Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Ligand-induced rearrangement of the dimeric metabotropic glutamate receptor 1α

Abstract

The extracellular domain of the metabotropic glutamate receptor 1α (mGluR1α) forms a dimer and the ligand, glutamate, induces a structural rearrangement in this domain. However, the conformational change in the cytoplasmic domain, which is critical for mGluR1α′s interaction with G proteins, remains unclear. Here we investigated the ligand-induced conformational changes in the cytoplasmic domain by fluorescence resonance energy transfer (FRET) analysis of mGluR1α labeled with fluorescent protein(s) under total internal reflection field microscopy. Upon ligand binding, the intersubunit FRET efficiency between the second loops increased, whereas that between first loops decreased. In contrast, the intrasubunit FRET did not change clearly. These results show that ligand binding does not change the structure of each subunit, but does change the dimeric allocation of the cytoplasmic regions, which may underlie downstream signaling.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Effects of glutamate on the FRET efficiency of each mGluR1α heterodimer fused with CFP and YFP and on [Ca2+]i in cells expressing mGluR1α-YFP.
Figure 2: Effects of a type I mGluR agonist and competitive antagonist on FRET efficiency in the loop 2 mGluR1α heterodimer fused with CFP and YFP and on [Ca2+]i.
Figure 3: Effects of a noncompetitive antagonist of mGluR1 on FRET efficiency in the loop 2 mGluR1α heterodimer fused with CFP and YFP.
Figure 4: Effects of Ca2+ and Gd3+ on FRET efficiency in the loop 2 mGluR1α_ heterodimer fused with CFP and YFP and on [Ca2+]i.
Figure 5: A scheme showing a possible dimeric rearrangement of the mGluR1α 7-TM and intracellular domains (viewed from an intracellular perspective).

Similar content being viewed by others

References

  1. Aiba, A. et al. Reduced hippocampal long-term potentiation and context-specific deficit in associative learning in mGluR1 mutant mice. Cell 79, 365–375 (1994).

    Article  CAS  Google Scholar 

  2. Aiba, A. et al. Deficient cerebellar long-term depression and impaired motor learning in mGluR1 mutant mice. Cell 79, 377–388 (1994).

    Article  CAS  Google Scholar 

  3. Conquet, F. et al. Motor deficit and impairment of synaptic plasticity in mice lacking mGluR1. Nature 372, 237–243 (1994).

    Article  CAS  Google Scholar 

  4. Shigemoto, R., Abe, T., Nomura, S., Nakanishi, S. & Hirano, T. Antibodies inactivating mGluR1 metabotropic glutamate receptor block long-term depression in cultured Purkinje cells. Neuron 12, 1245–1255 (1994).

    Article  CAS  Google Scholar 

  5. Hermans, E. & Challiss, R.A. Structural, signalling and regulatory properties of the group I metabotropic glutamate receptors: prototypic family C G-protein-coupled receptors. Biochem. J. 359, 465–484 (2001).

    Article  CAS  Google Scholar 

  6. Farrens, D.L., Altenbach, C., Yang, K., Hubbell, W.L. & Khorana, H.G. Requirement of rigid-body motion of transmembrane helices for light activation of rhodopsin. Science 274, 768–770 (1996).

    Article  CAS  Google Scholar 

  7. Ghanouni, P., Steenhuis, J.J., Farrens, D.L. & Kobilka, B.K. Agonist-induced conformational changes in the G-protein-coupling domain of the beta 2 adrenergic receptor. Proc. Natl. Acad. Sci. USA 98, 5997–6002 (2001).

    Article  CAS  Google Scholar 

  8. Vilardaga, J.P., Bunemann, M., Krasel, C., Castro, M. & Lohse, M.J. Measurement of the millisecond activation switch of G protein-coupled receptors in living cells. Nat. Biotechnol. 21, 807–812 (2003).

    Article  CAS  Google Scholar 

  9. Kunishima, N. et al. Structural basis of glutamate recognition by a dimeric metabotropic glutamate receptor. Nature 407, 971–977 (2000).

    Article  CAS  Google Scholar 

  10. Hammerland, L.G. et al. Domains determining ligand specificity for Ca2+ receptors. Mol. Pharmacol. 55, 642–648 (1999).

    CAS  PubMed  Google Scholar 

  11. Litschig, S. et al. CPCCOEt, a noncompetitive metabotropic glutamate receptor 1 antagonist, inhibits receptor signaling without affecting glutamate binding. Mol Pharmacol 55, 453–461 (1999).

    CAS  PubMed  Google Scholar 

  12. Tsuchiya, D., Kunishima, N., Kamiya, N., Jingami, H. & Morikawa, K. Structural views of the ligand-binding cores of a metabotropic glutamate receptor complexed with an antagonist and both glutamate and Gd3+. Proc. Natl. Acad. Sci. USA 99, 2660–2665 (2002).

    Article  CAS  Google Scholar 

  13. Remy, I., Wilson, I.A. & Michnick, S.W. Erythropoietin receptor activation by a ligand-induced conformation change. Science 283, 990–993 (1999).

    Article  CAS  Google Scholar 

  14. Sato, T., Shimada, Y., Nagasawa, N., Nakanishi, S. & Jingami, H. Amino acid mutagenesis of the ligand binding site and the dimer interface of the metabotropic glutamate receptor 1. Identification of crucial residues for setting the activated state. J. Biol. Chem. 278, 4314–4321 (2003).

    Article  CAS  Google Scholar 

  15. Abe, H., Tateyama, M. & Kubo, Y. Functional identification of Gd3+ binding site of metabotropic glutamate receptor 1α. FEBS Lett. 545, 233–238 (2003).

    Article  CAS  Google Scholar 

  16. Francesconi, A. & Duvoisin, R.M. Role of the second and third intracellular loops of metabotropic glutamate receptors in mediating dual signal transduction activation. J. Biol. Chem. 273, 5615–5624 (1998).

    Article  CAS  Google Scholar 

  17. Gomeza, J. et al. The second intracellular loop of metabotropic glutamate receptor 1 cooperates with the other intracellular domains to control coupling to G-proteins. J. Biol. Chem. 271, 2199–2205 (1996).

    Article  CAS  Google Scholar 

  18. Miyawaki, A. et al. Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin. Nature 388, 882–887 (1997).

    Article  CAS  Google Scholar 

  19. Tsuboi, T., Lippiat, J.D., Ashcroft, F.M. & Rutter, G.A. ATP-dependent interaction of the cytosolic domains of the inwardly rectifying K+ channel Kir6.2 revealed by fluorescence resonance energy transfer. Proc. Natl. Acad. Sci. USA 101, 76–81 (2004).

    Article  CAS  Google Scholar 

  20. Riven, I., Kalmanzon, E., Segev, L. & Reuveny, E. Conformational rearrangements associated with the gating of the G protein-coupled potassium channel revealed by FRET microscopy. Neuron 38, 225–235 (2003).

    Article  CAS  Google Scholar 

  21. Bunemann, M., Frank, M. & Lohse, M.J. Gi protein activation in intact cells involves subunit rearrangement rather than dissociation. Proc. Natl. Acad. Sci. USA 100, 16077–16082 (2003).

    Article  Google Scholar 

  22. Miyawaki, A. Visualization of the spatial and temporal dynamics of intracellular signaling. Dev. Cell 4, 295–305 (2003).

    Article  CAS  Google Scholar 

  23. Steyer, J.A. & Almers, W. A real-time view of life within 100 nm of the plasma membrane. Nat. Rev. Mol. Cell Biol. 2, 268–275 (2001).

    Article  CAS  Google Scholar 

  24. Xia, Z. & Liu, Y. Reliable and global measurement of fluorescence resonance energy transfer using fluorescence microscopes. Biophys. J. 81, 2395–2402 (2001).

    Article  CAS  Google Scholar 

  25. Jensen, A.A., Hansen, J.L., Sheikh, S.P. & Brauner-Osborne, H. Probing intermolecular protein-protein interactions in the calcium-sensing receptor homodimer using bioluminescence resonance energy transfer (BRET). Eur. J. Biochem. 269, 5076–5087 (2002).

    Article  CAS  Google Scholar 

  26. Miyashita, T. & Kubo, Y. Extracellular Ca2+ sensitivity of mGluR1α induces an increase in the basal cAMP level by direct coupling with Gs protein in transfected CHO cells. Receptors Channels 7, 77–91 (2000).

    CAS  PubMed  Google Scholar 

  27. Yang, F., Moss, L.G. & Phillips, G.N. Jr. The molecular structure of green fluorescent protein. Nat. Biotechnol. 14, 1246–1251 (1996).

    Article  CAS  Google Scholar 

  28. Mary, S., Gomeza, J., Prezeau, L., Bockaert, J. & Pin, J.P. A cluster of basic residues in the carboxyl-terminal tail of the short metabotropic glutamate receptor 1 variants impairs their coupling to phospholipase C. J. Biol. Chem. 273, 425–432 (1998).

    Article  CAS  Google Scholar 

  29. Gasparini, F., Kuhn, R. & Pin, J.P. Allosteric modulators of group I metabotropic glutamate receptors: novel subtype-selective ligands and therapeutic perspectives. Curr. Opin. Pharmacol. 2, 43–49 (2002).

    Article  CAS  Google Scholar 

  30. Pagano, A. et al. The non-competitive antagonists 2-methyl-6-(phenylethynyl)pyridine and 7-hydroxyiminocyclopropan[b]chromen-1a-carboxylic acid ethyl ester interact with overlapping binding pockets in the transmembrane region of group I metabotropic glutamate receptors. J. Biol. Chem. 275, 33750–33758 (2000).

    Article  CAS  Google Scholar 

  31. Kubo, Y., Miyashita, T. & Murata, Y. Structural basis for a Ca2+-sensing function of the metabotropic glutamate receptors. Science 279, 1722–1725 (1998).

    Article  CAS  Google Scholar 

  32. Saunders, R., Nahorski, S.R. & Challiss, R.A. A modulatory effect of extracellular Ca2+ on type 1α metabotropic glutamate receptor-mediated signalling. Neuropharmacology 37, 273–276 (1998).

    Article  CAS  Google Scholar 

  33. Palczewski, K. et al. Crystal structure of rhodopsin: a G protein-coupled receptor. Science 289, 739–745 (2000).

    Article  CAS  Google Scholar 

  34. Bhave, G. et al. Membrane topology of a metabotropic glutamate receptor. J. Biol. Chem. 278, 30294–30301 (2003).

    Article  CAS  Google Scholar 

  35. Tu, J.C. et al. Homer binds a novel proline-rich motif and links group 1 metabotropic glutamate receptors with IP3 receptors. Neuron 21, 717–726 (1998).

    Article  CAS  Google Scholar 

  36. Abe, H., Misaka, T., Tateyama, M. & Kubo, Y. Effects of coexpression with Homer isoforms on the function of metabotropic glutamate receptor 1α. Mol. Cell Neurosci. 23, 157–168 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Miyazaki for pCXN2 expression vector and A. Miyawaki for suggesting FRET. We are also grateful to T. Misaka for advice and discussion and to R. Watanabe for technical support. This work was supported partly by research grants from the Ministry of Education, Science, Sports, Culture and Technology of Japan and from foundations of Naitoh, Takeda and Yamada.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Michihiro Tateyama or Yoshihiro Kubo.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Insertion of fluorescent proteins into the third loop of mGluR1α disturbed the fluorescence and membrane trafficking of the mGluR1α. (PDF 60 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tateyama, M., Abe, H., Nakata, H. et al. Ligand-induced rearrangement of the dimeric metabotropic glutamate receptor 1α. Nat Struct Mol Biol 11, 637–642 (2004). https://doi.org/10.1038/nsmb770

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb770

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing