Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Closed state of both binding domains of homodimeric mGlu receptors is required for full activity

Abstract

Membrane receptors, key components in signal transduction, often function as dimers. These include some G protein–coupled receptors such as metabotropic glutamate (mGlu) receptors that have large extracellular domains (ECDs) where agonists bind. How agonist binding in dimeric ECDs activates the effector domains remains largely unknown. The structure of the dimeric ECDs of mGlu1 solved in the presence of agonist revealed two specific conformations in which either one or both protomers are in an agonist-stabilized closed form. Here we examined whether both conformations correspond to an active form of the full-length receptor. Using a system that allows the formation of dimers made of a wild-type and a mutant subunit, we show that the closure of one ECD per dimer is sufficient to activate the receptor, but the closure of both ECDs is required for full activity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Different conformations of the mGlu1 VFT dimer determined by X-ray crystallography.
Figure 2: Cellular localization and function of mG5C1 and mG5C2 chimeras.
Figure 3: Dimerization of mG5C1 and mG5C2 chimeras at the cell surface.
Figure 4: Mutation of the mGlu5 binding site.
Figure 5: Biphasic dose-response curves of 'heterodimeric' mGlu5 receptor.
Figure 6: Active efficacy of the Aco conformation of the dimer of VFTs.
Figure 7: Cis- and trans-activation in mGlu receptors.
Figure 8: Comparison of the active efficacy of Aco and Acc conformations.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Cho, H.S. & Leahy, D.J. Structure of the extracellular region of HER3 reveals an interdomain tether. Science 297, 1330–1333 (2002).

    Article  CAS  PubMed  Google Scholar 

  2. Cho, H.S. et al. Structure of the extracellular region of HER2 alone and in complex with the Herceptin Fab. Nature 421, 756–760 (2003).

    Article  CAS  PubMed  Google Scholar 

  3. Ogiso, H. et al. Crystal structure of the complex of human epidermal growth factor and receptor extracellular domains. Cell 110, 775–787 (2002).

    Article  CAS  PubMed  Google Scholar 

  4. Ferguson, K.M. et al. EGF activates its receptor by removing interactions that autoinhibit ectodomain dimerization. Mol. Cell 11, 507–517 (2003).

    Article  CAS  PubMed  Google Scholar 

  5. He, X.-L., Chow, D.-C., Martick, M.M. & Garcia, K.C. Allosteric activation of a spring-loaded natriuretic peptide receptor dimer by hormone. Science 293, 1657–1662 (2001).

    Article  CAS  Google Scholar 

  6. van den Akker, F. et al. Structure of the dimerized hormone-binding domain of a guanylyl-cyclase-coupled receptor. Nature 406, 101–104 (2000).

    Article  CAS  PubMed  Google Scholar 

  7. van den Akker, F. Structural insights into the ligand binding domains of membrane bound guanylyl cyclases and natriuretic peptide receptors. J. Mol. Biol. 311, 923–937 (2001).

    Article  CAS  PubMed  Google Scholar 

  8. Tsuchiya, D., Kunishima, N., Kamiya, N., Jingami, H. & Morikawa, K. Structural views of the ligand-binding cores of a metabotropic glutamate receptor complexed with an antagonist and both glutamate and Gd3+. Proc. Natl. Acad. Sci. USA 99, 2660–2665 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kunishima, N. et al. Structural basis of glutamate recognition by a dimeric metabotropic glutamate receptor. Nature 407, 971–977 (2000).

    Article  CAS  PubMed  Google Scholar 

  10. Dann, C.E. et al. Insights into Wnt binding and signalling from the structures of two Frizzled cysteine-rich domains. Nature 412, 86–90 (2001).

    Article  CAS  PubMed  Google Scholar 

  11. West, A.P., Jr., Llamas, L.L., Snow, P.M., Benzer, S. & Bjorkman, P.J. Crystal structure of the ectodomain of Methuselah, a Drosophila G protein-coupled receptor associated with extended lifespan. Proc. Natl. Acad. Sci. USA 98, 3744–3749 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Pin, J.P., Galvez, T. & Prezeau, L. Evolution, structure, and activation mechanism of family 3/C G-protein-coupled receptors. Pharmacol. Ther. 98, 325–354 (2003).

    Article  CAS  PubMed  Google Scholar 

  13. O'Hara, P.J. et al. The ligand-binding domain in metabotropic glutamate receptors is related to bacterial periplasmic binding proteins. Neuron 11, 41–52 (1993).

    Article  CAS  PubMed  Google Scholar 

  14. Romano, C., Yang, W.L. & O'Malley, K.L. Metabotropic glutamate receptor 5 is a disulfide-linked dimer. J. Biol. Chem. 271, 28612–28616 (1996).

    Article  CAS  PubMed  Google Scholar 

  15. Kniazeff, J. et al. Locking the dimeric GABAB G-protein-coupled receptor in its active state. J. Neurosci. 24, 370–377 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bessis, A.S. et al. Closure of the Venus flytrap module of mGlu8 receptor and the activation process: Insights from mutations converting antagonists into agonists. Proc. Natl. Acad. Sci. USA 99, 11097–11102 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kniazeff, J., Galvez, T., Labesse, G. & Pin, J.P. No ligand binding in the GB2 subunit of the GABAB receptor is required for activation and allosteric interaction between the subunits. J. Neurosci. 22, 7352–7361 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Margeta-Mitrovic, M., Jan, Y.N. & Jan, L.Y. A trafficking checkpoint controls GABAB receptor heterodimerization. Neuron 27, 97–106 (2000).

    Article  CAS  PubMed  Google Scholar 

  19. Pagano, A. et al. C-terminal interaction is essential for surface trafficking but not for heteromeric assembly of GABAB receptors. J. Neurosci. 21, 1189–1202 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Couve, A. et al. Intracellular retention of recombinant GABAB receptors. J. Biol. Chem. 273, 26361–26367 (1998).

    Article  CAS  PubMed  Google Scholar 

  21. Ray, K. & Hauschild, B.C. Cys-140 Is critical for metabotropic glutamate receptor-1 (mGluR-1) dimerization. J. Biol. Chem. 275, 34245–34251 (2000).

    Article  CAS  PubMed  Google Scholar 

  22. Tsuji, Y. et al. Cryptic dimer interface and domain organization of the extracellular region of metabotropic glutamate receptor subtype 1. J. Biol. Chem. 275, 28144–28151 (2000).

    CAS  PubMed  Google Scholar 

  23. Bazin, H., Trinquet, E. & Mathis, G. Time resolved amplification of cryptate emission: a versatile technology to trace biomolecular interactions. Rev. Mol. Biotech. 82, 233–250 (2002).

    Article  CAS  Google Scholar 

  24. Maurel, D. et al. Cell surface detection of membrane protein interaction with HTRF technology. Anal. Biochem. 329, 253–262 (2004).

    Article  CAS  PubMed  Google Scholar 

  25. Goudet, C. et al. Heptahelical domain of metabotropic glutamate receptor 5 behaves like rhodopsin-like receptors. Proc. Natl. Acad. Sci. USA 101, 378–383 (2004).

    Article  CAS  PubMed  Google Scholar 

  26. Pin, J.-P. & Acher, F. The metabotropic glutamate receptors: structure, activation mechanism and pharmacology. Curr. Drug Targets CNS Neurol. Disord. 1, 297–317 (2002).

    Article  CAS  PubMed  Google Scholar 

  27. Havlickova, M. et al. The intracellular loops of the GB2 subunit are crucial for G-protein coupling of the heteromeric γ-aminobutyrate B receptor. Mol. Pharmacol. 62, 343–350 (2002).

    Article  CAS  PubMed  Google Scholar 

  28. Chang, W., Chen, T.H., Pratt, S. & Shoback, D. Amino acids in the second and third intracellular loops of the parathyroid Ca2+-sensing receptor mediate efficient coupling to phospholipase C. J. Biol. Chem. 275, 19955–19963 (2000).

    Article  CAS  PubMed  Google Scholar 

  29. Francesconi, A. & Duvoisin, R.M. Role of the second and third intracellular loops of metabotropic glutamate receptors in mediating dual signal transduction activation. J. Biol. Chem. 273, 5615–5624 (1998).

    Article  CAS  PubMed  Google Scholar 

  30. Galvez, T. et al. Mapping the agonist binding site of GABAB type 1 subunit sheds light on the activation process of GABAB receptors. J. Biol. Chem. 275, 41166–41174 (2000).

    Article  CAS  PubMed  Google Scholar 

  31. Marshall, F.H., Jones, K.A., Kaupmann, K. & Bettler, B. GABAB receptors—the first 7TM heterodimers. Trends Pharmacol. Sci. 20, 396–399 (1999).

    Article  CAS  PubMed  Google Scholar 

  32. Galvez, T. et al. Allosteric interactions between GB1 and GB2 subunits are required for optimal GABAB receptor function. EMBO J. 20, 2152–2159 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Duthey, B. et al. A single subunit (GB2) is required for G-protein activation by the heterodimeric GABAB receptor. J. Biol. Chem. 277, 3236–3241 (2002).

    Article  CAS  PubMed  Google Scholar 

  34. Pin, J.-P. & Bockaert, J. Part IV: type III family of GPCRs—metabotropic glutamate receptors. In Structure-Function of G-protein Coupled Receptors in the CNS (eds. Pangalos, M. & Davies, C.) 586–616 (Oxford Univ. Press, Oxford, 2002).

    Google Scholar 

  35. Kubo, Y., Miyashita, T. & Murata, Y. Structural basis for a Ca2+-sensing function of the metabotropic glutamate receptors. Science 279, 1722–1725 (1998).

    Article  CAS  PubMed  Google Scholar 

  36. Nelson, G. et al. Mammalian sweet taste receptors. Cell 106, 381–390 (2001).

    Article  CAS  PubMed  Google Scholar 

  37. Li, X. et al. Human receptors for sweet and umami taste. Proc. Natl. Acad. Sci. USA 99, 4692–4696 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zhao, G.Q. et al. The receptors for mammalian sweet and umami taste. Cell 115, 255–266 (2003).

    Article  CAS  PubMed  Google Scholar 

  39. Nelson, G. et al. An amino-acid taste receptor. Nature 416, 199–202 (2002).

    Article  CAS  PubMed  Google Scholar 

  40. Ango, F. et al. A simple method to transfer plasmid DNA into neuronal primary cultures: functional expression of the mGlu5 receptor in cerebellar granule cells. Neuropharmacology 38, 793–803 (1999).

    Article  CAS  PubMed  Google Scholar 

  41. Brabet, I. et al. Comparative effect of L-CCG-I, DCG-IV and γ-carboxy-L-glutamate on all cloned metabotropic glutamate receptor subtypes. Neuropharmacology 37, 1043–1051 (1998).

    Article  CAS  PubMed  Google Scholar 

  42. Guex, N. & Peitsch, M.C. SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis 18, 2714–2723 (1997).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank V. Binet, C. Goudet, P. Rondard (Montpellier), C. Hatton, J. Neyton and P. Paoletti (Paris) for constructive discussions and critical reading of manuscript. We also to thank Cis Bio International Research group for the supply of labeled antibodies, and G. Mathis and E. Trinquet from Cis Bio International for their strong support. This work was supported by grants from the Centre National de Recherche Scientifique (CNRS), the action initiative Molécules et Cibles Thérapeutiques from Institut National de la Santé et de la Recherche Médicale, CNRS and the French government, Addex Pharmaceuticals, Fondation Paul Hamel, Comité Parkinson of the Fondation de France and the European Community (grant LSHB-CT-200-503337). J.K. was supported by a CNRS fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Philippe Pin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kniazeff, J., Bessis, AS., Maurel, D. et al. Closed state of both binding domains of homodimeric mGlu receptors is required for full activity. Nat Struct Mol Biol 11, 706–713 (2004). https://doi.org/10.1038/nsmb794

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb794

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing