Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The genetic and molecular regulation of sleep: from fruit flies to humans

Key Points

  • There are many sleep phenotypes, which reflect the duration and intensity of sleep, as well as its circadian and homeostatic regulation.

  • In flies, mice and humans, at least ten genes have either been linked to a human sleep disorder or have been shown to strongly affect sleep.

  • Genes affecting sleep belong to four major functional categories: circadian regulation, neurotransmission, other signalling pathways and ion channels.

  • Mutations in voltage-dependent potassium channels produce some of the most striking sleep phenotypes described so far in both flies and mammals.

  • Sleep and waking affect the expression of hundreds of brain transcripts.

  • mRNAs with higher expression during waking are related to energy metabolism, cellular stress and synaptic potentiation, suggesting that sleep might serve to maintain synaptic homeostasis by downscaling synapses strengthened during waking.

Abstract

It has been known for a long time that genetic factors affect sleep quantity and quality. Genetic screens have identified several mutations that affect sleep across species, pointing to an evolutionary conserved regulation of sleep. Moreover, it has also been recognized that sleep affects gene expression. These findings have given valuable insights into the molecular underpinnings of sleep regulation and function that might lead the way to more efficient treatments for sleep disorders.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Sleep phenotypes.
Figure 2: Proposed mechanism for the short-sleeping phenotype caused by loss-of-function mutations of Shaker-encoded potassium channels.
Figure 3: The expression of Period mRNA and protein changes as a function of the 24 h cycle and in response to sleep deprivation.
Figure 4: The major functional categories of genes with increased expression in the rat brain after several hours of wakefulness or after several hours of sleep.

Similar content being viewed by others

References

  1. Medori, R. et al. Fatal familial insomnia, a prion disease with a mutation at codon 178 of the prion protein gene. N. Engl. J. Med. 326, 444–449 (1992). First study to show that a sleep disorder is caused by a gene mutation.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Tobler, I. et al. Altered circadian activity rhythms and sleep in mice devoid of prion protein. Nature 380, 639–642 (1996). First study in mice to show that a null mutation affects sleep regulation.

    Article  CAS  PubMed  Google Scholar 

  3. Tobler, I., Deboer, T. & Fischer, M. Sleep and sleep regulation in normal and prion protein-deficient mice. J. Neurosci. 17, 1869–1879 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lin, L. et al. The sleep disorder canine narcolepsy is caused by a mutation in the hypocretin (orexin) receptor 2 gene. Cell 98, 365–376 (1999). Seminal study that identified the autosomal recessive mutation responsible for canine narcolepsy.

    Article  CAS  PubMed  Google Scholar 

  5. Chemelli, R. M. et al. Narcolepsy in orexin knockout mice: molecular genetics of sleep regulation. Cell 98, 437–451 (1999). This study showed that mice lacking hypocretin/orexin have a narcolepsy-like phenotype.

    Article  CAS  PubMed  Google Scholar 

  6. Dauvilliers, Y., Maret, S. & Tafti, M. Genetics of normal and pathological sleep in humans. Sleep Med. Rev. 9, 91–100 (2005).

    Article  CAS  PubMed  Google Scholar 

  7. Huber, R., Ghilardi, M. F., Massimini, M. & Tononi, G. Local sleep and learning. Nature 430, 78–81 (2004). This study showed for the first time in humans that local changes in sleep intensity, as measured by SWA, are driven by learning.

    Article  CAS  PubMed  Google Scholar 

  8. Ambrosius, U. et al. Heritability of sleep electroencephalogram. Biol. Psychiatry 64, 344–348 (2008).

    Article  PubMed  Google Scholar 

  9. De Gennaro, L. et al. The electroencephalographic fingerprint of sleep is genetically determined: a twin study. Ann. Neurol. 64, 455–460 (2008).

    Article  PubMed  Google Scholar 

  10. Blake, H. & Gerard, R. Brain potentials during sleep. Am. J. Physiol. 119, 692–703 (1937).

    Article  Google Scholar 

  11. Achermann, P. & Borbely, A. A. Mathematical models of sleep regulation. Front. Biosci. 8, s683–s693 (2003).

    Article  PubMed  Google Scholar 

  12. Cirelli, C. & Tononi, G. Is sleep essential? PLoS Biol. 6, e216 (2008).

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  13. Harbison, S. T. et al. Co-regulated transcriptional networks contribute to natural genetic variation in Drosophila sleep. Nature Genet. 41, 371–375 (2009).

    Article  CAS  PubMed  Google Scholar 

  14. Zhdanova, I. V., Wang, S. Y., Leclair, O. U. & Danilova, N. P. Melatonin promotes sleep-like state in zebrafish. Brain Res. 903, 263–268 (2001).

    Article  CAS  PubMed  Google Scholar 

  15. Prober, D. A., Rihel, J., Onah, A. A., Sung, R. J. & Schier, A. F. Hypocretin/orexin overexpression induces an insomnia-like phenotype in zebrafish. J. Neurosci. 26, 13400–13410 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Yokogawa, T. et al. Characterization of sleep in zebrafish and insomnia in hypocretin receptor mutants. PLoS Biol. 5, e277 (2007).

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  17. Raizen, D. M. et al. Lethargus is a Caenorhabditis elegans sleep-like state. Nature 451, 569–572 (2008).

    Article  CAS  PubMed  Google Scholar 

  18. Zhang, J., Obal, F., Jr, Fang, J., Collins, B. J. & Krueger, J. M. Non-rapid eye movement sleep is suppressed in transgenic mice with a deficiency in the somatotropic system. Neurosci. Lett. 220, 97–100 (1996).

    Article  CAS  PubMed  Google Scholar 

  19. Tafti, M. et al. Deficiency in short-chain fatty acid beta-oxidation affects theta oscillations during sleep. Nature Genet. 34, 320–325 (2003). First study in mice to use QTL analysis to identify a gene that affects a specific feature of the sleep EEG (theta rhythm during REM sleep).

    Article  CAS  PubMed  Google Scholar 

  20. Maret, S. et al. Retinoic acid signaling affects cortical synchrony during sleep. Science 310, 111–113 (2005).

    Article  CAS  PubMed  Google Scholar 

  21. Hu, W. P. et al. Altered circadian and homeostatic sleep regulation in prokineticin 2-deficient mice. Sleep 30, 247–256 (2007).

    PubMed  Google Scholar 

  22. Kimura, M. et al. Conditional corticotropin-releasing hormone overexpression in the mouse forebrain enhances rapid eye movement sleep. Mol. Psychiatry 19 May 2009 (doi: 10.1038/mp.2009.46).

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  23. Schwarz, T. L., Tempel, B. L., Papazian, D. M., Jan, Y. N. & Jan, L. Y. Multiple potassium-channel components are produced by alternative splicing at the Shaker locus in Drosophila. Nature 331, 137–142 (1988).

    Article  CAS  PubMed  Google Scholar 

  24. Cirelli, C. et al. Reduced sleep in Drosophila Shaker mutants. Nature 434, 1087–1092 (2005). First gene with strong effects on sleep duration identified in flies using mutagenesis screening.

    Article  CAS  PubMed  Google Scholar 

  25. Bushey, D., Huber, R., Tononi, G. & Cirelli, C. Drosophila Hyperkinetic mutants have reduced sleep and impaired memory. J. Neurosci. 27, 5384–5393 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Koh, K. et al. Identification of SLEEPLESS, a sleep-promoting factor. Science 321, 372–376 (2008). Second gene with strong effects on sleep duration to be identified in flies using mutagenesis screening.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Steriade, M. The corticothalamic system in sleep. Front. Biosci. 8, D878–D899 (2003).

    Article  CAS  PubMed  Google Scholar 

  28. Guan, D. et al. Expression and biophysical properties of Kv1 channels in supragranular neocortical pyramidal neurones. J. Physiol. 571, 371–389 (2006).

    Article  CAS  PubMed  Google Scholar 

  29. Douglas, C. L. et al. Sleep in Kcna2 knockout mice. BMC Biol. 5, 42 (2007).

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  30. Misonou, H. & Trimmer, J. S. Determinants of voltage-gated potassium channel surface expression and localization in Mammalian neurons. Crit. Rev. Biochem. Mol. Biol. 39, 125–145 (2004).

    Article  CAS  PubMed  Google Scholar 

  31. Yuan, L. L. & Chen, X. Diversity of potassium channels in neuronal dendrites. Prog. Neurobiol. 78, 374–389 (2006).

    Article  CAS  PubMed  Google Scholar 

  32. Espinosa, F., Marks, G., Heintz, N. & Joho, R. H. Increased motor drive and sleep loss in mice lacking Kv3-type potassium channels. Genes Brain Behav. 3, 90–100 (2004).

    Article  CAS  PubMed  Google Scholar 

  33. Espinosa, F., Torres-Vega, M. A., Marks, G. A. & Joho, R. H. Ablation of Kv3.1 and Kv3.3 potassium channels disrupts thalamocortical oscillations in vitro and in vivo. J. Neurosci. 28, 5570–5581 (2008).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Rudy, B. & McBain, C. J. Kv3 channels: voltage-gated K+ channels designed for high-frequency repetitive firing. Trends Neurosci. 24, 517–526 (2001).

    Article  CAS  PubMed  Google Scholar 

  35. Liguori, R. et al. Morvan's syndrome: peripheral and central nervous system and cardiac involvement with antibodies to voltage-gated potassium channels. Brain 124, 2417–2426 (2001).

    Article  CAS  PubMed  Google Scholar 

  36. Crunelli, V., Cope, D. W. & Hughes, S. W. Thalamic T-type Ca2+ channels and NREM sleep. Cell Calcium 40, 175–190 (2006).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Lee, J., Kim, D. & Shin, H. S. Lack of delta waves and sleep disturbances during non-rapid eye movement sleep in mice lacking α1G-subunit of T-type calcium channels. Proc. Natl Acad. Sci. USA 101, 18195–18199 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Anderson, M. P. et al. Thalamic Cav3.1 T-type Ca2+ channel plays a crucial role in stabilizing sleep. Proc. Natl Acad. Sci. USA 102, 1743–1748 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wisor, J. P. et al. A role for cryptochromes in sleep regulation. BMC Neurosci. 3, 20 (2002).

    Article  PubMed Central  PubMed  Google Scholar 

  40. Hendricks, J. C. et al. Gender dimorphism in the role of cycle (BMAL1) in rest, rest regulation, and longevity in Drosophila melanogaster. J. Biol. Rhythms 18, 12–25 (2003).

    Article  CAS  PubMed  Google Scholar 

  41. Cirelli, C., Gutierrez, C. M. & Tononi, G. Extensive and divergent effects of sleep and wakefulness on brain gene expression. Neuron 41, 35–43 (2004). First genome-wide microarray study to show that hundreds of transcripts in the rat cerebral cortex change their expression because of sleep and waking, independent of circadian time.

    Article  CAS  PubMed  Google Scholar 

  42. Franken, P., Thomason, R., Heller, H. C. & O'Hara, B. F. A non-circadian role for clock-genes in sleep homeostasis: a strain comparison. BMC Neurosci. 8, 87 (2007).

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  43. Wisor, J. P. et al. Sleep deprivation effects on circadian clock gene expression in the cerebral cortex parallel electroencephalographic differences among mouse strains. J. Neurosci. 28, 7193–7201 (2008).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Rutter, J., Reick, M., Wu, L. C. & McKnight, S. L. Regulation of clock and NPAS2 DNA binding by the redox state of NAD cofactors. Science 293, 510–514 (2001).

    Article  CAS  PubMed  Google Scholar 

  45. Reick, M., Garcia, J. A., Dudley, C. & McKnight, S. L. NPAS2: an analog of clock operative in the mammalian forebrain. Science 293, 506–509 (2001).

    Article  CAS  PubMed  Google Scholar 

  46. Kasischke, K. A., Vishwasrao, H. D., Fisher, P. J., Zipfel, W. R. & Webb, W. W. Neural activity triggers neuronal oxidative metabolism followed by astrocytic glycolysis. Science 305, 99–103 (2004).

    Article  CAS  PubMed  Google Scholar 

  47. Viola, A. U. et al. PER3 polymorphism predicts sleep structure and waking performance. Curr. Biol. 17, 613–618 (2007). First study in humans to identify a gene polymorphism that affects the response to sleep deprivation.

    Article  CAS  PubMed  Google Scholar 

  48. Goel, N., Banks, S., Mignot, E. & Dinges, D. F. PER3 polymorphism predicts cumulative sleep homeostatic but not neurobehavioral changes to chronic partial sleep deprivation. PLoS One 4, e5874 (2009).

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  49. Groeger, J. A. et al. Early morning executive functioning during sleep deprivation is compromised by a PERIOD3 polymorphism. Sleep 31, 1159–1167 (2008).

    PubMed Central  PubMed  Google Scholar 

  50. Van Dongen, H. P., Vitellaro, K. M. & Dinges, D. F. Individual differences in adult human sleep and wakefulness: leitmotif for a research agenda. Sleep 28, 479–496 (2005). Review of the data suggesting a genetic basis for the inter-individual variability in the response to sleep loss.

    Article  PubMed  Google Scholar 

  51. Lim, J., Choo, W. C. & Chee, M. W. Reproducibility of changes in behaviour and fMRI activation associated with sleep deprivation in a working memory task. Sleep 30, 61–70 (2007).

    Article  PubMed  Google Scholar 

  52. Toh, K. L. et al. An hPer2 phosphorylation site mutation in familial advanced sleep phase syndrome. Science 291, 1040–1043 (2001). First study to identify a mutation responsible for FASPS.

    Article  CAS  PubMed  Google Scholar 

  53. Xu, Y. et al. Modeling of a human circadian mutation yields insights into clock regulation by PER2. Cell 128, 59–70 (2007).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Xu, Y. et al. Functional consequences of a CKIδ mutation causing familial advanced sleep phase syndrome. Nature 434, 640–644 (2005).

    Article  CAS  PubMed  Google Scholar 

  55. Okawa, M. & Uchiyama, M. Circadian rhythm sleep disorders: characteristics and entrainment pathology in delayed sleep phase and non-24-h sleep-wake syndrome. Sleep Med. Rev. 11, 485–496 (2007).

    Article  PubMed  Google Scholar 

  56. Sakurai, T. The neural circuit of orexin (hypocretin): maintaining sleep and wakefulness. Nature Rev. Neurosci. 8, 171–181 (2007).

    Article  CAS  Google Scholar 

  57. Landolt, H. P. Sleep homeostasis: a role for adenosine in humans? Biochem. Pharmacol. 75, 2070–2079 (2008).

    Article  CAS  PubMed  Google Scholar 

  58. Retey, J. V. et al. A functional genetic variation of adenosine deaminase affects the duration and intensity of deep sleep in humans. Proc. Natl Acad. Sci. USA 102, 15676–15681 (2005). First study in humans to identify a gene polymorphism that affects the duration of NREM sleep and SLA.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Lonart, G., Tang, X., Simsek-Duran, F., Machida, M. & Sanford, L. D. The role of active zone protein Rab3 interacting molecule 1 α in the regulation of norepinephrine release, response to novelty, and sleep. Neuroscience 154, 821–831 (2008).

    Article  CAS  PubMed  Google Scholar 

  60. Colas, D., Wagstaff, J., Fort, P., Salvert, D. & Sarda, N. Sleep disturbances in Ube3a maternal-deficient mice modeling Angelman syndrome. Neurobiol. Dis. 20, 471–478 (2005).

    Article  CAS  PubMed  Google Scholar 

  61. Franken, P., Chollet, D. & Tafti, M. The homeostatic regulation of sleep need is under genetic control. J. Neurosci. 21, 2610–2621 (2001). This study used QTL analysis to show that sleep need, as measured by the increase in SLA after prolonged waking, is strongly influenced by genetic factors.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Andretic, R., Franken, P. & Tafti, M. Genetics of sleep. Annu. Rev. Genet. 42, 361–388 (2008).

    Article  CAS  PubMed  Google Scholar 

  63. Kato, A., Ozawa, F., Saitoh, Y., Hirai, K. & Inokuchi, K. vesl, a gene encoding VASP/Ena family related protein, is upregulated during seizure, long-term potentiation and synaptogenesis. FEBS Lett. 412, 183–189 (1997).

    Article  CAS  PubMed  Google Scholar 

  64. Brakeman, P. R. et al. Homer: a protein that selectively binds metabotropic glutamate receptors. Nature 386, 284–288 (1997).

    Article  CAS  PubMed  Google Scholar 

  65. Maret, S. et al. Homer1a is a core brain molecular correlate of sleep loss. Proc. Natl Acad. Sci. USA 104, 20090–20095 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Mackiewicz, M., Paigen, B., Naidoo, N. & Pack, A. I. Analysis of the QTL for sleep homeostasis in mice: Homer1a is a likely candidate. Physiol. Genomics 33, 91–99 (2008).

    Article  CAS  PubMed  Google Scholar 

  67. Diagana, T. T. et al. Mutation of Drosophila homer disrupts control of locomotor activity and behavioral plasticity. J. Neurosci. 22, 428–436 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Schenkein, J. & Montagna, P. Self management of fatal familial insomnia. Part 1: what is FFI? MedGenMed 8, 65 (2006).

    PubMed Central  PubMed  Google Scholar 

  69. Lugaresi, E. & Provini, F. Fatal familial insomnia and agrypnia excitata. Rev. Neurol. Dis. 4, 145–152 (2007).

    PubMed  Google Scholar 

  70. Dossena, S. et al. Mutant prion protein expression causes motor and memory deficits and abnormal sleep patterns in a transgenic mouse model. Neuron 60, 598–609 (2008).

    Article  CAS  PubMed  Google Scholar 

  71. Peyron, C. et al. A mutation in a case of early onset narcolepsy and a generalized absence of hypocretin peptides in human narcoleptic brains. Nature Med. 6, 991–997 (2000).

    Article  CAS  PubMed  Google Scholar 

  72. Nishino, S. Clinical and neurobiological aspects of narcolepsy. Sleep Med. 8, 373–399 (2007).

    Article  PubMed Central  PubMed  Google Scholar 

  73. Hallmayer, J. et al. Narcolepsy is strongly associated with the T-cell receptor alpha locus. Nature Genet. 41, 708–711 (2009).

    Article  CAS  PubMed  Google Scholar 

  74. Winkelmann, J. et al. Genome-wide association study of restless legs syndrome identifies common variants in three genomic regions. Nature Genet. 39, 1000–1006 (2007).

    Article  CAS  PubMed  Google Scholar 

  75. Schormair, B. et al. PTPRD (protein tyrosine phosphatase receptor type delta) is associated with restless legs syndrome. Nature Genet. 40, 946–948 (2008).

    Article  CAS  PubMed  Google Scholar 

  76. Stefansson, H. et al. A genetic risk factor for periodic limb movements in sleep. N. Engl. J. Med. 357, 639–647 (2007).

    Article  CAS  PubMed  Google Scholar 

  77. Kimura, M. & Winkelmann, J. Genetics of sleep and sleep disorders. Cell. Mol. Life Sci. 64, 1216–1226 (2007).

    Article  CAS  PubMed  Google Scholar 

  78. Cirelli, C. & Tononi, G. Gene expression in the brain across the sleep-waking cycle. Brain Res. 885, 303–321 (2000).

    Article  CAS  PubMed  Google Scholar 

  79. Cirelli, C., LaVaute, T. M. & Tononi, G. Sleep and wakefulness modulate gene expression in Drosophila. J. Neurochem. 94, 1411–1419 (2005).

    Article  CAS  PubMed  Google Scholar 

  80. Cirelli, C., Faraguna, U. & Tononi, G. Changes in brain gene expression after long-term sleep deprivation. J. Neurochem. 98, 1632–1645 (2006).

    Article  CAS  PubMed  Google Scholar 

  81. Terao, A., Greco, M. A., Davis, R. W., Heller, H. C. & Kilduff, T. S. Region-specific changes in immediate early gene expression in response to sleep deprivation and recovery sleep in the mouse brain. Neuroscience 120, 1115–1124 (2003).

    Article  CAS  PubMed  Google Scholar 

  82. Terao, A. et al. Differential increase in the expression of heat shock protein family members during sleep deprivation and during sleep. Neuroscience 116, 187–200 (2003).

    Article  CAS  PubMed  Google Scholar 

  83. Terao, A. et al. Gene expression in the rat brain during sleep deprivation and recovery sleep: an Affymetrix GeneChip study. Neuroscience 137, 593–605 (2006).

    Article  CAS  PubMed  Google Scholar 

  84. Zimmerman, J. E. et al. Multiple mechanisms limit the duration of wakefulness in Drosophila brain. Physiol. Genomics 27, 337–350 (2006).

    Article  CAS  PubMed  Google Scholar 

  85. Mackiewicz, M. et al. Macromolecule biosynthesis - a key function of sleep. Physiol. Genomics 31, 441–457 (2007).

    Article  CAS  PubMed  Google Scholar 

  86. Jones, S., Pfister-Genskow, M., Benca, R. M. & Cirelli, C. Molecular correlates of sleep and wakefulness in the brain of the white-crowned sparrow. J. Neurochem. 105, 46–62 (2008).

    Article  CAS  PubMed  Google Scholar 

  87. Cirelli, C. & Tononi, G. Differences in gene expression between sleep and waking as revealed by mRNA differential display. Brain Res. Mol. Brain Res. 56, 293–305 (1998).

    Article  CAS  PubMed  Google Scholar 

  88. Shaw, P. J., Cirelli, C., Greenspan, R. J. & Tononi, G. Correlates of sleep and waking in Drosophila melanogaster. Science 287, 1834–1837 (2000).

    Article  CAS  PubMed  Google Scholar 

  89. Petit, J. M., Tobler, I., Allaman, I., Borbely, A. A. & Magistretti, P. J. Sleep deprivation modulates brain mRNAs encoding genes of glycogen metabolism. Eur. J. Neurosci. 16, 1163–1167 (2002).

    Article  PubMed  Google Scholar 

  90. Rhyner, T. A., Borbely, A. A. & Mallet, J. Molecular cloning of forebrain mRNAs which are modulated by sleep deprivation. Eur. J. Neurosci. 2, 1063–1073 (1990). Pioneer study that used subtractive cDNA cloning to identify rat forebrain transcripts affected by sleep deprivation.

    Article  PubMed  Google Scholar 

  91. Everson, C. A., Smith, C. B. & Sokoloff, L. Effects of prolonged sleep deprivation on local rates of cerebral energy metabolism in freely moving rats. J. Neurosci. 14, 6769–6778 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Wu, J. C. et al. The effect of sleep deprivation on cerebral glucose metabolic rate in normal humans assessed with positron emission tomography. Sleep 14, 155–162 (1991).

    CAS  PubMed  Google Scholar 

  93. Cortelli, P. et al. Cerebral metabolism in fatal familial insomnia: relation to duration, neuropathology, and distribution of protease-resistant prion protein. Neurology 49, 126–133 (1997).

    Article  CAS  PubMed  Google Scholar 

  94. Naidoo, N., Giang, W., Galante, R. J. & Pack, A. I. Sleep deprivation induces the unfolded protein response in mouse cerebral cortex. J. Neurochem. 92, 1150–1157 (2005).

    Article  CAS  PubMed  Google Scholar 

  95. Cirelli, C., Shaw, P. J., Rechtschaffen, A. & Tononi, G. No evidence of brain cell degeneration after long-term sleep deprivation in rats. Brain Res. 840, 184–193 (1999).

    Article  CAS  PubMed  Google Scholar 

  96. Gopalakrishnan, A., Ji, L. L. & Cirelli, C. Sleep deprivation and cellular responses to oxidative stress. Sleep 27, 27–35 (2004).

    Article  PubMed  Google Scholar 

  97. Shaw, P. J., Tononi, G., Greenspan, R. J. & Robinson, D. F. Stress response genes protect against lethal effects of sleep deprivation in Drosophila. Nature 417, 287–291 (2002).

    Article  CAS  PubMed  Google Scholar 

  98. Hendricks, J. C. et al. A non-circadian role for cAMP signaling and CREB activity in Drosophila rest homeostasis. Nature Neurosci. 4, 1108–1115 (2001).

    Article  CAS  PubMed  Google Scholar 

  99. Vyazovskiy, V. V., Cirelli, C., Pfister-Genskow, M., Faraguna, U. & Tononi, G. Molecular and electrophysiological evidence for net synaptic potentiation in wake and depression in sleep. Nature Neurosci. 11, 200–208 (2008). This study showed that the overall synaptic strength in the rat cerebral cortex increases during waking and decreases during sleep.

    Article  CAS  PubMed  Google Scholar 

  100. Gilestro, G., Tononi, G. & Cirelli, C. Widespread changes in synaptic markers as a function of sleep and waking in Drosophila. Science 324, 109–112 (2009).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  101. Donlea, J. M., Ramanan, N. & Shaw, P. J. Use-dependent plasticity in clock neurons regulates sleep need in Drosophila. Science 324, 105–108 (2009).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  102. Reich, P., Driver, J. K. & Karnovsky, M. L. Sleep: effects on incorporation of inorganic phosphate into brain fractions. Science 157, 336–338 (1967).

    Article  CAS  PubMed  Google Scholar 

  103. Reich, P., Geyer, S. J., Steinbaum, L., Anchors, M. & Karnovsky, M. L. Incorporation of phosphate into rat brain during sleep and wakefulness. J. Neurochem. 20, 1195–1205 (1973).

    Article  CAS  PubMed  Google Scholar 

  104. Voronka, G., Demin, N. N. & Pevzner, L. Z. [Total protein content and quantity of basic proteins in neurons and neuroglia of rat brain supraoptic and red nuclei during natural sleep and deprivation of paradoxical sleep]. Dokl. Akad. Nauk SSSR 198, 974–977 (1971).

    CAS  PubMed  Google Scholar 

  105. Drucker-Colin, R. R., Spanis, C. W., Cotman, C. W. & McGaugh, J. L. Changes in protein levels in perfusates of freely moving cats: relation to behavioral state. Science 187, 963–965 (1975).

    Article  CAS  PubMed  Google Scholar 

  106. Ramm, P. & Smith, C. T. Rates of cerebral protein synthesis are linked to slow wave sleep in the rat. Physiol. Behav. 48, 749–753 (1990).

    Article  CAS  PubMed  Google Scholar 

  107. Nakanishi, H. et al. Positive correlations between cerebral protein synthesis rates and deep sleep in Macaca mulatta. Eur. J. Neurosci. 9, 271–279 (1997).

    Article  CAS  PubMed  Google Scholar 

  108. Ibata, K., Sun, Q. & Turrigiano, G. G. Rapid synaptic scaling induced by changes in postsynaptic firing. Neuron 57, 819–826 (2008).

    Article  CAS  PubMed  Google Scholar 

  109. Born, J., Rasch, B. & Gais, S. Sleep to remember. Neuroscientist 12, 410–424 (2006).

    Article  PubMed  Google Scholar 

  110. Walker, M. P. & Stickgold, R. Sleep, memory, and plasticity. Annu. Rev. Psychol. 57, 139–166 (2006).

    Article  PubMed  Google Scholar 

  111. Steriade, M. Coherent oscillations and short-term plasticity in corticothalamic networks. Trends Neurosci. 22, 337–345 (1999).

    Article  CAS  PubMed  Google Scholar 

  112. Sejnowski, T. J. & Destexhe, A. Why do we sleep? Brain Res. 886, 208–223 (2000).

    Article  CAS  PubMed  Google Scholar 

  113. Tononi, G. & Cirelli, C. Sleep function and synaptic homeostasis. Sleep Med. Rev. 10, 49–62 (2006). This review suggested that a major function of sleep is to reduce synaptic strength in large brain areas and discusses how sleep could allow synaptic downscaling.

    Article  PubMed  Google Scholar 

  114. Mauch, D. H. et al. CNS synaptogenesis promoted by glia-derived cholesterol. Science 294, 1354–1357 (2001).

    Article  CAS  PubMed  Google Scholar 

  115. Christopherson, K. S. et al. Thrombospondins are astrocyte-secreted proteins that promote CNS synaptogenesis. Cell 120, 421–433 (2005).

    Article  CAS  PubMed  Google Scholar 

  116. Hering, H., Lin, C. C. & Sheng, M. Lipid rafts in the maintenance of synapses, dendritic spines, and surface AMPA receptor stability. J. Neurosci. 23, 3262–3271 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Ganguly-Fitzgerald, I., Donlea, J. & Shaw, P. J. Waking experience affects sleep need in Drosophila. Science 313, 1775–1781 (2006).

    Article  CAS  PubMed  Google Scholar 

  118. Huber, R., Tononi, G. & Cirelli, C. Exploratory behavior, cortical BDNF expression, and sleep homeostasis. Sleep 30, 129–139 (2007).

    Article  PubMed  Google Scholar 

  119. Silber, M. H. et al. The visual scoring of sleep in adults. J. Clin. Sleep Med. 3, 121–131 (2007).

    Article  PubMed  Google Scholar 

  120. Pack, A. I. et al. Novel method for high-throughput phenotyping of sleep in mice. Physiol. Genomics 28, 232–238 (2007).

    Article  CAS  PubMed  Google Scholar 

  121. Werth, E., Achermann, P., Dijk, D. J. & Borbely, A. A. Spindle frequency activity in the sleep EEG: individual differences and topographic distribution. Electroencephalogr. Clin. Neurophysiol. 103, 535–542 (1997).

    Article  CAS  PubMed  Google Scholar 

  122. Tan, X., Campbell, I. G., Palagini, L. & Feinberg, I. High internight reliability of computer-measured NREM delta, sigma, and beta: biological implications. Biol. Psychiatry 48, 1010–1019 (2000).

    Article  CAS  PubMed  Google Scholar 

  123. Finelli, L. A., Achermann, P. & Borbély, A. A. Individual 'fingerprints' in human sleep EEG topography. Neuropsychopharmacology 25, S57–S62 (2001).

    Article  CAS  PubMed  Google Scholar 

  124. De Gennaro, L., Ferrara, M., Vecchio, F., Curcio, G. & Bertini, M. An electroencephalographic fingerprint of human sleep. Neuroimage 26, 114–122 (2005).

    Article  PubMed  Google Scholar 

  125. Buckelmuller, J., Landolt, H. P., Stassen, H. H. & Achermann, P. Trait-like individual differences in the human sleep electroencephalogram. Neuroscience 138, 351–356 (2006).

    Article  CAS  PubMed  Google Scholar 

  126. Tucker, A. M., Dinges, D. F. & Van Dongen, H. P. Trait interindividual differences in the sleep physiology of healthy young adults. J. Sleep Res. 16, 170–180 (2007).

    Article  PubMed  Google Scholar 

  127. van Beijsterveldt, C. E., Molenaar, P. C., de Geus, E. J. & Boomsma, D. I. Heritability of human brain functioning as assessed by electroencephalography. Am. J. Hum. Genet. 58, 562–573 (1996).

    CAS  PubMed Central  PubMed  Google Scholar 

  128. van Beijsterveldt, C. E. & van Baal, G. C. Twin and family studies of the human electroencephalogram: a review and a meta-analysis. Biol. Psychol. 61, 111–138 (2002).

    Article  CAS  PubMed  Google Scholar 

  129. van Beijsterveldt, C. E., Molenaar, P. C., de Geus, E. J. & Boomsma, D. I. Genetic and environmental influences on EEG coherence. Behav. Genet. 28, 443–453 (1998).

    Article  CAS  PubMed  Google Scholar 

  130. Chorlian, D. B. et al. Heritability of EEG coherence in a large sib-pair population. Biol. Psychol. 75, 260–266 (2007).

    Article  PubMed Central  PubMed  Google Scholar 

  131. Porjesz, B. et al. Linkage disequilibrium between the beta frequency of the human EEG and a GABAA receptor gene locus. Proc. Natl Acad. Sci. USA 99, 3729–3733 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Hendricks, J. C. et al. Rest in Drosophila is a sleep-like state. Neuron 25, 129–138 (2000).

    Article  CAS  PubMed  Google Scholar 

  133. Tobler, I., Wigger, E., Durr, R. & Hajnal, A. C. elegans: a model organism to investigate the genetics of sleep and sleep homeostasis. J. Sleep Res. 13, 1 (2004).

    Google Scholar 

  134. Nitz, D. A., van Swinderen, B., Tononi, G. & Greenspan, R. J. Electrophysiological correlates of rest and activity in Drosophila melanogaster. Curr. Biol. 12, 1934–1940 (2002).

    Article  CAS  PubMed  Google Scholar 

  135. Huber, R. et al. Sleep homeostasis in Drosophila melanogaster. Sleep 27, 628–639 (2004).

    Article  PubMed  Google Scholar 

  136. Jeon, M., Gardner, H. F., Miller, E. A., Deshler, J. & Rougvie, A. E. Similarity of the C. elegans developmental timing protein LIN-42 to circadian rhythm proteins. Science 286, 1141–1146 (1999).

    Article  CAS  PubMed  Google Scholar 

  137. Koh, K., Evans, J. M., Hendricks, J. C. & Sehgal, A. A Drosophila model for age-associated changes in sleep:wake cycles. Proc. Natl Acad. Sci. USA 103, 13843–13847 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Hendricks, J. C., Kirk, D., Panckeri, K., Miller, M. S. & Pack, A. I. Modafinil maintains waking in the fruit fly Drosophila melanogaster. Sleep 26, 139–146 (2003).

    Article  PubMed  Google Scholar 

  139. Andretic, R., van Swinderen, B. & Greenspan, R. J. Dopaminergic modulation of arousal in Drosophila. Curr. Biol. 15, 1165–1175 (2005).

    Article  CAS  PubMed  Google Scholar 

  140. Crocker, A. & Sehgal, A. Octopamine regulates sleep in Drosophila through protein kinase A-dependent mechanisms. J. Neurosci. 28, 9377–9385 (2008).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  141. Kume, K., Kume, S., Park, S. K., Hirsh, J. & Jackson, F. R. Dopamine is a regulator of arousal in the fruit fly. J. Neurosci. 25, 7377–7384 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Wisor, J. P. et al. Dopaminergic role in stimulant-induced wakefulness. J. Neurosci. 21, 1787–1794 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Agosto, J. et al. Modulation of GABAA receptor desensitization uncouples sleep onset and maintenance in Drosophila. Nature Neurosci. 11, 354–359 (2008).

    Article  CAS  PubMed  Google Scholar 

  144. Graves, L. A. et al. Genetic evidence for a role of CREB in sustained cortical arousal. J. Neurophysiol. 23, 23 (2003).

    Google Scholar 

  145. Renier, C. et al. Genomic and functional conservation of sedative-hypnotic targets in the zebrafish. Pharmacogenet. Genomics 17, 237–253 (2007).

    Article  CAS  PubMed  Google Scholar 

  146. Ruuskanen, J. O., Peitsaro, N., Kaslin, J. V., Panula, P. & Scheinin, M. Expression and function of α2 adrenoceptors in zebrafish: drug effects, mRNA and receptor distributions. J. Neurochem. 94, 1559–1569 (2005).

    Article  CAS  PubMed  Google Scholar 

  147. Van Buskirk, C. & Sternberg, P. W. Epidermal growth factor signaling induces behavioral quiescence in Caenorhabditis elegans. Nature Neurosci. 10, 1300–1307 (2007).

    Article  CAS  PubMed  Google Scholar 

  148. Kramer, A. et al. Regulation of daily locomotor activity and sleep by hypothalamic EGF receptor signaling. Science 294, 2511–2515 (2001).

    Article  CAS  PubMed  Google Scholar 

  149. Snodgrass-Belt, P., Gilbert, J. L. & Davis, F. C. Central administration of transforming growth factor-alpha and neuregulin-1 suppress active behaviors and cause weight loss in hamsters. Brain Res. 1038, 171–182 (2005).

    Article  CAS  PubMed  Google Scholar 

  150. Kushikata, T., Fang, J., Chen, Z., Wang, Y. & Krueger, J. M. Epidermal growth factor enhances spontaneous sleep in rabbits. Am. J. Physiol. 275, R509–R514 (1998).

    CAS  PubMed  Google Scholar 

  151. Foltenyi, K., Greenspan, R. J. & Newport, J. W. Activation of EGFR and ERK by rhomboid signaling regulates the consolidation and maintenance of sleep in Drosophila. Nature Neurosci. 10, 1160–1167 (2007).

    Article  CAS  PubMed  Google Scholar 

  152. Morrow, J. D., Vikraman, S., Imeri, L. & Opp, M. R. Effects of serotonergic activation by 5-hydroxytryptophan on sleep and body temperature of C57BL/56J and interleukin-6-deficient mice are dose and time related. Sleep 31, 21–33 (2008).

    Article  PubMed Central  PubMed  Google Scholar 

  153. Yuan, Q., Joiner, W. J. & Sehgal, A. A sleep-promoting role for the Drosophila serotonin receptor 1A. Curr. Biol. 16, 1051–1062 (2006).

    Article  CAS  PubMed  Google Scholar 

  154. You, Y. J., Kim, J., Raizen, D. M. & Avery, L. Insulin, cGMP, and TGF-β signals regulate food intake and quiescence in C. elegans: a model for satiety. Cell Metab. 7, 249–257 (2008).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

This work was funded by US National Institutes of Health grants P20 MH077967 and R01 GM075315. I thank D. Bushey, S. Maret and G. Tononi for critical comments on the manuscript.

Author information

Authors and Affiliations

Authors

Supplementary information

Supplementary information S1 (table)

Twin studies with heritability estimates for sleep phenotypes (% of variance explained by genetic effects) (PDF 206 kb)

Supplementary information S2 (table)

Studies in flies and mice using reverse and forward genetics to show effects of single candidate genes on sleep. (PDF 501 kb)

Related links

Related links

FURTHER INFORMATION

Chiara Cirelli's homepage

Glossary

Hypocretin/orexin system

A group of neurons in the posterior hypothalamus that have diffuse projections to the CNS and release hypocretins or orexins. These neuropeptides have been involved in the regulation of sleep and arousal, feeding and energy metabolism.

Slow waves

Oscillations of cortical origin that have frequencies in the delta band.

Rapid-eye-movement (REM) sleep

The second phase of sleep observed in mammals and birds. In REM sleep the muscle tone is reduced or absent, but the EEG is similar to waking. REM theta activity (4–7 Hz) is also present.

Spindles

Waxing and waning oscillations of thalamic origin, the frequency of which is in the sigma band.

Non-rapid eye movement (NREM) sleep

One of the two types of sleep observed in mammals and birds. NREM sleep includes slow-wave sleep, characterized mainly by large slow waves.

Sleep consolidation

Consolidated sleep is characterized by long sleep episodes, little waking after sleep onset (WASO) and only few brief awakenings.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cirelli, C. The genetic and molecular regulation of sleep: from fruit flies to humans. Nat Rev Neurosci 10, 549–560 (2009). https://doi.org/10.1038/nrn2683

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn2683

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing