Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Oncogenic Ras upregulates NADPH oxidase 1 gene expression through MEK-ERK-dependent phosphorylation of GATA-6

Abstract

Ras oncogene upregulates the expression of nicotinamide adenine dinucleotide phosphate oxidase (Nox) 1 via the Raf/MEK/ERK pathway, leading to the elevated production of reactive oxygen species that is essential for maintenance of Ras-transformation phenotypes. However, the precise transcriptional control mechanism underlying Ras-induced Nox1 expression remains to be elucidated. Here we demonstrated that via the MEK/ERK pathway, Ras signaling enhances the activity of the functional Nox1 promoter (nt −321 to −1) in colon cancer CaCo-2 cells and thereby induces the formation of the specific protein–DNA complexes in the two GATA-binding site-containing regions (nt −161 to −136 and −125 to −100). Supershift assays with GATA antibodies, protein analyses and chromatin immunoprecipitation revealed that GATA-6 is a component of the specific protein–DNA complexes at the Nox1 promoter. GATA-6 was able to trans-activate the Nox1 promoter but not a promoter in which the GATA-binding sites are mutated. Moreover, GATA-6 was phosphorylated at serine residues by MEK-activated ERK, which increased GATA-6 DNA binding, correlating with suppression of the Nox1 promoter activity by an MEK inhibitor PD98059. Finally, the site-directed mutation of the consensus ERK phosphorylation site (PYS120P to PYA120P) of GATA-6 abolished its trans-activation activity, suppressing of the growth of CaCo-2 cells. On the basis of these results, we propose that oncogenic Ras signaling upregulates the transcription of Nox1 through MEK-ERK-dependent phosphorylation of GATA-6.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  • Adachi Y, Pavlakis GN, Copeland TD . (1994). Identification and characterization of SET, a nuclear phosphoprotein encoded by the translocation break point in acute undifferentiated leukemia. J Biol Chem 269: 2258–2262.

    CAS  PubMed  Google Scholar 

  • Akiyama Y, Watkins N, Suzuki H, Jair KW, Engeland MV, Esteller M et al. (2003). GATA-4 and GATA-5 transcription factor genes and potential downstream antitumor target genes are epigenetically silenced in colorectal and gastric cancer. Mol Cell Biol 23: 8429–8439.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arbiser JL, Petros J, Klafter R, Govindajaran B, Mclaughlin ER, Brown LF et al. (2002). Reactive oxygen generated by Nox1 triggers the angiogenenic switch. Proc Natl Acad Sci USA 99: 715–720.

    Article  CAS  PubMed  Google Scholar 

  • Bánfi B, Molnár G, Maturana A, Steger K, Hegedus B, Demaurex N et al. (2001). A Ca2+-activated NADPH oxidase in testis, spleen, and lymph nodes. J Biol Chem 276: 37594–37601.

    Article  PubMed  Google Scholar 

  • Bokoch GM . (1994). Regulation of the human neutrophil NADPH oxidase by the Rac GTP-binding proteins. Curr Opin Cell Biol 6: 212–218.

    Article  CAS  PubMed  Google Scholar 

  • Brewer AC, Sparks EC, Shah AM . (2006). Transcriptional regulation of the NADPH oxidase isoform, Nox1, in colon epithelial cells: role of GATA-binding factor(s). Free Radic Biol Med 40: 260–274.

    Article  CAS  PubMed  Google Scholar 

  • Cheng G, Cao Z, Xu X, van Meir EG, Lambeth JD . (2001). Homologs of gp91phox: cloning and tissue expression of Nox3, Nox4, and Nox5. Gene 269: 131–140.

    Article  CAS  PubMed  Google Scholar 

  • Chu D, Kakazu N, Gorrin-Rivas MJ, Lu HP, Kawata M, Abe T et al. (2001). Cloning and characterization of LUN, a novel RING finger protein that is highly expressed in lung and specifically binds to a palindromic sequence. J Biol Chem 276: 14004–14013.

    Article  CAS  PubMed  Google Scholar 

  • Debruyne PR, Vermeulen SJ, Berx G, Pocard M, Correia da Rocha AS, Li X et al. (2003). Functional and molecular characterization of the epithelioid to round transition in human colorectal cancer LoVo cells. Oncogene 22: 7199–7208.

    Article  CAS  PubMed  Google Scholar 

  • Eklund EA, Jalava A, Kakar R . (1998). PU.1, interferon regulatory factor 1, and interferon consensus sequence-binding protein cooperate to increase gp91phox expression. J Biol Chem 273: 13957–13965.

    Article  CAS  PubMed  Google Scholar 

  • Fang R, Olds LC, Santiago NA, Sibley E . (2001). GATA family transcription factors activate lactate gene promoter in intestinal Caco-2 cells. Am J Physiol Gastrointest Liver Physiol 280: G58–G67.

    Article  CAS  PubMed  Google Scholar 

  • Fensterer H, Giehl K, Buchholz M, Ellenrieder V, Buck A, Kestler HA et al. (2004). Expression profiling of the influence of RAS mutants on the TGFB1-induced phenotype of the pancreatic cancer cell line PANC-1. Genes Chromosomes Cancer 39: 224–235.

    Article  CAS  PubMed  Google Scholar 

  • Fu X, Beer DG, Behar J, Wands J, Lambeth D, Cao W . (2006). cAMP-response element-binding protein mediates acid-induced NADPH oxidase NOX5-S expressionBarrett esophageal adenocarcinoma cells. J Biol Chem 281: 20368–20382.

    Article  CAS  PubMed  Google Scholar 

  • Gao X, Sedgwick T, Shi YB, Evans T . (1998). Distinct functions are implicated for the GATA-4, -5, and -6 transcription factors in the regulation of intestine epithelial cell differentiation. Mol Cell Biol 18: 2901–2911.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Geiszt M, Kopp JB, Várnai P, Leto TL . (2000). Identification of renox, an NAD(P)H oxidase in kidney. Proc Natl Acad Sci USA 97: 8010–8014.

    Article  CAS  PubMed  Google Scholar 

  • Geiszt M, Lekstrom K, Brenner S, Hewitt SM, Dana R, Malech HL et al. (2003). NAD(P)H oxidase 1, a product of differentiated colon epithelial cells, can partially replace glycoprotein 91phox in the regulated production of superoxide by phagocytes. J Immunol 171: 299–306.

    Article  CAS  PubMed  Google Scholar 

  • Hernandez-Hernandez A, Ray P, Litos G, Ciro M, Ottolenghi S, Beug H et al. (2006). Acetylation and MAPK phosphorylation cooperate to regulate the degradation of active GATA-1. EMBO J 25: 3264–3274.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kawahara T, Kuwano Y, Teshima-Kondo S, Takeya R, Sumimoto H, Kishi K et al. (2004). Role of nicotinamide adenine dinucleotide phosphate oxidase 1 in oxidative burst response to Toll-like receptor 5 signaling in large intestinal epithelial cells. J Immunol 172: 3051–3058.

    Article  CAS  PubMed  Google Scholar 

  • Kitta K, Day RM, Kim Y, Torregroza I, Evans T, Suzuki YS . (2003). Hepatocyte growth factor induces GATA-4 phosphorylation and cell survival in cardiac muscle cells. J Biol Chem 278: 4705–4712.

    Article  CAS  PubMed  Google Scholar 

  • Lambeth JD . (2004). NOX enzymes and the biology of reactive oxygen. Nat Rev Immunol 4: 181–189.

    Article  CAS  PubMed  Google Scholar 

  • Lambeth JD, Cheng G, Arnold RS, Edens WA . (2000). Novel homologs of gp91phox. Trends Biochem Sci 25: 459–461.

    Article  CAS  PubMed  Google Scholar 

  • Lassègue B, Sorescu D, Szocs K, Yin Q, Akers M, Zhang Y et al. (2001). Novel gp91phox homologues in vascular smooth muscle cells: nox1 mediates angiotensin II- induced superoxide formation and redox-sensitive signaling pathways. Circ Res 88: 888–894.

    Article  PubMed  Google Scholar 

  • Luo W, Skalnik DG . (1996). Interferon regulatory factor-2 directs transcription from the gp91phox promoter. J Biol Chem 271: 23445–23451.

    Article  CAS  PubMed  Google Scholar 

  • Mahadev K, Motoshima H, Wu X, Ruddy JM, Arnold RS, Chang G et al. (2004). The NAD(P)H oxidase homolog Nox4 modulates insulin-stimulated generation of H2O2 and plays an integral role in insulin signal transduction. Mol Cell Biol 24: 1844–1854.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mitsushita J, Lambeth JD, Kamata T . (2004). The superoxide-generating oxidase Nox1 is functionally required for Ras oncogene transformation. Cancer Res 64: 3580–3585.

    Article  CAS  PubMed  Google Scholar 

  • Molkentin JD . (2000). The zinc finger-containing transcription factors GATA-4, -5, and -6. Ubiquitously expressed regulators of tissue-specific gene expression. J Biol Chem 275: 38949–38952.

    Article  CAS  PubMed  Google Scholar 

  • Morimoto T, Hasegawa K, Kaburagi S, Kakita T, Wada H, Yanazume H et al. (2000). Phosphorylation of GATA-4 is involved in α1-adrenergic agonist-responsive transcription of the endothelin-1 gene in cardiac myocytes. J Biol Chem 275: 13721–13726.

    Article  CAS  PubMed  Google Scholar 

  • Nelson JD, Denisenko O, Bomsztyk K . (2006). Protocol for the fast chromatin immunoprecipitation (ChIP) method. Nat Protoc 1: 179–185.

    Article  CAS  PubMed  Google Scholar 

  • Newburger PE, Ezekowitz RA, Whitney C, Wright J, Orkin SH . (1988). Induction of phagocyte cytochrome b heavy chain gene expression by interferon γ. Proc Natl Acad Sci USA 85: 5215–5219.

    Article  CAS  PubMed  Google Scholar 

  • Paffenholz R, Bergstrom RA, Pasutto F, Wabnitz P, Munroe RJ, Jagla W et al. (2004). Vestibular defects in head-tilt mice result from mutations in Nox3, encoding an NADPH oxidase. Genes Dev 18: 486–491.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patient RK, McGhee JD . (2002). The GATA family (vertebrates and invertebrates). Curr Opin Genet Dev 12: 416–422.

    Article  CAS  PubMed  Google Scholar 

  • Suh YA, Arnold RS, Lassegue B, Shi J, Xu X, Sorescu D et al. (1999). Cell transformation by the superoxide-generating oxidase Mox1. Nature 401: 79–82.

    Article  CAS  PubMed  Google Scholar 

  • Suzuki E, Evans T, Lowry J, Truong L, Bell DW, Testa JR et al. (1996). The human GATA-6 gene: structure, chromosomal location, and regulation of expression by tissue-specific and mitogen-responsive signals. Genomics 38: 283–290.

    Article  CAS  PubMed  Google Scholar 

  • Tenhunen O, Sarman B, Kerkela R, Szokodi I, Papp L, Toth M et al. (2004). Mitogen-activated protein kinase p38 and ERK 1/2 mediate the wall stress-induced activation of GATA-4 binding in adult heart. J Biol Chem 279: 24852–24860.

    Article  CAS  PubMed  Google Scholar 

  • Yu YL, Chiang YJ, Chen YC, Papetti M, Juo CG, Skoultchi AI et al. (2005). MAPK-mediated phosphorylation of GATA-1 promotes Bcl-XL expression and cell survival. J Biol Chem 280: 29533–29542.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Dr J Downward, Dr E Nishida and Dr M Maeda for plasmid DNAs. This study was supported by Grant-in-Aid for Scientific Research on Priority Areas from the Ministry of Education, Culture, Sports, Science and Technology of Japan (TK).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T Kamata.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Adachi, Y., Shibai, Y., Mitsushita, J. et al. Oncogenic Ras upregulates NADPH oxidase 1 gene expression through MEK-ERK-dependent phosphorylation of GATA-6. Oncogene 27, 4921–4932 (2008). https://doi.org/10.1038/onc.2008.133

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2008.133

Keywords

This article is cited by

Search

Quick links