Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Contribution of aldosterone to cardiovascular and renal inflammation and fibrosis

Abstract

The steroid hormone aldosterone regulates sodium and potassium homeostasis. Aldosterone and activation of the mineralocorticoid receptor also causes inflammation and fibrosis of the heart, fibrosis and remodelling of blood vessels and tubulointerstitial fibrosis and glomerular injury in the kidney. Aldosterone and mineralocorticoid-receptor activation initiate an inflammatory response by increasing the generation of reactive oxygen species by nicotinamide adenine dinucleotide phosphate (NADPH) oxidase and mitochondria. High salt intake potentiates these effects, in part by activating the Rho family member Rac1, a regulatory subunit of reduced NADPH oxidase that activates the mineralocorticoid receptor. Studies in mice in which the mineralocorticoid receptor has been deleted from specific cell types suggest a key role for macrophages in promoting inflammation and fibrosis. Aldosterone can exert mineralocorticoid-receptor-independent effects via the angiotensin II receptor and via G-protein-coupled receptor 30. Mineralocorticoid-receptor antagonists are associated with decreased mortality in patients with heart disease and show promise in patients with kidney injury, but can elevate serum potassium concentration. Studies in rodents genetically deficient in aldosterone synthase or treated with a pharmacological aldosterone-synthase inhibitor are providing insight into the relative contribution of aldosterone compared with the contribution of mineralocorticoid-receptor activation in inflammation, fibrosis, and injury. Aldosterone-synthase inhibitors are under development in humans.

Key Points

  • Aldosterone or mineralocorticoid-receptor activation trigger the formation of reactive oxygen species by NADPH oxidase and mitochondria that, in turn, induce a proinflammatory and profibrotic phenotype

  • Under conditions of high salt intake, Rac1 activates the mineralocorticoid receptor and increases the formation of reactive oxygen species

  • Aldosterone exerts rapid, transcription-independent effects (nongenomic effects) that may be mediated by G-protein-coupled receptor 30 and transactivation of the epithelial growth factor receptor

  • Studies in mice in which the mineralocorticoid receptor has been selectively deleted on specific cells indicate that systemic mineralocorticoid-receptor activation is not necessary to induce local inflammation and fibrosis

  • Aldosterone-synthase inhibition or deficiency prevents inflammation and fibrosis in many rodent models of cardiovascular or renal injury

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mechanisms by which aldosterone and/or MR activation induce oxidative stress, inflammation, and fibrosis.
Figure 2: Effects of cell-specific activation of the MR.

Similar content being viewed by others

References

  1. Náray-Fejes-Tóth, A., Canessa, C., Cleaveland, E. S., Aldrich, G. & Fejes-Tóth, G. sgk is an aldosterone-induced kinase in the renal collecting duct. Effects on epithelial na+ channels. J. Biol. Chem. 274, 16973–16978 (1999).

    PubMed  Google Scholar 

  2. Snyder, P. M., Olson, D. R. & Thomas, B. C. Serum and glucocorticoid-regulated kinase modulates Nedd4-2-mediated inhibition of the epithelial Na+ channel. J. Biol. Chem. 277, 5–8 (2002).

    CAS  PubMed  Google Scholar 

  3. Bhalla, V., Soundararajan, R., Pao, A. C., Li, H. & Pearce, D. Disinhibitory pathways for control of sodium transport: regulation of ENaC by SGK1 and GILZ. Am. J. Physiol. Renal Physiol. 291, F714–F721 (2006).

    CAS  PubMed  Google Scholar 

  4. Rozansky, D. J. et al. Aldosterone mediates activation of the thiazide-sensitive Na-Cl cotransporter through an SGK1 and WNK4 signaling pathway. J. Clin. Invest. 119, 2601–2612 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Arroyo, J. P. et al. Nedd4–2 modulates renal Na+-Cl- cotransporter via the aldosterone-SGK1-Nedd4–2 pathway. J. Am. Soc. Nephrol. 22, 1707–1719 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Sato, A. & Funder, J. W. High glucose stimulates aldosterone-induced hypertrophy via type I mineralocorticoid receptors in neonatal rat cardiomyocytes. Endocrinology 137, 4145–4153 (1996).

    CAS  PubMed  Google Scholar 

  7. Lombes, M. et al. Immunohistochemical and biochemical evidence for a cardiovascular mineralocorticoid receptor. Circ. Res. 71, 503–510 (1992).

    CAS  PubMed  Google Scholar 

  8. Terada, Y. et al. Aldosterone stimulates proliferation of mesangial cells by activating mitogen-activated protein kinase 1/2, cyclin D1, and cyclin A. J Am. Soc. Nephrol. 16, 2296–2305 (2005).

    CAS  PubMed  Google Scholar 

  9. Shibata, S., Nagase, M., Yoshida, S., Kawachi, H. & Fujita, T. Podocyte as the target for aldosterone: roles of oxidative stress and Sgk1. Hypertension 49, 355–364 (2007).

    CAS  PubMed  Google Scholar 

  10. Guo, C. et al. Mineralocorticoid receptor blockade reverses obesity-related changes in expression of adiponectin, peroxisome proliferator-activated receptor-gamma, and proinflammatory adipokines. Circulation 117, 2253–2261 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Calo, L. A. et al. Effect of aldosterone and glycyrrhetinic acid on the protein expression of PAI-1 and p22(phox) in human mononuclear leukocytes. J. Clin. Endocrinol. Metab 89, 1973–1976 (2004).

    CAS  PubMed  Google Scholar 

  12. Brilla, C. G. & Weber, K. T. Mineralocorticoid excess, dietary sodium, and myocardial fibrosis. J. Lab. Clin. Med. 120, 893–901 (1992).

    CAS  PubMed  Google Scholar 

  13. Lacolley, P. et al. Increased carotid wall elastic modulus and fibronectin in aldosterone-salt-treated rats effects of eplerenone. Circulation 106, 2848–2853 (2002).

    CAS  PubMed  Google Scholar 

  14. Greene, E. L., Kren, S. & Hostetter, T. H. Role of aldosterone in the remnant kidney model in the rat. J. Clin. Invest. 98, 1063–1068 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Rocha, R. et al. Aldosterone induces a vascular inflammatory phenotype in the rat heart. Am. J. Physiol. Heart Circ. Physiol. 283, H1802–H1810 (2002).

    CAS  PubMed  Google Scholar 

  16. Blasi, E. R. et al. Aldosterone/salt induces renal inflammation and fibrosis in hypertensive rats. Kidney Int. 63, 1791–1800 (2003).

    CAS  PubMed  Google Scholar 

  17. Gerling, I. C. et al. Aldosteronism: an immunostimulatory state precedes proinflammatory/fibrogenic cardiac phenotype. Am. J. Physiol. Heart Circ. Physiol. 285, H813–H821 (2003).

    CAS  PubMed  Google Scholar 

  18. Brilla, C. G., Matsubara, L. S. & Weber, K. T. Anti-aldosterone treatment and the prevention of myocardial fibrosis in primary and secondary hyperaldosteronism. J. Mol. Cell. Cardiol. 25, 563–575 (1993).

    CAS  PubMed  Google Scholar 

  19. Pitt, B. et al. The effect of spironolactone on morbidity and mortality in patients with severe heart failure. N. Engl. J. Med. 341, 709–717 (1999).

    CAS  PubMed  Google Scholar 

  20. Zannad, F., Alla, F., Dousset, B., Perez, A. & Pitt, B. Limitation of excessive extracellular matrix turnover may contribute to survival benefit of spironolactone therapy in patients with congestive heart failure: insights from the randomized aldactone evaluation study (RALES). Rales Investigators. Circulation 102, 2700–2706 (2000).

    CAS  PubMed  Google Scholar 

  21. Pitt, B. et al. Eplerenone, a selective aldosterone blocker, in patients with left ventricular dysfunction after myocardial infarction. N. Engl. J. Med. 348, 1309–1321 (2003).

    CAS  PubMed  Google Scholar 

  22. Zannad, F. et al. Eplerenone in patients with systolic heart failure and mild symptoms. N. Engl. J. Med. 364, 11–21 (2011).

    CAS  PubMed  Google Scholar 

  23. Volk, M. J., Bomback, A. S. & Klemmer, P. J. Mineralocorticoid receptor blockade in chronic kidney disease. Curr. Hypertens. Rep. 13, 282–288 (2011).

    CAS  PubMed  Google Scholar 

  24. Fiebeler, A. et al. Mineralocorticoid receptor affects AP-1 and nuclear factor-kappab activation in angiotensin II-induced cardiac injury. Hypertension 37, 787–793 (2001).

    CAS  PubMed  Google Scholar 

  25. He, B. J. et al. Oxidation of CaMKII determines the cardiotoxic effects of aldosterone. Nat. Med. 17, 1610–1618 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Keidar, S. et al. Aldosterone administration to mice stimulates macrophage NADPH oxidase and increases atherosclerosis development: a possible role for angiotensin-converting enzyme and the receptors for angiotensin II and aldosterone. Circulation 109, 2213–2220 (2004).

    CAS  PubMed  Google Scholar 

  27. Iwashima, F. et al. Aldosterone induces superoxide generation via Rac1 activation in endothelial cells. Endocrinology 149, 1009–1014 (2008).

    CAS  PubMed  Google Scholar 

  28. Sun, Y. et al. Aldosterone-induced inflammation in the rat heart: role of oxidative stress. Am. J. Pathol. 161, 1773–1781 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Hirono, Y. et al. Angiotensin II receptor type 1-mediated vascular oxidative stress and proinflammatory gene expression in aldosterone-induced hypertension: the possible role of local renin-angiotensin system. Endocrinology 148, 1688–1696 (2007).

    CAS  PubMed  Google Scholar 

  30. Huang, S., Zhang, A., Ding, G. & Chen, R. Aldosterone-induced mesangial cell proliferation is mediated by EGF receptor transactivation. Am. J. Physiol. Renal Physiol. 296, F1323–F1333 (2009).

    CAS  PubMed  Google Scholar 

  31. Virdis, A., Neves, M. F., Amiri, F., Touyz, R. M. & Schiffrin, E. L. Role of NAD(P)H oxidase on vascular alterations in angiotensin II-infused mice. J. Hypertens. 22, 535–542 (2004).

    CAS  PubMed  Google Scholar 

  32. Johar, S., Cave, A. C., Narayanapanicker, A., Grieve, D. J. & Shah, A. M. Aldosterone mediates angiotensin II-induced interstitial cardiac fibrosis via a Nox2-containing NADPH oxidase. FASEB J. 20, 1546–1548 (2006).

    CAS  PubMed  Google Scholar 

  33. Stas, S. et al. Mineralocorticoid receptor blockade attenuates chronic overexpression of the renin-angiotensin-aldosterone system stimulation of NADPH oxidase and cardiac remodeling. Endocrinology 148, 3773–3780 (2007).

    CAS  PubMed  Google Scholar 

  34. Matsui, H. et al. Salt excess causes left ventricular diastolic dysfunction in rats with metabolic disorder. Hypertension 52, 287–294 (2008).

    CAS  PubMed  Google Scholar 

  35. Yoshida, K. et al. Excess aldosterone under normal salt diet induces cardiac hypertrophy and infiltration via oxidative stress. Hypertens. Res. 28, 447–455 (2005).

    CAS  PubMed  Google Scholar 

  36. Rude, M. K. et al. Aldosterone stimulates matrix metalloproteinases and reactive oxygen species in adult rat ventricular cardiomyocytes. Hypertension 46, 555–561 (2005).

    CAS  PubMed  Google Scholar 

  37. Yuan, J., Jia, R. & Bao, Y. Aldosterone up-regulates production of plasminogen activator inhibitor-1 by renal mesangial cells. J. Biochem. Mol. Biol. 40, 180–188 (2007).

    CAS  PubMed  Google Scholar 

  38. Leopold, J. A. et al. Aldosterone impairs vascular reactivity by decreasing glucose-6-phosphate dehydrogenase activity. Nat. Med. 13, 189–197 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Nagata, D. et al. Molecular mechanism of the inhibitory effect of aldosterone on endothelial NO synthase activity. Hypertension 48, 165–171 (2006).

    CAS  PubMed  Google Scholar 

  40. Oberleithner, H. et al. Plasma sodium stiffens vascular endothelium and reduces nitric oxide release. Proc. Natl Acad. Sci. USA 104, 16281–16286 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Korte, S. et al. Firewall function of the endothelial glycocalyx in the regulation of sodium homeostasis. Pflugers Arch. 463, 269–278 (2012).

    CAS  PubMed  Google Scholar 

  42. Yuan, Y. et al. Mitochondrial dysfunction accounts for aldosterone-induced epithelial-to-mesenchymal transition of renal proximal tubular epithelial cells. Free Radic. Biol. Med. 53, 30–43 (2012).

    CAS  PubMed  Google Scholar 

  43. Zhang, A., Jia, Z., Guo, X. & Yang, T. Aldosterone induces epithelial-mesenchymal transition via ROS of mitochondrial origin. Am. J. Physiol. Renal Physiol. 293, F723–F731 (2007).

    CAS  PubMed  Google Scholar 

  44. Huang, S., Zhang, A., Ding, G. & Chen, R. Aldosterone-induced mesangial cell proliferation is mediated by EGF receptor transactivation. Am. J. Physiol. Renal Physiol. 296, F1323–F1333 (2009).

    CAS  PubMed  Google Scholar 

  45. Zhu, C. et al. Mitochondrial dysfunction mediates aldosterone-induced podocyte damage: a therapeutic target of PPARgamma. Am. J. Pathol. 178, 2020–2031 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Zhang, A., Jia, Z., Wang, N., Tidwell, T. J. & Yang, T. Relative contributions of mitochondria and NADPH oxidase to deoxycorticosterone acetate-salt hypertension in mice. Kidney Int. 80, 51–60 (2011).

    CAS  PubMed  Google Scholar 

  47. Terada, Y. et al. Aldosterone stimulates nuclear factor-kappa B activity and transcription of intercellular adhesion molecule-1 and connective tissue growth factor in rat mesangial cells via serum- and glucocorticoid-inducible protein kinase-1. Clin. Exp. Nephrol. 16, 81–88 (2012).

    CAS  PubMed  Google Scholar 

  48. Leroy, V. et al. Aldosterone activates NF-kappaB in the collecting duct. J. Am. Soc. Nephrol. 20, 131–144 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Yang, M. et al. Serum-glucocorticoid regulated kinase 1 regulates alternatively activated macrophage polarization contributing to angiotensin II-induced inflammation and cardiac fibrosis. Arterioscler. Thromb. Vasc. Biol. 32, 1675–1686 (2012).

    CAS  PubMed  Google Scholar 

  50. Artunc, F. et al. Blunted DOCA/high salt induced albuminuria and renal tubulointerstitial damage in gene-targeted mice lacking SGK1. J. Mol. Med. (Berl) 84, 737–746 (2006).

    CAS  Google Scholar 

  51. Noble, N. A., Harper, J. R. & Border, W. A. In vivo interactions of TGF-beta and extracellular matrix. Prog. Growth Factor Res. 4, 369–382 (1992).

    CAS  PubMed  Google Scholar 

  52. Chun, T. Y., Bloem, L. J. & Pratt, J. H. Aldosterone inhibits inducible nitric oxide synthase in neonatal rat cardiomyocytes. Endocrinology 144, 1712–1717 (2003).

    CAS  PubMed  Google Scholar 

  53. Han, J. S., Choi, B. S., Yang, C. W. & Kim, Y. S. Aldosterone-induced TGF-beta1 expression is regulated by mitogen-activated protein kinases and activator protein-1 in mesangial cells. J. Korean Med. Sci. 24 (Suppl.), S195–S203 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Juknevicius, I., Segal, Y., Kren, S., Lee, R. & Hostetter, T. H. Effect of aldosterone on renal transforming growth factor-beta. Am. J. Physiol. Renal Physiol. 286, F1059–F1062 (2004).

    CAS  PubMed  Google Scholar 

  55. Brown, N. J. et al. Synergistic effect of adrenal steroids and angiotensin II on plasminogen activator inhibitor-1 production. J. Clin. Endocrinol. Metab. 85, 336–344 (2000).

    CAS  PubMed  Google Scholar 

  56. Chun, T. Y. & Pratt, J. H. Aldosterone increases plasminogen activator inhibitor-1 synthesis in rat cardiomyocytes. Mol. Cell Endocrinol. 239, 55–61 (2005).

    CAS  PubMed  Google Scholar 

  57. Huang, W. et al. Aldosterone and TGF-beta1 synergistically increase PAI-1 and decrease matrix degradation in rat renal mesangial and fibroblast cells. Am. J. Physiol. Renal Physiol. 294, F1287–F1295 (2008).

    CAS  PubMed  Google Scholar 

  58. Rerolle, J. P., Hertig, A., Nguyen, G., Sraer, J. D. & Rondeau, E. P. Plasminogen activator inhibitor type 1 is a potential target in renal fibrogenesis. Kidney Int. 58, 1841–1850 (2000).

    CAS  PubMed  Google Scholar 

  59. Ma, J. et al. Plasminogen activator inhibitor-1 deficiency protects against aldosterone-induced glomerular injury. Kidney Int. 69, 1064–1072 (2006).

    CAS  PubMed  Google Scholar 

  60. Oestreicher, E. M. et al. Aldosterone and not plasminogen activator inhibitor-1 is a critical mediator of early angiotensin II/NG-nitro-L-arginine methyl ester-induced myocardial injury. Circulation 108, 2517–2523 (2003).

    CAS  PubMed  Google Scholar 

  61. Weisberg, A. D. et al. Pharmacological inhibition and genetic deficiency of plasminogen activator inhibitor-1 attenuates angiotensin II/salt-induced aortic remodeling. Arterioscler. Thromb. Vasc. Biol. 25, 365–371 (2005).

    CAS  PubMed  Google Scholar 

  62. Ghosh, A. K. et al. Genetic deficiency of plasminogen activator inhibitor-1 promotes cardiac fibrosis in aged mice: involvement of constitutive transforming growth factor-beta signaling and endothelial-to-mesenchymal transition. Circulation 122, 1200–1209 (2010).

    CAS  PubMed  Google Scholar 

  63. Moriwaki, H., Stempien-Otero, A., Kremen, M., Cozen, A. E. & Dichek, D. A. Overexpression of urokinase by macrophages or deficiency of plasminogen activator inhibitor type 1 causes cardiac fibrosis in mice. Circ. Res. 95, 637–644 (2004).

    CAS  PubMed  Google Scholar 

  64. Guarda, E., Katwa, L. C., Myers, P. R., Tyagi, S. C. & Weber, K. T. Effects of endothelins on collagen turnover in cardiac fibroblasts. Cardiovasc. Res. 27, 2130–2134 (1993).

    CAS  PubMed  Google Scholar 

  65. Park, J. B. & Schiffrin, E. L. Cardiac and vascular fibrosis and hypertrophy in aldosterone-infused rats: role of endothelin-1. Am. J. Hypertens. 15, 164–169 (2002).

    CAS  PubMed  Google Scholar 

  66. Seccia, T. M. et al. Cardiac fibrosis occurs early and involves endothelin and AT-1 receptors in hypertension due to endogenous angiotensin II. J. Am. Coll. Cardiol. 41, 666–673 (2003).

    CAS  PubMed  Google Scholar 

  67. Tostes, R. C., Touyz, R. M., He, G., Ammarguellat, F. & Schiffrin, E. L. Endothelin A receptor blockade decreases expression of growth factors and collagen and improves matrix metalloproteinase-2 activity in kidneys from stroke-prone spontaneously hypertensive rats. J. Cardiovasc. Pharmacol. 39, 892–900 (2002).

    CAS  PubMed  Google Scholar 

  68. Stow, L. R. et al. Aldosterone modulates steroid receptor binding to the endothelin-1 gene (edn1). J. Biol. Chem. 284, 30087–30096 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Jaffe, I. Z. et al. Placental growth factor mediates aldosterone-dependent vascular injury in mice. J. Clin. Invest. 120, 3891–3900 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Isoda, K. et al. Osteopontin plays an important role in the development of medial thickening and neointimal formation. Circ. Res. 91, 77–82 (2002).

    CAS  PubMed  Google Scholar 

  71. Fu, G. X., Xu, C. C., Zhong, Y., Zhu, D. L. & Gao, P. J. Aldosterone-induced osteopontin expression in vascular smooth muscle cells involves MR, ERK, and p38 MAPK. Endocrine 42, 676–683 (2012).

    CAS  PubMed  Google Scholar 

  72. Sam, F. et al. Mice lacking osteopontin exhibit increased left ventricular dilation and reduced fibrosis after aldosterone infusion. Am. J. Hypertens. 17, 188–193 (2004).

    CAS  PubMed  Google Scholar 

  73. Irita, J. et al. Osteopontin deficiency protects against aldosterone-induced inflammation, oxidative stress, and interstitial fibrosis in the kidney. Am. J. Physiol. Renal Physiol. 301, F833–F844 (2011).

    CAS  PubMed  Google Scholar 

  74. Morrow, D. A. & O'Donoghue, M. L. Galectin-3 in cardiovascular disease: a possible window into early myocardial fibrosis. J. Am. Coll. Cardiol. 60, 1257–1258 (2012).

    PubMed  Google Scholar 

  75. Calvier, L. et al. Galectin-3 mediates aldosterone-induced vascular fibrosis. Arterioscler. Thromb. Vasc. Biol. 33, 67–75 (2013).

    CAS  PubMed  Google Scholar 

  76. Azibani, F. et al. Aldosterone inhibits antifibrotic factors in mouse hypertensive heart. Hypertension 59, 1179–1187 (2012).

    CAS  PubMed  Google Scholar 

  77. Kimura, K., Ohkita, M., Koyama, M. & Matsumura, Y. Reduced NO production rapidly aggravates renal function through the NF-kappaB/ET-1/ETA receptor pathway in DOCA-salt-induced hypertensive rats. Life Sci. 91, 644–650 (2012).

    CAS  PubMed  Google Scholar 

  78. Ogawa, Y. et al. Natriuretic peptide receptor guanylyl cyclase-A protects podocytes from aldosterone-induced glomerular injury. J. Am. Soc. Nephrol. 23, 1198–1209 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Hellal-Levy, C., Fagart, J., Souque, A. & Rafestin-Oblin, M. E. Mechanistic aspects of mineralocorticoid receptor activation. Kidney Int. 57, 1250–1255 (2000).

    CAS  PubMed  Google Scholar 

  80. Christ, M., Meyer, C., Sippel, K. & Wehling, M. Rapid aldosterone signaling in vascular smooth muscle cells: involvement of phospholipase C, diacylglycerol and protein kinase C alpha. Biochem. Biophys. Res. Commun. 213, 123–129 (1995).

    CAS  PubMed  Google Scholar 

  81. Min, L. J. et al. Aldosterone and angiotensin II synergistically induce mitogenic response in vascular smooth muscle cells. Circ. Res. 97, 434–442 (2005).

    CAS  PubMed  Google Scholar 

  82. Mazak, I. et al. Aldosterone potentiates angiotensin II-induced signaling in vascular smooth muscle cells. Circulation 109, 2792–2800 (2004).

    CAS  PubMed  Google Scholar 

  83. Grossmann, C. et al. Aldosterone-induced EGFR expression: interaction between the human mineralocorticoid receptor and the human EGFR promoter. Am. J. Physiol. Endocrinol. Metab. 292, E1790–E1800 (2007).

    CAS  PubMed  Google Scholar 

  84. Griol-Charhbili, V. et al. Epidermal growth factor receptor mediates the vascular dysfunction but not the remodeling induced by aldosterone/salt. Hypertension 57, 238–244 (2011).

    CAS  PubMed  Google Scholar 

  85. Messaoudi, S. et al. The epidermal growth factor receptor is involved in angiotensin II but not aldosterone/salt-induced cardiac remodelling. PLoS ONE 7, e30156 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Sinphitukkul, K., Eiam-Ong, S., Manotham, K. & Eiam-Ong, S. Nongenomic effects of aldosterone on renal protein expressions of pEGFR and pERK1/2 in rat kidney. Am. J. Nephrol. 33, 111–120 (2011).

    CAS  PubMed  Google Scholar 

  87. De Giusti, V. C. et al. Aldosterone stimulates the cardiac Na(+)/H(+) exchanger via transactivation of the epidermal growth factor receptor. Hypertension 58, 912–919 (2011).

    CAS  PubMed  Google Scholar 

  88. Mihailidou, A. S., Mardini, M. & Funder, J. W. Rapid, nongenomic effects of aldosterone in the heart mediated by epsilon protein kinase C. Endocrinology 145, 773–780 (2004).

    CAS  PubMed  Google Scholar 

  89. Li, R. C. et al. PKCepsilon modulates NF-kappaB and AP-1 via mitogen-activated protein kinases in adult rabbit cardiomyocytes. Am. J. Physiol. Heart Circ. Physiol. 279, H1679–H1689 (2000).

    CAS  PubMed  Google Scholar 

  90. Lemarie, C. A. et al. Aldosterone-induced activation of signaling pathways requires activity of angiotensin type 1a receptors. Circ. Res. 105, 852–859 (2009).

    CAS  PubMed  Google Scholar 

  91. McCurley, A. et al. Direct regulation of blood pressure by smooth muscle cell mineralocorticoid receptors. Nat. Med. 18, 1429–1433 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Michea, L. et al. Eplerenone blocks nongenomic effects of aldosterone on the Na+/H+ exchanger, intracellular Ca2+ levels, and vasoconstriction in mesenteric resistance vessels. Endocrinology 146, 973–980 (2005).

    CAS  PubMed  Google Scholar 

  93. Haseroth, K. et al. Rapid nongenomic effects of aldosterone in mineralocorticoid-receptor-knockout mice. Biochem. Biophys. Res. Commun. 266, 257–261 (1999).

    CAS  PubMed  Google Scholar 

  94. Grossmann, C. et al. Human mineralocorticoid receptor expression renders cells responsive for nongenotropic aldosterone actions. Mol. Endocrinol. 19, 1697–1710 (2005).

    CAS  PubMed  Google Scholar 

  95. Gros, R. et al. GPR30 expression is required for the mineralocorticoid receptor-independent rapid vascular effects of aldosterone. Hypertension 57, 442–451 (2011).

    CAS  PubMed  Google Scholar 

  96. Batenburg, W. W., Jansen, P. M., van den Bogaerdt, A. J. & AH, J. D. Angiotensin II-aldosterone interaction in human coronary microarteries involves GPR30, EGFR, and endothelial NO synthase. Cardiovasc. Res. 94, 136–143 (2012).

    CAS  PubMed  Google Scholar 

  97. Funder, J. W., Pearce, P. T., Smith, R. & Smith, A. I. Mineralocorticoid action: target tissue specificity is enzyme, not receptor, mediated. Science 242, 583–585 (1988).

    CAS  PubMed  Google Scholar 

  98. Gong, R., Morris, D. J. & Brem, A. S. Variable expression of 11beta hydroxysteroid dehydrogenase (11beta-HSD) isoforms in vascular endothelial cells. Steroids 73, 1187–1196 (2008).

    CAS  PubMed  Google Scholar 

  99. Usher, M. G. et al. Myeloid mineralocorticoid receptor controls macrophage polarization and cardiovascular hypertrophy and remodeling in mice. J. Clin. Invest 120, 3350–3364 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Qin, W. et al. Transgenic model of aldosterone-driven cardiac hypertrophy and heart failure. Circ. Res. 93, 69–76 (2003).

    CAS  PubMed  Google Scholar 

  101. Lee, S. H. et al. Activation of local aldosterone system within podocytes is involved in apoptosis under diabetic conditions. Am. J. Physiol. Renal Physiol. 297, F1381–F1390 (2009).

    CAS  PubMed  Google Scholar 

  102. Terada, Y. et al. Aldosterone stimulates proliferation of mesangial cells by activating mitogen-activated protein kinase 1/2, cyclin d1, and cyclin a. J. Am. Soc. Nephrol. 16, 2296–2305 (2005).

    CAS  PubMed  Google Scholar 

  103. Mihailidou, A. S., Loan Le, T. Y., Mardini, M. & Funder, J. W. Glucocorticoids activate cardiac mineralocorticoid receptors during experimental myocardial infarction. Hypertension 54, 1306–1312 (2009).

    CAS  PubMed  Google Scholar 

  104. Rickard, A. J., Funder, J. W., Morgan, J., Fuller, P. J. & Young, M. J. Does glucocorticoid receptor blockade exacerbate tissue damage after mineralocorticoid/salt administration? Endocrinology 148, 4829–4835 (2007).

    CAS  PubMed  Google Scholar 

  105. Young, M. J., Morgan, J., Brolin, K., Fuller, P. J. & Funder, J. W. Activation of mineralocorticoid receptors by exogenous glucocorticoids and the development of cardiovascular inflammatory responses in adrenalectomized rats. Endocrinology 151, 2622–2628 (2010).

    CAS  PubMed  Google Scholar 

  106. Shibata, S. et al. Modification of mineralocorticoid receptor function by Rac1 GTPase: implication in proteinuric kidney disease. Nat. Med. 14, 1370–1376 (2008).

    CAS  PubMed  Google Scholar 

  107. Shibata, S. et al. Rac1 GTPase in rodent kidneys is essential for salt-sensitive hypertension via a mineralocorticoid receptor-dependent pathway. J. Clin. Invest 121, 3233–3243 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Kawarazaki, W. et al. Angiotensin II- and salt-induced kidney injury through Rac1-mediated mineralocorticoid receptor activation. J. Am. Soc. Nephrol. 23, 997–1007 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Nagase, M. et al. Oxidative stress causes mineralocorticoid receptor activation in rat cardiomyocytes: role of small GTPase Rac1. Hypertension 59, 500–506 (2012).

    CAS  PubMed  Google Scholar 

  110. Oki, K., Gomez-Sanchez, E. P. & Gomez-Sanchez, C. E. Role of mineralocorticoid action in the brain in salt-sensitive hypertension. Clin. Exp. Pharmacol. Physiol 39, 90–95 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Fraccarollo, D. et al. Deletion of cardiomyocyte mineralocorticoid receptor ameliorates adverse remodeling after myocardial infarction. Circulation 123, 400–408 (2011).

    CAS  PubMed  Google Scholar 

  112. Lother, A. et al. Ablation of mineralocorticoid receptors in myocytes but not in fibroblasts preserves cardiac function. Hypertension 57, 746–754 (2011).

    CAS  PubMed  Google Scholar 

  113. Rickard, A. J. et al. Deletion of mineralocorticoid receptors from macrophages protects against deoxycorticosterone/salt-induced cardiac fibrosis and increased blood pressure. Hypertension 54, 537–543 (2009).

    CAS  PubMed  Google Scholar 

  114. Bienvenu, L. A. et al. Macrophage mineralocorticoid receptor signaling plays a key role in aldosterone-independent cardiac fibrosis. Endocrinology 153, 3416–3425 (2012).

    CAS  PubMed  Google Scholar 

  115. Caprio, M. et al. Functional mineralocorticoid receptors in human vascular endothelial cells regulate intercellular adhesion molecule-1 expression and promote leukocyte adhesion. Circ. Res. 102, 1359–1367 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Jeong, Y. et al. Aldosterone activates endothelial exocytosis. Proc. Natl Acad. Sci. USA 106, 3782–3787 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Guzik, T. J. et al. Role of the T cell in the genesis of angiotensin II induced hypertension and vascular dysfunction. J. Exp. Med. 204, 2449–2460 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Vinh, A. et al. Inhibition and genetic ablation of the B7/CD28 T-cell costimulation axis prevents experimental hypertension. Circulation 122, 2529–2537 (2010).

    PubMed  PubMed Central  Google Scholar 

  119. Herrada, A. A. et al. Aldosterone promotes autoimmune damage by enhancing Th17-mediated immunity. J. Immunol. 184, 191–202 (2010).

    CAS  PubMed  Google Scholar 

  120. Kasal, D. A. et al. T regulatory lymphocytes prevent aldosterone-induced vascular injury. Hypertension 59, 324–330 (2012).

    CAS  PubMed  Google Scholar 

  121. Messaoudi, S. et al. Aldosterone-specific activation of cardiomyocyte mineralocorticoid receptor in vivo. Hypertension 61, 361–367 (2013).

    CAS  PubMed  Google Scholar 

  122. Lee, G. et al. Homeostatic responses in the adrenal cortex to the absence of aldosterone in mice. Endocrinology 146, 2650–2656 (2005).

    CAS  PubMed  Google Scholar 

  123. Makhanova, N. et al. Kidney function in mice lacking aldosterone. Am. J. Physiol. Renal Physiol. 290, F61–F69 (2006).

    CAS  PubMed  Google Scholar 

  124. Luther, J. M. et al. Aldosterone deficiency and mineralocorticoid receptor antagonism prevent angiotensin II-induced cardiac, renal, and vascular injury. Kidney Int. 82, 643–651 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Rafiq, K. et al. Effects of mineralocorticoid receptor blockade on glucocorticoid-induced renal injury in adrenalectomized rats. J. Hypertens. 29, 290–298 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Fiebeler, A. et al. Aldosterone synthase inhibitor ameliorates angiotensin II-induced organ damage. Circulation 111, 3087–3094 (2005).

    CAS  PubMed  Google Scholar 

  127. Fiebeler, A. et al. Aldosterone synthase inhibitor FAD286 ameliorates angiotensin II-induced end-organ damage. Hypertension 44, 514–515 (2004).

    Google Scholar 

  128. Gamliel-Lazarovich, A. et al. FAD286, an aldosterone synthase inhibitor, reduced atherosclerosis and inflammation in apolipoprotein E-deficient mice. J. Hypertens. 28, 1900–1907 (2010).

    CAS  PubMed  Google Scholar 

  129. Amar, L. et al. Aldosterone synthase inhibition with LCI699: a proof-of-concept study in patients with primary aldosteronism. Hypertension 56, 831–838 (2010).

    CAS  PubMed  Google Scholar 

  130. Amar, L., Azizi, M., Menard, J., Peyrard, S. & Plouin, P. F. Sequential comparison of aldosterone synthase inhibition and mineralocorticoid blockade in patients with primary aldosteronism. J. Hypertens. 31, 624–629 (2013).

    CAS  PubMed  Google Scholar 

  131. Calhoun, D. A. et al. Effects of a novel aldosterone synthase inhibitor for treatment of primary hypertension: results of a randomized, double-blind, placebo- and active-controlled phase 2 trial. Circulation 124, 1945–1955 (2011).

    CAS  PubMed  Google Scholar 

  132. Azizi, M., Amar, L. & Menard, J. Aldosterone synthase inhibition in humans. Nephrol. Dial. Transplant. 28, 36–43 (2013).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author has received grant support from the National Institutes of Health (HL060906).

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

Nancy J. Brown has consulted for Novartis and received grant support from Shire Pharmaceutical and the National Institutes of Health.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brown, N. Contribution of aldosterone to cardiovascular and renal inflammation and fibrosis. Nat Rev Nephrol 9, 459–469 (2013). https://doi.org/10.1038/nrneph.2013.110

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneph.2013.110

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing