somatic action potentials into neocortical pyramidal cell dendrites. Nature 367, 69–72 (1994).

    Article  CAS  PubMed  Google Scholar 

  45. Stuart, G., Schiller, J. & Sakmann, B. Action potential initiation and propagation in rat neocortical pyramidal neurons. J. Physiol. (Lond.) 505, 617–632 (1997).

    Article  CAS  Google Scholar 

  46. Palmer, L. M. & Stuart, G. J. Site of action potential initiation in layer 5 pyramidal neurons. J. Neurosci. 26, 1854–1863 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Stuart, G. & Hausser, M. Initiation and spread of sodium action potentials in cerebellar Purkinje cells. Neuron 13, 703–712 (1994).

    Article  CAS  PubMed  Google Scholar 

  48. Khaliq, Z. M. & Raman, I. M. Relative contributions of axonal and somatic Na+ channels to action potential initiation in cerebellar Purkinje neurons. J. Neurosci. 26, 1935–1944 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Aizenman, C. D. & Linden, D. J. Rapid, synaptically driven increases in the intrinsic excitability of cerebellar deep nuclear neurons. Nature Neurosci. 3, 109–111 (2000).

    Article  CAS  PubMed  Google Scholar 

  50. Armano, S., Rossi, P., Taglietti, V. & D'Angelo, E. Long-term potentiation of intrinsic excitability at the mossy fiber-granule cell synapse of rat cerebellum. J. Neurosci. 20, 5208–5216 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Cudmore, R. H. & Turrigiano, G. G. Long-term potentiation of intrinsic excitability in LV visual cortical neurons. J. Neurophysiol. 92, 341–348 (2004).

    Article  PubMed  Google Scholar 

  52. Staff, N. P. & Spruston, N. Intracellular correlate of EPSP-spike potentiation in CA1 pyramidal neurons is controlled by GABAergic modulation. Hippocampus 13, 801–805 (2003).

    Article  CAS  PubMed  Google Scholar 

  53. Xu, J., Kang, N., Jiang, L., Nedergaard, M. & Kang, J. Activity-dependent long-term potentiation of intrinsic excitability in hippocampal CA1 pyramidal neurons. J. Neurosci. 25, 1750–1760 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Campanac, E. & Debanne, D. Spike timing-dependent plasticity: a learning rule for dendritic integration in rat CA1 pyramidal neurons. J. Physiol. 586, 779–793 (2008).

    Article  CAS  PubMed  Google Scholar 

  55. Sanabria, E. R. G., Su, H. & Yaari, Y. Initiation of network bursts by Ca2+-dependent intrinsic bursting in the rat pilocarpine model of temporal lobe epilepsy. J. Physiol. 532, 205–216 (2001). This paper was the first to describe firing-mode changes and the role of bursting neurons in initiating epileptiform discharges in chronic epilepsy.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Yamada, N. & Bilkey, D. K. Kindling-induced persistent alterations in the membrane and synaptic properties of CA1 pyramidal neurons. Brain Res. 561, 324–331 (1991).

    Article  CAS  PubMed  Google Scholar 

  57. Wellmer, J., Su, H., Elger, C.-E., Yaari, Y. & Beck, H. Long-lasting modification of intrinsic discharge properties in subicular neurons following status epilepticus. Eur. J. Neurosci. 16, 1–9 (2002).

    Article  Google Scholar 

  58. Wang, J. G., Strong, J. A., Xie, W. & Zhang, J. M. Local inflammation in rat dorsal root ganglion alters excitability and ion currents in small-diameter sensory neurons. Anesthesiology 107, 322–332 (2007).

    Article  PubMed  Google Scholar 

  59. Tan, Z. Y., Donnelly, D. F. & LaMotte, R. H. Effects of a chronic compression of the dorsal root ganglion on voltage-gated Na+ and K+ currents in cutaneous afferent neurons. J. Neurophysiol. 95, 1115–1123 (2006).

    Article  CAS  PubMed  Google Scholar 

  60. Kirita, T. et al. Electrophysiologic changes in dorsal root ganglion neurons and behavioral changes in a lumbar radiculopathy model. Spine 32, E65–E72 (2007).

    Article  PubMed  Google Scholar 

  61. Hong, S., Morrow, T. J., Paulson, P. E., Isom, L. L. & Wiley, J. W. Early painful diabetic neuropathy is associated with differential changes in tetrodotoxin-sensitive and -resistant sodium channels in dorsal root ganglion neurons in the rat. J. Biol. Chem. 279, 29341–29350 (2004).

    Article  CAS  PubMed  Google Scholar 

  62. Hu, H. J. et al. The Kv4.2 potassium channel subunit is required for pain plasticity. Neuron 50, 89–100 (2006). This study demonstrated a role for plasticity of K v 4.2 A-type K+ channels in chronic pain.

    Article  CAS  PubMed  Google Scholar 

  63. Hu, H. J., Glauner, K. S. & Gereau, R. W. ERK integrates PKA and PKC signaling in superficial dorsal horn neurons. I. Modulation of A-type K+ currents. J. Neurophysiol. 90, 1671–1679 (2003).

    Article  CAS  PubMed  Google Scholar 

  64. Karim, F., Hu, H. J., Adwanikar, H., Kaplan, D. R. & Gereau, R. W. Impaired inflammatory pain and thermal hyperalgesia in mice expressing neuron-specific dominant negative mitogen activated protein kinase kinase (MEK). Mol. Pain 2, 2 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Jagodic, M. M. et al. Cell-specific alterations of T-type calcium current in painful diabetic neuropathy enhance excitability of sensory neurons. J. Neurosci. 27, 3305–3316 (2007). This paper demonstrated a role for altered T-type Ca2+ currents in a model of diabetic neuropathy.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Connors, B. W. & Gutnick, M. J. Intrinsic firing patterns of diverse neocortical neurons. Trends Neurosci. 13, 99–104 (1989).

    Article  Google Scholar 

  67. Baraban, S. C. & Schwartzkroin, P. A. Electrophysiology of CA1 pyramidal neurons in an animal model of neuronal migration disorders: prenatal methylazoxymethanol treatment. Epilepsy Res. 22, 145–156 (1995).

    Article  CAS  PubMed  Google Scholar 

  68. Kobayashi, M., Wen, X. & Buckmaster, P. S. Reduced inhibition and increased output of layer II neurons in the medial entorhinal cortex in a model of temporal lobe epilepsy. J. Neurosci. 23, 8471–8479 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Fountain, N. B., Bear, J., Bertram, E. H. & Lothman, E. W. Responses of deep entorhinal cortex are epileptiform in an electrogenic rat model of chronic temporal lobe epilepsy. J. Neurophysiol. 80, 230–240 (1998).

    Article  CAS  PubMed  Google Scholar 

  70. Knopp, A., Kivi, A., Wozny, C., Heinemann, U. & Behr, J. Cellular and network properties of the subiculum in the pilocarpine model of temporal lobe epilepsy. J. Comp. Neurol. 483, 476–488 (2005).

    Article  PubMed  Google Scholar 

  71. Morin, F., Beaulieu, C. & Lacaille, J. C. Cell-specific alterations in synaptic properties of hippocampal CA1 interneurons after kainate treatment. J. Neurophysiol. 80, 2836–2847 (1998).

    Article  CAS  PubMed  Google Scholar 

  72. Franck, J. E., Kunkel, D. D., Baskin, D. G. & Schwartzkroin, P. A. Inhibition in kainate-lesioned hyperexcitable hippocampi: physiologic, autoradiographic, and immunocytochemical observations. J. Neurosci. 8, 1991–2002 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Rempe, D. A., Bertram, E. H., Williamson, J. M. & Lothman, E. W. Interneurons in area CA1 stratum radiatum and stratum oriens remain functionally connected to excitatory synaptic input in chronically epileptic animals. J. Neurophysiol. 78, 1504–1515 (1997).

    Article  CAS  PubMed  Google Scholar 

  74. Okuhara, D. Y. & Beck, S. G. Corticosteroids influence the action potential firing pattern of hippocampal subfield CA3 pyramidal cells. Neuroendocrinology 67, 58–66 (1998).

    Article  CAS  PubMed  Google Scholar 

  75. Hains, B. C. & Waxman, S. G. Sodium channel expression and the molecular pathophysiology of pain after SCI. Prog. Brain Res. 161, 195–203 (2007).

    Article  CAS  PubMed  Google Scholar 

  76. Cummins, T. R., Sheets, P. L. & Waxman, S. G. The roles of sodium channels in nociception: implications for mechanisms of pain. Pain 131, 243–257 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Saab, C. Y., Craner, M. J., Kataoka, Y. & Waxman, S. G. Abnormal Purkinje cell activity in vivo in experimental allergic encephalomyelitis. Exp. Brain Res. 158, 1–8 (2004).

    Article  PubMed  Google Scholar 

  78. French, C. R., Sah, P., Buckett, K. J. & Gage, P. W. A voltage-dependent persistent sodium current in mammalian hippocampal neurons. J. Gen. Physiol. 95, 1139–1157 (1990).

    Article  CAS  PubMed  Google Scholar 

  79. Haj-Dahmane, S. & Andrade, R. Calcium-activated cation nonselective current contributes to the fast afterdepolarization in rat prefrontal cortex neurons. J. Neurophysiol. 78, 1983–1989 (1997).

    Article  CAS  PubMed  Google Scholar 

  80. Chen, S., Yue, C. & Yaari, Y. A transitional period of Ca2+-dependent spike afterdepolarization and bursting in developing rat CA1 pyramidal cells. J. Physiol 567, 79–93 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Metz, A. E., Jarsky, T., Martina, M. & Spruston, N. R-type calcium channels contribute to afterdepolarization and bursting in hippocampal CA1 pyramidal neurons. J. Neurosci. 25, 5763–5773 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Jung, H. H., Staff, N. P. & Spruston, N. Action potential bursting in subicular pyramidal neurons is driven by a calcium tail current. J. Neurosci. 21, 3312–3321 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Yue, C. & Yaari, Y. KCNQ/M channels control spike afterdepolarization and burst generation in hippocampal neurons. J. Neurosci. 24, 4614–4624 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Yue, C. & Yaari, Y. Axo-somatic and apical dendritic Kv7/M channels differentially regulate the intrinsic excitability of adult rat CA1 pyramidal cells. J. Neurophysiol. 95, 3480–3495 (2006).

    Article  CAS  PubMed  Google Scholar 

  85. Wang, H. S. et al. KCNQ2 and KCNQ3 potassium channel subunits: molecular correlates of the M-channel. Science 282, 1890–1893 (1998).

    Article  CAS  PubMed  Google Scholar 

  86. Yue, C., Remy, S., Su, H., Beck, H. & Yaari, Y. Proximal persistent Na+ channels drive spike afterdepolarizations and associated bursting in adult CA1 pyramidal cells. J. Neurosci. 25, 9704–9720 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Su, H., Alroy, G., Kirson, E. D. & Yaari, Y. Extracellular calcium modulates persistent sodium current-dependent intrinsic bursting in rat hippocampal neurons. J. Neurosci. 21, 4173–4182 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Metz, A. E., Spruston, N. & Martina, M. Dendritic D-type potassium currents inhibit the spike afterdepolarization in rat hippocampal CA1 pyramidal neurons. J. Physiol. 581, 175–187 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Magee, J. C. & Carruth, M. Dendritic voltage-gated ion channels regulate the action potential firing mode of hippocampal CA1 pyramidal neurons. J. Neurophysiol. 82, 1895–1901 (1999).

    Article  CAS  PubMed  Google Scholar 

  90. Su, H. et al. Upregulation of a T-type Ca2+ channel causes a long-lasting modification of neuronal firing mode after status epilepticus. J. Neurosci. 22, 3645–3655 (2002). This study identified the upregulation of a T-type Ca2+ channel as a plasticity mechanism in chronic epilepsy that causes a switch in firing mode from regular firing to burst firing.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Yaari, Y., Yue, C. & Su, H. Recruitment of apical dendritic T-type Ca2+ channels by backpropagating spikes underlies de novo intrinsic bursting in hippocampal epileptogenesis. J. Physiol. 580, 435–450 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Craner, M. J. et al. Temporal course of upregulation of Nav1.8 in Purkinje neurons parallels the progression of clinical deficit in experimental allergic encephalomyelitis. J. Neuropathol. Exp. Neurol. 62, 968–975 (2003).

    Article  PubMed  Google Scholar 

  93. Joels, M. & De Kloet, E. R. Mineralocorticoid receptor-mediated changes in membrane properties of rat CA1 pyramidal neurons in vitro. Proc. Natl Acad. Sci. USA 87, 4495–4498 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Joels, M. & De Kloet, E. R. Effects of glucocorticoids and norepinephrine on the excitability in the hippocampus. Science 245, 1502–1505 (1989).

    Article  CAS  PubMed  Google Scholar 

  95. Joels, M., Velzing, E., Nair, S., Verkuyl, J. M. & Karst, H. Acute stress increases calcium current amplitude in rat hippocampus: temporal changes in physiology and gene expression. Eur. J. Neurosci. 18, 1315–1324 (2003).

    Article  CAS  PubMed  Google Scholar 

  96. Gamper, N. et al. Oxidative modification of M-type K+ channels as a mechanism of cytoprotective neuronal silencing. EMBO J. 25, 4996–5004 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Rüschenschmidt, C., Chen, J., Becker, A., Riazanski, V. & Beck, H. Functional properties and oxidative modulation of A-type K+ currents in hippocampal granule cells of control and chronically epileptic rats. Eur. J. Neurosci. 23, 675–685 (2006).

    Article  PubMed  Google Scholar 

  98. Todorovic, S. M. et al. Redox modulation of T-type calcium channels in rat peripheral nociceptors. Neuron 31, 75–85 (2001).

    Article  CAS  PubMed  Google Scholar 

  99. Todorovic, S. M., Jevtovic-Todorovic, V., Mennerick, S., Perez-Reyes, E. & Zorumski, C. F. Cav3.2 channel is a molecular substrate for inhibition of T-type calcium currents in rat sensory neurons by nitrous oxide. Mol. Pharmacol. 60, 603–610 (2001).

    CAS  PubMed  Google Scholar 

  100. Hammarstrom, A. K. & Gage, P. W. Oxygen-sensing persistent sodium channels in rat hippocampus. J. Physiol. 529, 107–118 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Hammarstrom, A. K. & Gage, P. W. Inhibition of oxidative metabolism increases persistent sodium current in rat CA1 hippocampal neurons. J. Physiol. 510, 735–741 (1998).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Li, X. M. et al. Contribution of downregulation of L-type calcium currents to delayed neuronal death in rat hippocampus after global cerebral ischemia and reperfusion. J. Neurosci. 27, 5249–5259 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Coulter, D. A. et al. Classical conditioning reduces amplitude and duration of calcium-dependent afterhyperpolarization in rabbit hippocampal pyramidal cells. J. Neurophysiol. 61, 971–981 (1989).

    Article  CAS  PubMed  Google Scholar 

  104. De Jonge, M. C., Black, J., Deyo, R. A. & Disterhoft, J. F. Learning-induced afterhyperpolarization reductions in hippocampus are specific for cell type and potassium conductance. Exp. Brain Res. 80, 456–462 (1990).

    Article  CAS  PubMed  Google Scholar 

  105. Disterhoft, J. F., Coulter, D. A. & Alkon, D. L. Conditioning-specific membrane changes of rabbit hippocampal neurons measured in vitro. Proc. Natl Acad. Sci. USA 83, 2733–2737 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Cohen, A. S., Coussens, C. M., Raymond, C. R. & Abraham, W. C. Long-lasting increase in cellular excitability associated with the priming of LTP induction in rat hippocampus. J. Neurophysiol. 82, 3139–3148 (1999).

    Article  CAS  PubMed  Google Scholar 

  107. Melyan, Z., Wheal, H. V. & Lancaster, B. Metabotropic-mediated kainate receptor regulation of IsAHP and excitability in pyramidal cells. Neuron 34, 107–114 (2002).

    Article  CAS  PubMed  Google Scholar 

  108. Ruiz, A., Sachidhanandam, S., Utvik, J. K., Coussen, F. & Mulle, C. Distinct subunits in heteromeric kainate receptors mediate ionotropic and metabotropic function at hippocampal mossy fiber synapses. J. Neurosci. 25, 11710–11718 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Sourdet, V., Russier, M., Daoudal, G., Ankri, N. & Debanne, D. Long-term enhancement of neuronal excitability and temporal fidelity mediated by metabotropic glutamate receptor subtype 5. J. Neurosci. 23, 10238–10248 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Martin, E. D., Araque, A. & Buno, W. Synaptic regulation of the slow Ca2+-activated K+ current in hippocampal CA1 pyramidal neurons: implication in epileptogenesis. J. Neurophysiol. 86, 2878–2886 (2001).

    Article  CAS  PubMed  Google Scholar 

  111. Behr, J., Gloveli, T. & Heinemann, U. Kindling induces a transient suppression of afterhyperpolarization in rat subicular neurons. Brain Res. 867, 259–264 (2000).

    Article  CAS  PubMed  Google Scholar 

  112. Kanai, A., Sarantopoulos, C., McCallum, J. B. & Hogan, Q. Painful neuropathy alters the effect of gabapentin on sensory neuron excitability in rats. Acta Anaesthesiol. Scand. 48, 507–512 (2004).

    Article  CAS  PubMed  Google Scholar 

  113. Sarantopoulos, C. D. et al. Opposing effects of spinal nerve ligation on calcium-activated potassium currents in axotomized and adjacent mammalian primary afferent neurons. Brain Res. 1132, 84–99 (2007).

    Article  CAS  PubMed  Google Scholar 

  114. McClellan, A. D., Kovalenko, M. O., Benes, J. A. & Schulz, D. J. Spinal cord injury induces changes in electrophysiological properties and ion channel expression of reticulospinal neurons in larval lamprey. J. Neurosci. 28, 650–659 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Marder, E. & Goaillard, J. M. Variability, compensation and homeostasis in neuron and network function. Nature Rev. Neurosci. 7, 563–574 (2006). This paper reviews the homeostatic mechanisms that regulate both the intrinsic and the synaptic neuronal properties that ensure stability in neuronal networks.

    Article  CAS  Google Scholar 

  116. Turrigiano, G., Abbott, L. F. & Marder, E. Activity-dependent changes in the intrinsic properties of cultured neurons. Science 264, 974–977 (1994).

    Article  CAS  PubMed  Google Scholar 

  117. Desai, N. S., Rutherford, L. C. & Turrigiano, G. G. Plasticity in the intrinsic excitability of cortical pyramidal neurons. Nature Neurosci. 2, 515–520 (1999).

    Article  CAS  PubMed  Google Scholar 

  118. Zhang, W. & Linden, D. J. The other side of the engram: experience-driven changes in neuronal intrinsic excitability. Nature Rev. Neurosci. 4, 885–900 (2003). This paper provides a comprehensive account of the cellular mechanisms and functional relevance of intrinsic plasticity that is induced by experience or tetanic-stimulation protocols.

    Article  CAS  Google Scholar 

  119. Howard, A. L., Neu, A., Morgan, R. J., Echegoyen, J. C. & Soltesz, I. Opposing modifications in intrinsic currents and synaptic inputs in post-traumatic mossy cells: evidence for single-cell homeostasis in a hyperexcitable network. J. Neurophysiol. 97, 2394–2409 (2007).

    Article  CAS  PubMed  Google Scholar 

  120. Traub, R. D. & Wong, R. K. Cellular mechanism of neuronal synchronization in epilepsy. Science 216, 745–747 (1982). This modelling study suggested that intrinsically bursting neurons are instrumental in synchronizing neuronal ensembles.

    Article  CAS  PubMed  Google Scholar 

  121. Jensen, M. S. & Yaari, Y. Role of intrinsic burst firing, potassium accumulation, and electrical coupling in the elevated potassium model of hippocampal epilepsy. J. Neurophysiol. 77, 1224–1233 (1997).

    Article  CAS  PubMed  Google Scholar 

  122. Connors, B. W. Initiation of synchronized neuronal bursting in neocortex. Nature 310, 685–687 (1984).

    Article  CAS  PubMed  Google Scholar 

  123. Chagnac-Amitai, Y. & Connors, B. W. Synchronized excitation and inhibition driven by intrinsically bursting neurons in neocortex. J. Neurophysiol. 62, 1149–1162 (1989).

    Article  CAS  PubMed  Google Scholar 

  124. Gobel, W., Kampa, B. M. & Helmchen, F. Imaging cellular network dynamics in three dimensions using fast 3D laser scanning. Nature Methods 4, 73–79 (2007). This paper described a technique for imaging spatiotemporal activity patterns in vivo in three-dimensionally organized neuronal networks.

    Article  PubMed  CAS  Google Scholar 

  125. Schwartz, T. H. & Bonhoeffer, T. In vivo optical mapping of epileptic foci and surround inhibition in ferret cerebral cortex. Nature Med. 7, 1063–1067 (2001).

    Article  CAS  PubMed  Google Scholar 

  126. Turrigiano, G. G. & Nelson, S. B. Thinking globally, acting locally: AMPA receptor turnover and synaptic strength. Neuron 21, 933–935 (1998).

    Article  CAS  PubMed  Google Scholar 

  127. Ganguly, K., Kiss, L. & Poo, M. Enhancement of presynaptic neuronal excitability by correlated presynaptic and postsynaptic spiking. Nature Neurosci. 3, 1018–1026 (2000).

    Article  CAS  PubMed  Google Scholar 

  128. Ang, C. W., Carlson, G. C. & Coulter, D. A. Massive and specific dysregulation of direct cortical input to the hippocampus in temporal lobe epilepsy. J. Neurosci. 26, 11850–11856 (2006). This study used voltage-imaging techniques to demonstrate that the efficacy of an afferent pathway onto distal hippocampal dendrites increased profoundly owing to both synaptic and intrinsic changes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Zhang, F., Aravanis, A. M., Adamantidis, A., de Lecea, L. & Deisseroth, K. Circuit-breakers: optical technologies for probing neural signals and systems. Nature Rev. Neurosci. 8, 577–581 (2007).

    Article  CAS  Google Scholar 

  130. Pike, F. G., Meredith, R. M., Olding, A. W. & Paulsen, O. Rapid report: postsynaptic bursting is essential for 'Hebbian' induction of associative long-term potentiation at excitatory synapses in rat hippocampus. J. Physiol. 518, 571–576 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Thomas, M. J., Watabe, A. M., Moody, T. D., Makhinson, M. & O'Dell, T. J. Postsynaptic complex spike bursting enables the induction of LTP by theta frequency synaptic stimulation. J. Neurosci. 18, 7118–7126 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Baines, R. A. Neuronal homeostasis through translational control. Mol. Neurobiol. 32, 113–121 (2005).

    Article  CAS  PubMed  Google Scholar 

  133. Klann, E. & Dever, T. E. Biochemical mechanisms for translational regulation in synaptic plasticity. Nature Rev. Neurosci. 5, 931–942 (2004).

    Article  CAS  Google Scholar 

  134. Garriga-Canut, M. et al. 2-Deoxy-D-glucose reduces epilepsy progression by NRSF-CtBP–dependent metabolic regulation of chromatin structure. Nature Neurosci. 9, 1382–1387 (2006).

    Article  CAS  PubMed  Google Scholar 

  135. Huang, Y., Doherty, J. J. & Dingledine, R. Altered histone acetylation at glutamate receptor 2 and brain-derived neurotrophic factor genes is an early event triggered by status epilepticus. J. Neurosci. 22, 8422–8428 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Levenson, J. M. & Sweatt, J. D. Epigenetic mechanisms in memory formation. Nature Rev. Neurosci. 6, 108–118 (2005).

    Article  CAS  Google Scholar 

  137. Kosik, K. S. The neuronal microRNA system. Nature Rev. Neurosci. 7, 911–920 (2006).

    Article  CAS  Google Scholar 

  138. Lai, H. C. & Jan, L. Y. The distribution and targeting of neuronal voltage-gated ion channels. Nature Rev. Neurosci. 7, 548–562 (2006). This review article addresses the mechanisms for targeting voltage-gated ion channels to specific neuronal compartments and the functional effects of subcellular expression gradients.

    Article  CAS  Google Scholar 

  139. Misonou, H. et al. Regulation of ion channel localization and phosphorylation by neuronal activity. Nature Neurosci. 7, 711–718 (2004).

    Article  CAS  PubMed  Google Scholar 

  140. Martin, S., Nishimune, A., Mellor, J. R. & Henley, J. M. SUMOylation regulates kainate-receptor-mediated synaptic transmission. Nature 447, 321–325 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Green, E. M., Barrett, C. F., Bultynck, G., Shamah, S. M. & Dolmetsch, R. E. The tumor suppressor eIF3e mediates calcium-dependent internalization of the L-type calcium channel Cav1.2. Neuron 55, 615–632 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Kim, D. Y. et al. BACE1 regulates voltage-gated sodium channels and neuronal activity. Nature Cell Biol. 9, 755–764 (2007). This paper described a role for BACE1 in regulating Na+-channel α-subunit levels and cell-surface Na+-current densities through a cleavage of accessory Na+-channel subunits.

    Article  CAS  PubMed  Google Scholar 

  143. Cavalheiro, E. A. et al. Long-term effects of pilocarpine in rats: structural damage of the brain triggers kindling and spontaneous recurrent seizures. Epilepsia 32, 778–782 (1991).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank N. Spruston and W. Kath for contributing Fig. 1B and C. We thank T. Opitz and S. Remy for careful reading of the manuscript We thank the Transregional Program Project SFB-TR3 of the Deutsche Forschungsgemeinschaft, the German Bundesministerium für Bildung und Forschung (BMBF), the Israeli Ministry of Science and Technology (MOST), and the European Epilepsy Research Consortium EPICURE for generous support. Y.Y. was supported by the Henri and Erna Leir Chair for Research in Neurodegenerative Diseases.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heinz Beck.

Related links

Related links

DATABASES

OMIM

Alzheimer's disease

myotonia

FURTHER INFORMATION

Heinz Beck's homepage

Glossary

Excitatory postsynaptic potential

(EPSP). The depolarizing voltage response of a postsynaptic neuron to an excitatory neurotransmitter released by afferent presynaptic terminals.

Long-term potentiation

(LTP). A lasting increase of synaptic transmission in response to strong, correlated input.

Dendritic spike

Regenerative spike in a dendrite that can be locally elicited by activation of excitatory synapses.

A-type K+ current

(IA). Voltage-dependent K+ current, activated by depolarization. It is characterized by a hyperpolarized voltage-dependent activation, with current activation at subthreshold voltages and rapid inactivation during prolonged depolarizations. In dendrites it is mediated primarily by Kv4.2 subunits.

H-current

(Ih). Slow, non-inactivating nonspecific cationic current that is tonically active at resting membrane potential and is further activated by hyperpolarization. It is mediated by HCN1–4 subunits.

Principal neurons

Excitatory neurons that make up the major fraction of CNS neurons. They are distinguished from inhibitory interneurons with respect to their synaptic input, their integrative properties and their synaptic output.

Dorsal root ganglion cell

Pseudo-unipolar neuron with an axon that separates into a peripheral and a central branch. Sensory information is conveyed along the peripheral and central axonal branches to relay neurons in the dorsal horn of the spinal cord.

T-type Ca2+ current

(ICa,T). Voltage-dependent Ca2+ current that activates at subthreshold voltages and inactivates rapidly during prolonged depolarization. Upon repolarization, channels close slowly (slow de-activation). It is mediated by Cav3.1–3.3 subunits.

Allodynia

An exaggerated response to a normally nonpainful stimulus.

Persistent Na+ current

(INaP). A fast voltage-dependent Na+ current that activates at subthreshold depolarizations but fails to inactivate. The molecular correlate of INaP is still intensively discussed.

M-current

(IM). A voltage-dependent K+ current that activates at subthreshold depolarizations but fails to inactivate. In brain neurons it is mediated primarily by KCNQ1 and KCNQ2 subunits (termed also Kv7.1 and Kv7.2 subunits).

Ictogenesis

The cellular and network processes that underlie the generation of an epileptic seizure.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beck, H., Yaari, Y. Plasticity of intrinsic neuronal properties in CNS disorders. Nat Rev Neurosci 9, 357–369 (2008). https://doi.org/10.1038/nrn2371

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn2371

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing