Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Cooperation between GLI and JUN enhances transcription of JUN and selected GLI target genes

Abstract

Sustained Hedgehog (HH) signaling is implicated in basal cell carcinoma of the skin and other types of cancer. Here we show that GLI1 and GLI2, the main transcriptional activators of the HH pathway, directly regulate expression of the activator protein 1 (AP-1) family member JUN, a transcription factor controlling keratinocyte proliferation and skin homeostasis. Activation of the JUN promoter by GLI is dependent on a GLI-binding site and the AP-1 sites known to be involved in self-activation of JUN. Transcription of JUN is greatly enhanced in the presence of GLI and requires activated JUN protein. GLI2act is a more potent activator than GLI1 in these experiments and physical interaction with phosphorylated JUN was only detected for GLI2act. The synergistic effect of GLI and JUN extends to the activation of further GLI target genes as shown by shRNA-mediated knockdown of JUN in human keratinocytes. Some of these cooperatively activated genes are involved in cell-cycle progression, which is consistent with a significant reduction of the proliferative potential of GLI in the absence of JUN. These results suggest a novel connection between HH/GLI pathway activity and JUN, which may contribute to the oncogenic activity of HH/GLI signaling in skin.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Agren M, Kogerman P, Kleman MI, Wessling M, Toftgard R . (2004). Expression of the PTCH1 tumor suppressor gene is regulated by alternative promoters and a single functional Gli-binding site. Gene 330: 101–114.

    CAS  PubMed  Google Scholar 

  • Angel P, Allegretto EA, Okino ST, Hattori K, Boyle WJ, Hunter T et al. (1988a). Oncogene jun encodes a sequence-specific trans-activator similar to AP-1. Nature 332: 166–171.

    CAS  PubMed  Google Scholar 

  • Angel P, Hattori K, Smeal T, Karin M . (1988b). The jun proto-oncogene is positively autoregulated by its product, Jun/AP-1. Cell 55: 875–885.

    CAS  PubMed  Google Scholar 

  • Bannister AJ, Oehler T, Wilhelm D, Angel P, Kouzarides T . (1995). Stimulation of c-Jun activity by CBP: c-Jun residues Ser63/73 are required for CBP induced stimulation in vivo and CBP binding in vitro. Oncogene 11: 2509–2514.

    CAS  PubMed  Google Scholar 

  • Basuyaux JP, Ferreira E, Stehelin D, Buttice G . (1997). The Ets transcription factors interact with each other and with the c-Fos/c-Jun complex via distinct protein domains in a DNA-dependent and -independent manner. J Biol Chem 272: 26188–26195.

    CAS  PubMed  Google Scholar 

  • Beachy PA, Karhadkar SS, Berman DM . (2004). Tissue repair and stem cell renewal in carcinogenesis. Nature 432: 324–331.

    CAS  PubMed  Google Scholar 

  • Behrens A, Jochum W, Sibilia M, Wagner EF . (2000). Oncogenic transformation by ras and fos is mediated by c-Jun N-terminal phosphorylation. Oncogene 19: 2657–2663.

    CAS  PubMed  Google Scholar 

  • Behrens A, Sibilia M, Wagner EF . (1999). Amino-terminal phosphorylation of c-Jun regulates stress-induced apoptosis and cellular proliferation. Nat Genet 21: 326–329.

    CAS  PubMed  Google Scholar 

  • Bigelow RL, Jen EY, Delehedde M, Chari NS, McDonnell TJ . (2005). Sonic hedgehog induces epidermal growth factor dependent matrix infiltration in HaCaT keratinocytes. J Invest Dermatol 124: 457–465.

    CAS  PubMed  Google Scholar 

  • Dickson MA, Hahn WC, Ino Y, Ronfard V, Wu JY, Weinberg RA et al. (2000). Human keratinocytes that express hTERT and also bypass a p16(INK4a)-enforced mechanism that limits life span become immortal yet retain normal growth and differentiation characteristics. Mol Cell Biol 20: 1436–1447.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Eferl R, Wagner EF . (2003). AP-1: a double-edged sword in tumorigenesis. Nat Rev Cancer 3: 859–868.

    CAS  PubMed  Google Scholar 

  • Eichberger T, Kaser A, Pixner C, Schmid C, Klingler S, Winklmayr M et al. (2008). GLI2-specific transcriptional activation of the bone morphogenetic protein/activin antagonist follistatin in human epidermal cells. J Biol Chem 283: 12426–12437.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Eichberger T, Sander V, Schnidar H, Regl G, Kasper M, Schmid C et al. (2006). Overlapping and distinct transcriptional regulator properties of the GLI1 and GLI2 oncogenes. Genomics 87: 616–632.

    CAS  PubMed  Google Scholar 

  • Evangelista M, Tian H, de Sauvage FJ . (2006). The hedgehog signaling pathway in cancer. Clin Cancer Res 12: 5924–5928.

    CAS  PubMed  Google Scholar 

  • Ghali L, Wong ST, Green J, Tidman N, Quinn AG . (1999). Gli1 protein is expressed in basal cell carcinomas, outer root sheath keratinocytes and a subpopulation of mesenchymal cells in normal human skin. J Invest Dermatol 113: 595–599.

    CAS  PubMed  Google Scholar 

  • Giesecke AV, Fang R, Joung JK . (2006). Synthetic protein-protein interaction domains created by shuffling Cys2His2 zinc-fingers. Mol Syst Biol 2: 2006.2011 Epub 21 March 2006.

    PubMed  Google Scholar 

  • Ginsberg M, Czeko E, Muller P, Ren Z, Chen X, Darnell Jr JE . (2007). Amino acid residues required for physical and cooperative transcriptional interaction of STAT3 and AP-1 proteins c-Jun and c-Fos. Mol Cell Biol 27: 6300–6308.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Grachtchouk M, Mo R, Yu S, Zhang X, Sasaki H, Hui CC et al. (2000). Basal cell carcinomas in mice overexpressing Gli2 in skin. Nat Genet 24: 216–217.

    CAS  PubMed  Google Scholar 

  • Gramigni C, Penco S, Bianchi-Scarra G, Ravazzolo R, Garre C . (1998). An upstream negative regulatory element in human granulocyte-macrophage colony-stimulating factor promoter is recognised by AP1 family members. FEBS Lett 440: 119–124.

    CAS  PubMed  Google Scholar 

  • Hahn H, Wicking C, Zaphiropoulous PG, Gailani MR, Shanley S, Chidambaram A et al. (1996). Mutations of the human homolog of Drosophila patched in the nevoid basal cell carcinoma syndrome. Cell 85: 841–851.

    CAS  PubMed  Google Scholar 

  • Hallikas O, Palin K, Sinjushina N, Rautiainen R, Partanen J, Ukkonen E et al. (2006). Genome-wide prediction of mammalian enhancers based on analysis of transcription-factor binding affinity. Cell 124: 47–59.

    CAS  PubMed  Google Scholar 

  • Hayakawa J, Mittal S, Wang Y, Korkmaz KS, Adamson E, English C et al. (2004). Identification of promoters bound by c-Jun/ATF2 during rapid large-scale gene activation following genotoxic stress. Mol Cell 16: 521–535.

    CAS  PubMed  Google Scholar 

  • Hebrok M . (2003). Hedgehog signaling in pancreas development. Mech Dev 120: 45–57.

    CAS  PubMed  Google Scholar 

  • Herber B, Truss M, Beato M, Muller R . (1994). Inducible regulatory elements in the human cyclin D1 promoter. Oncogene 9: 1295–1304.

    CAS  PubMed  Google Scholar 

  • Hess J, Angel P, Schorpp-Kistner M . (2004). AP-1 subunits: quarrel and harmony among siblings. J Cell Sci 117: 5965–5973.

    CAS  PubMed  Google Scholar 

  • Hibi M, Lin A, Smeal T, Minden A, Karin M . (1993). Identification of an oncoprotein- and UV-responsive protein kinase that binds and potentiates the c-Jun activation domain. Genes Dev 7: 2135–2148.

    CAS  PubMed  Google Scholar 

  • Hooper JE, Scott MP . (2005). Communicating with Hedgehogs. Nat Rev Mol Cell Biol 6: 306–317.

    CAS  PubMed  Google Scholar 

  • Huangfu D, Anderson KV . (2006). Signaling from Smo to Ci/Gli: conservation and divergence of Hedgehog pathways from Drosophila to vertebrates. Development 133: 3–14.

    CAS  PubMed  Google Scholar 

  • Ikram MS, Neill GW, Regl G, Eichberger T, Frischauf AM, Aberger F et al. (2004). GLI2 is expressed in normal human epidermis and BCC and induces GLI1 expression by binding to its promoter. J Invest Dermatol 122: 1503–1509.

    CAS  PubMed  Google Scholar 

  • Ingham PW, McMahon AP . (2001). Hedgehog signaling in animal development: paradigms and principles. Genes Dev 15: 3059–3087.

    CAS  PubMed  Google Scholar 

  • Jochum W, Passegue E, Wagner EF . (2001). AP-1 in mouse development and tumorigenesis. Oncogene 20: 2401–2412.

    CAS  PubMed  Google Scholar 

  • Johnson GL, Nakamura K . (2007). The c-jun kinase/stress-activated pathway: regulation, function and role in human disease. Biochim Biophys Acta 1773: 1341–1348.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson RL, Rothman AL, Xie J, Goodrich LV, Bare JW, Bonifas JM et al. (1996). Human homolog of patched, a candidate gene for the basal cell nevus syndrome. Science 272: 1668–1671.

    CAS  PubMed  Google Scholar 

  • Johnson RS, van Lingen B, Papaioannou VE, Spiegelman BM . (1993). A null mutation at the c-jun locus causes embryonic lethality and retarded cell growth in culture. Genes Dev 7: 1309–1317.

    CAS  PubMed  Google Scholar 

  • Kasper M, Regl G, Eichberger T, Frischauf AM, Aberger F . (2007). Efficient manipulation of Hedgehog/GLI signaling using retroviral expression systems. Methods Mol Biol 397: 67–78.

    CAS  PubMed  Google Scholar 

  • Kasper M, Regl G, Frischauf AM, Aberger F . (2006a). GLI transcription factors: mediators of oncogenic Hedgehog signalling. Eur J Cancer 42: 437–445.

    CAS  PubMed  Google Scholar 

  • Kasper M, Schnidar H, Neill GW, Hanneder M, Klingler S, Blaas L et al. (2006b). Selective modulation of Hedgehog/GLI target gene expression by epidermal growth factor signaling in human keratinocytes. Mol Cell Biol 26: 6283–6298.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim S, Denny CT, Wisdom R . (2006). Cooperative DNA binding with AP-1 proteins is required for transformation by EWS–Ets fusion proteins. Mol Cell Biol 26: 2467–2478.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kinzler KW, Vogelstein B . (1990). The GLI gene encodes a nuclear protein which binds specific sequences in the human genome. Mol Cell Biol 10: 634–642.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kogerman P, Grimm T, Kogerman L, Krause D, Unden AB, Sandstedt B et al. (1999). Mammalian suppressor-of-fused modulates nuclear-cytoplasmic shuttling of Gli-1. Nat Cell Biol 1: 312–319.

    CAS  PubMed  Google Scholar 

  • Lauth M, Bergstrom A, Toftgard R . (2007). Phorbol esters inhibit the Hedgehog signalling pathway downstream of suppressor of fused, but upstream of Gli. Oncogene 26: 5163–5168.

    CAS  PubMed  Google Scholar 

  • Maeda S, Karin M . (2003). Oncogene at last—c-Jun promotes liver cancer in mice. Cancer Cell 3: 102–104.

    PubMed  Google Scholar 

  • Maniatis T, Falvo JV, Kim TH, Kim TK, Lin CH, Parekh BS et al. (1998). Structure and function of the interferon-beta enhanceosome. Cold Spring Harb Symp Quant Biol 63: 609–620.

    CAS  PubMed  Google Scholar 

  • Martin KJ, Graner E, Li Y, Price LM, Kritzman BM, Fournier MV et al. (2001). High-sensitivity array analysis of gene expression for the early detection of disseminated breast tumor cells in peripheral blood. Proc Natl Acad Sci USA 98: 2646–2651.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mechta-Grigoriou F, Gerald D, Yaniv M . (2001). The mammalian Jun proteins: redundancy and specificity. Oncogene 20: 2378–2389.

    CAS  PubMed  Google Scholar 

  • Mimeault M, Johansson SL, Vankatraman G, Moore E, Henichart JP, Depreux P et al. (2007). Combined targeting of epidermal growth factor receptor and hedgehog signaling by gefitinib and cyclopamine cooperatively improves the cytotoxic effects of docetaxel on metastatic prostate cancer cells. Mol Cancer Ther 6: 967–978.

    CAS  PubMed  Google Scholar 

  • Nateri AS, Spencer-Dene B, Behrens A . (2005). Interaction of phosphorylated c-Jun with TCF4 regulates intestinal cancer development. Nature 437: 281–285.

    CAS  PubMed  Google Scholar 

  • Neill GW, Harrison WJ, Ikram MS, Williams TD, Bianchi LS, Nadendla SK et al. (2008). GLI1 repression of ERK activity correlates with colony formation and impaired migration in human epidermal keratinocytes. Carcinogenesis 29: 738–746.

    CAS  PubMed  Google Scholar 

  • Nilsson M, Unden AB, Krause D, Malmqwist U, Raza K, Zaphiropoulos PG et al. (2000). Induction of basal cell carcinomas and trichoepitheliomas in mice overexpressing GLI-1. Proc Natl Acad Sci USA 97: 3438–3443.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Panne D . (2008). The enhanceosome. Curr Opin Struct Biol 18: 236–242.

    CAS  PubMed  Google Scholar 

  • Pasca di Magliano M, Hebrok M . (2003). Hedgehog signalling in cancer formation and maintenance. Nat Rev Cancer 3: 903–911.

    PubMed  Google Scholar 

  • Pasca di Magliano M, Sekine S, Ermilov A, Ferris J, Dlugosz AA, Hebrok M . (2006). Hedgehog/Ras interactions regulate early stages of pancreatic cancer. Genes Dev 20: 3161–3173.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pearse II RV, Collier LS, Scott MP, Tabin CJ . (1999). Vertebrate homologs of Drosophila suppressor of fused interact with the gli family of transcriptional regulators. Dev Biol 212: 323–336.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Regl G, Kasper M, Schnidar H, Eichberger T, Neill GW, Ikram MS et al. (2004a). The zinc-finger transcription factor GLI2 antagonizes contact inhibition and differentiation of human epidermal cells. Oncogene 23: 1263–1274.

    CAS  PubMed  Google Scholar 

  • Regl G, Kasper M, Schnidar H, Eichberger T, Neill GW, Philpott MP et al. (2004b). Activation of the BCL2 promoter in response to Hedgehog/GLI signal transduction is predominantly mediated by GLI2. Cancer Res 64: 7724–7731.

    CAS  PubMed  Google Scholar 

  • Regl G, Neill GW, Eichberger T, Kasper M, Ikram MS, Koller J et al. (2002). Human GLI2 and GLI1 are part of a positive feedback mechanism in basal cell carcinoma. Oncogene 21: 5529–5539.

    CAS  PubMed  Google Scholar 

  • Riobo NA, Haines GM, Emerson Jr CP . (2006a). Protein kinase C-delta and mitogen-activated protein/extracellular signal-regulated kinase-1 control GLI activation in hedgehog signaling. Cancer Res 66: 839–845.

    CAS  PubMed  Google Scholar 

  • Riobo NA, Lu K, Ai X, Haines GM, Emerson Jr CP . (2006b). Phosphoinositide 3-kinase and Akt are essential for Sonic Hedgehog signaling. Proc Natl Acad Sci USA 103: 4505–4510.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Roessler E, Ermilov AN, Grange DK, Wang A, Grachtchouk M, Dlugosz AA et al. (2005). A previously unidentified amino-terminal domain regulates transcriptional activity of wild-type and disease-associated human GLI2. Hum Mol Genet 14: 2181–2188.

    CAS  PubMed  Google Scholar 

  • Roth FP, Hughes JD, Estep PW, Church GM . (1998). Finding DNA regulatory motifs within unaligned noncoding sequences clustered by whole-genome mRNA quantitation. Nat Biotechnol 16: 939–945.

    CAS  PubMed  Google Scholar 

  • Rubin LL, de Sauvage FJ . (2006). Targeting the Hedgehog pathway in cancer. Nat Rev Drug Discov 5: 1026–1033.

    CAS  PubMed  Google Scholar 

  • Rubinson DA, Dillon CP, Kwiatkowski AV, Sievers C, Yang L, Kopinja J et al. (2003). A lentivirus-based system to functionally silence genes in primary mammalian cells, stem cells and transgenic mice by RNA interference. Nat Genet 33: 401–406.

    CAS  PubMed  Google Scholar 

  • Ruiz i Altaba A, Mas C, Stecca B . (2007). The Gli code: an information nexus regulating cell fate, stemness and cancer. Trends Cell Biol 17: 438–447.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sasaki H, Nishizaki Y, Hui C, Nakafuku M, Kondoh H . (1999). Regulation of Gli2 and Gli3 activities by an amino-terminal repression domain: implication of Gli2 and Gli3 as primary mediators of Shh signaling. Development 126: 3915–3924.

    CAS  PubMed  Google Scholar 

  • Schaefer TS, Sanders LK, Nathans D . (1995). Cooperative transcriptional activity of Jun and Stat3 beta, a short form of Stat3. Proc Natl Acad Sci USA 92: 9097–9101.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schutte J, Minna JD, Birrer MJ . (1989). Deregulated expression of human c-jun transforms primary rat embryo cells in cooperation with an activated c-Ha-ras gene and transforms rat-1a cells as a single gene. Proc Natl Acad Sci USA 86: 2257–2261.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sheng H, Goich S, Wang A, Grachtchouk M, Lowe L, Mo R et al. (2002). Dissecting the oncogenic potential of Gli2: deletion of an NH(2)-terminal fragment alters skin tumor phenotype. Cancer Res 62: 5308–5316.

    CAS  PubMed  Google Scholar 

  • Sibilia M, Fleischmann A, Behrens A, Stingl L, Carroll J, Watt FM et al. (2000). The EGF receptor provides an essential survival signal for SOS-dependent skin tumor development. Cell 102: 211–220.

    CAS  PubMed  Google Scholar 

  • Smeal T, Binetruy B, Mercola D, Grover-Bardwick A, Heidecker G, Rapp UR et al. (1992). Oncoprotein-mediated signalling cascade stimulates c-Jun activity by phosphorylation of serines 63 and 73. Mol Cell Biol 12: 3507–3513.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Speek M, Njunkova O, Pata I, Valdre E, Kogerman P . (2006). A potential role of alternative splicing in the regulation of the transcriptional activity of human GLI2 in gonadal tissues. BMC Mol Biol 7: 13.

    PubMed  PubMed Central  Google Scholar 

  • Stecca B, Mas C, Clement V, Zbinden M, Correa R, Piguet V et al. (2007). Melanomas require HEDGEHOG-GLI signaling regulated by interactions between GLI1 and the RAS-MEK/AKT pathways. Proc Natl Acad Sci USA 104: 5895–5900.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stecca B, Ruiz i Altaba A . (2002). The therapeutic potential of modulators of the Hedgehog-Gli signaling pathway. J Biol 1: 9.

    PubMed  PubMed Central  Google Scholar 

  • Stein B, Angel P, van Dam H, Ponta H, Herrlich P, van der Eb A et al. (1992). Ultraviolet-radiation induced c-jun gene transcription: two AP-1 like binding sites mediate the response. Photochem Photobiol 55: 409–415.

    CAS  PubMed  Google Scholar 

  • Toualbi K, Guller MC, Mauriz JL, Labalette C, Buendia MA, Mauviel A et al. (2007). Physical and functional cooperation between AP-1 and beta-catenin for the regulation of TCF-dependent genes. Oncogene 26: 3492–3502.

    CAS  PubMed  Google Scholar 

  • Vezina CM, Bushman AW . (2007). Hedgehog signaling in prostate growth and benign prostate hyperplasia. Curr Urol Rep 8: 275–280.

    PubMed  Google Scholar 

  • Weston CR, Davis RJ . (2007). The JNK signal transduction pathway. Curr Opin Cell Biol 19: 142–149.

    CAS  PubMed  Google Scholar 

  • Xie J, Murone M, Luoh SM, Ryan A, Gu Q, Zhang C et al. (1998). Activating smoothened mutations in sporadic basal-cell carcinoma. Nature 391: 90–92.

    CAS  PubMed  Google Scholar 

  • Yates S, Rayner TE . (2002). Transcription factor activation in response to cutaneous injury: role of AP-1 in reepithelialization. Wound Repair Regen 10: 5–15.

    PubMed  Google Scholar 

  • Young MR, Li JJ, Rincon M, Flavell RA, Sathyanarayana BK, Hunziker R et al. (1999). Transgenic mice demonstrate AP-1 (activator protein-1) transactivation is required for tumor promotion. Proc Natl Acad Sci USA 96: 9827–9832.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zenz R, Scheuch H, Martin P, Frank C, Eferl R, Kenner L et al. (2003). c-Jun regulates eyelid closure and skin tumor development through EGFR signaling. Dev Cell 4: 879–889.

    CAS  PubMed  Google Scholar 

  • Zenz R, Wagner EF . (2006). Jun signalling in the epidermis: from developmental defects to psoriasis and skin tumors. Int J Biochem Cell Biol 38: 1043–1049.

    CAS  PubMed  Google Scholar 

  • Zhang G, Luo X, Sumithran E, Pua VS, Barnetson RS, Halliday GM et al. (2006). Squamous cell carcinoma growth in mice and in culture is regulated by c-Jun and its control of matrix metalloproteinase-2 and -9 expression. Oncogene 25: 7260–7266.

    CAS  PubMed  Google Scholar 

  • Zhao M, Qiao M, Harris SE, Chen D, Oyajobi BO, Mundy GR . (2006). The zinc finger transcription factor Gli2 mediates bone morphogenetic protein 2 expression in osteoblasts in response to hedgehog signaling. Mol Cell Biol 26: 6197–6208.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Dr Fritz Aberger for stimulating discussions and critical reading of the paper, Mag. Stefan Klingler for advice on propagation of human primary foreskin keratinocytes and Dr Martina Winklmayr for help with co-immunoprecipitations and cloning. We are particularly grateful to Dr Michael J Birrer for providing the JUN expression plasmid and Dr Rune Toftgard for a SUFU expression construct. This work was supported by the Austrian Genome Project GENAU Ultrasensitive Proteomics and Genomics II and the University of Salzburg priority program Biosciences and Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A M Frischauf.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Laner-Plamberger, S., Kaser, A., Paulischta, M. et al. Cooperation between GLI and JUN enhances transcription of JUN and selected GLI target genes. Oncogene 28, 1639–1651 (2009). https://doi.org/10.1038/onc.2009.10

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2009.10

Keywords

This article is cited by

Search

Quick links