Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Gene deletion of inositol hexakisphosphate kinase 2 predisposes to aerodigestive tract carcinoma

Abstract

Inositol hexakisphosphate kinase 2 (IP6K2), a member of the inositol hexakisphosphate kinase family, functions as a growth suppressive and apoptosis-enhancing kinase during cell stress. We created mice with a targeted deletion of IP6K2; these mice display normal embryogenesis, development, growth and fertility. Chronic exposure to the carcinogen 4-nitroquinoline 1-oxide (4-NQO, a UV-mimetic compound) in drinking water resulted in fourfold increased incidence of invasive squamous cell carcinoma (SCC) formation in the oral cavity and esophagus of the knockout (KO) mice compared to the wild-type (WT) littermates. Paradoxically, KO mice displayed relative resistance to ionizing radiation and exhibit enhanced survival following 8–10 Gy total body irradiation. Primary KO fibroblasts displayed resistance to antiproliferative effects of interferon-β and increased colony forming units following ionizing radiation. Radioresistance of KO fibroblasts was associated with accelerated DNA repair measured by comet assay. Direct microinjection of 5-PP-Ins(1,2,3,4,6)P5 (the enzymatic product of IP6K2), but not InsP6 (the substrate of IP6K2) induced cell death in SCC22A squamous carcinoma cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

Abbreviations

IP6K2:

inositol hexakisphosphate kinase 2

4-NQO:

4-nitroquinoline 1-oxide

IFN:

interferon

HNSCC:

head and neck squamous cell carcinoma

NHEJ:

nonhomologous end joining

PBS:

phosphate-buffered saline

References

  • Bhandari R, Juluri KR, Resnick AC, Snyder SH . (2008). Gene deletion of inositol hexakisphosphate kinase 1 reveals inositol pyrophosphate regulation of insulin secretion, growth, and spermiogenesis. Proc Natl Acad Sci USA 105: 2349–2353.

    Article  CAS  Google Scholar 

  • Bhandari R, Saiardi A, Ahmadibeni Y, Snowman AM, Resnick AC, Kristiansen TZ et al. (2007). Protein pyrophosphorylation by inositol pyrophosphates is a posttranslational event. Proc Natl Acad Sci USA 104: 15305–15310.

    Article  CAS  Google Scholar 

  • Byrum J, Jordan S, Safrany ST, Rodgers W . (2004). Visualization of inositol phosphate-dependent mobility of Ku: depletion of the DNA-PK cofactor InsP6 inhibits Ku mobility. Nucleic Acids Res 32: 2776–2784.

    Article  CAS  Google Scholar 

  • Chakraborty SB, Dasgupta S, Roy A, Sengupta A, Ray B, Roychoudhury S et al. (2003). Differential deletions in 3p are associated with the development of head and neck squamous cell carcinoma in Indian patients. Cancer Genet Cytogenet 146: 130–138.

    Article  CAS  Google Scholar 

  • Cheung JC, Salerno B, Hanakahi LA . (2008). Evidence for an inositol hexakisphosphate-dependent role for Ku in mammalian nonhomologous end joining that is independent of its role in the DNA-dependent protein kinase. Nucleic Acids Res, 2008 36: 5713–5726.

    Article  CAS  Google Scholar 

  • Fridy PC, Otto JC, Dollins DE, York JD . (2007). Cloning and characterization of two human VIP1-like inositol hexakisphosphate and diphosphoinositol pentakisphosphate kinases. J Biol Chem 282: 30754–30762.

    Article  CAS  Google Scholar 

  • Hanakahi LA, Bartlet-Jones M, Chappell C, Pappin D, West SC . (2000). Binding of inositol phosphate to DNA-PK and stimulation of double-strand break repair. Cell 102: 721–729.

    Article  CAS  Google Scholar 

  • Hawkins BL, Heniford BW, Ackermann DM, Leonberger M, Martinez SA, Hendler FJ . (1994). 4NQO carcinogenesis: a mouse model of oral cavity squamous cell carcinoma. Head Neck 16: 424–432.

    Article  CAS  Google Scholar 

  • Hecht JT, Hogue D, Strong LC, Hansen MF, Blanton SH, Wagner M . (1995). Hereditary multiple exostosis and chondrosarcoma: linkage to chromosome II and loss of heterozygosity for EXT-linked markers on chromosomes II and 8. Am J Hum Genet 56: 1125–1131.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hoornaert I, Marynen P, Goris J, Sciot R, Baens M . (2003). MAPK phosphatase DUSP16/MKP-7, a candidate tumor suppressor for chromosome region 12p12-13, reduces BCR-ABL-induced transformation. Oncogene 22: 7728–7736.

    Article  CAS  Google Scholar 

  • Illies C, Gromada J, Fiume R, Leibiger B, Yu J, Juhl K et al. (2007). Requirement of inositol pyrophosphates for full exocytotic capacity in pancreatic beta cells. Science 318: 1299–1302.

    Article  CAS  Google Scholar 

  • Kawata T, Ito H, Saito M, Uno T, Okayasu R, Liu C et al. (2005). Caffeine sensitizes nondividing human fibroblasts to x rays by inducing a high frequency of misrepair. Radiat Res 164: 509–513.

    Article  CAS  Google Scholar 

  • Kendall J, Liu Q, Bakleh A, Krasnitz A, Nguyen KC, Lakshmi B et al. (2007). Oncogenic cooperation and coamplification of developmental transcription factor genes in lung cancer. Proc Natl Acad Sci USA 104: 16663–16668.

    Article  CAS  Google Scholar 

  • Kibel AS, Huagen J, Guo C, Isaacs WB, Yan Y, Pienta KJ et al. (2004). Expression mapping at 12p12-13 in advanced prostate carcinoma. Int J Cancer 109: 668–672.

    Article  CAS  Google Scholar 

  • Kok K, Osinga J, Carritt B, Davis MB, van der Hout AH, van der Veen AY et al. (1987). Deletion of a DNA sequence at the chromosomal region 3p21 in all major types of lung cancer. Nature 330: 578–581.

    Article  CAS  Google Scholar 

  • Li X, Lee NK, Ye YW, Waber PG, Schweitzer C, Cheng QC et al. (1994). Allelic loss at chromosomes 3p, 8p, 13q, and 17p associated with poor prognosis in head and neck cancer. J Natl Cancer Inst 86: 1524–1529.

    Article  CAS  Google Scholar 

  • Lu B, Xu J, Lai M, Zhang H, Chen J . (2006). A transcriptome anatomy of human colorectal cancers. BMC Cancer 6: 40.

    Article  Google Scholar 

  • Luo HR, Huang YE, Chen JC, Saiardi A, Iijima M, Ye K et al. (2003). Inositol pyrophosphates mediate chemotaxis in dictyostelium via pleckstrin homology domain-PtdIns(3,4,5)P3 interactions. Cell 114: 559–572.

    Article  CAS  Google Scholar 

  • Ma Y, Lieber MR . (2002). Binding of inositol hexakisphosphate (IP6) to Ku but not to DNA-PKcs. J Biol Chem 30: 30.

    Google Scholar 

  • Maestro R, Gasparotto D, Vukosavljevic T, Barzan L, Sulfaro S, Boiocchi M . (1993). Three discrete regions of deletion at 3p in head and neck cancers. Cancer Res 53: 5775–5779.

    CAS  PubMed  Google Scholar 

  • Magnusdottir E, Kalachikov S, Mizukoshi K, Savitsky D, Ishida-Yamamoto A, Panteleyev AA et al. (2007). Epidermal terminal differentiation depends on B lymphocyte-induced maturation protein-1. Proc Natl Acad Sci USA 104: 14988–14993.

    Article  CAS  Google Scholar 

  • Morrison BH, Bauer JA, Hu J, Grane RW, Ozdemir A, Chawla-Sarkar M et al. (2002). Inositol hexakisphosphate kinase 2 sensitizes ovarian carcinoma cells to multiple cancer therapeutics. Oncogene 21: 1882–1889.

    Article  CAS  Google Scholar 

  • Morrison BH, Bauer JA, Kalvakolanu DV, Lindner DJ . (2001). Inositol hexakisphosphate kinase 2 mediates growth suppressive and apoptotic effects of interferon-beta in ovarian carcinoma cells. J Biol Chem 276: 24965–24970.

    Article  CAS  Google Scholar 

  • Mulugu S, Bai W, Fridy PC, Bastidas RJ, Otto JC, Dollins DE et al. (2007). A conserved family of enzymes that phosphorylate inositol hexakisphosphate. Science 316: 106–109.

    Article  CAS  Google Scholar 

  • Nagata E, Luo HR, Saiardi A, Bae BI, Suzuki N, Snyder SH . (2005). Inositol hexakisphosphate kinase-2, a physiologic mediator of cell death. J Biol Chem 280: 1634–1640.

    Article  CAS  Google Scholar 

  • Panigrahi GB, Walker IG . (1990). The N2-guanine adduct but not the C8-guanine or N6-adenine adducts formed by 4-nitroquinoline 1-oxide blocks the 3′-5′ exonuclease action of T4 DNA polymerase. Biochemistry 29: 2122–2126.

    Article  CAS  Google Scholar 

  • Pogach MS, Cao Y, Millien G, Ramirez MI, Williams MC . (2007). Key developmental regulators change during hyperoxia-induced injury and recovery in adult mouse lung. J Cell Biochem 100: 1415–1429.

    Article  CAS  Google Scholar 

  • Raskind WH, Conrad EU, Chansky H, Matsushita M . (1995). Loss of heterozygosity in chondrosarcomas for markers linked to hereditary multiple exostoses loci on chromosomes 8 and 11. Am J Hum Genet 56: 1132–1139.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Saiardi A, Bhandari R, Resnick AC, Snowman AM, Snyder SH . (2004). Phosphorylation of proteins by inositol pyrophosphates. Science 306: 2101–2105.

    Article  CAS  Google Scholar 

  • Saiardi A, Resnick AC, Snowman AM, Wendland B, Snyder SH . (2005). Inositol pyrophosphates regulate cell death and telomere length through phosphoinositide 3-kinase-related protein kinases. Proc Natl Acad Sci USA 102: 1911–1914.

    Article  CAS  Google Scholar 

  • Saiardi A, Sciambi C, McCaffery JM, Wendland B, Snyder SH . (2002). Inositol pyrophosphates regulate endocytic trafficking. Proc Natl Acad Sci USA 99: 14206–14211.

    Article  CAS  Google Scholar 

  • Shears SB . (2004). How versatile are inositol phosphate kinases? Biochem J 377: 265–280.

    Article  CAS  Google Scholar 

  • Skehan P, Storeng R, Scudiero D, Monks A, McMahon J, Vistica D et al. (1990). New colorimetric cytotoxicity assay for anticancer-drug screening. J Natl Cancer Inst 82: 1107–1112.

    Article  CAS  Google Scholar 

  • Teng CH, Huang WN, Meng TC . (2007). Several dual specificity phosphatases coordinate to control the magnitude and duration of JNK activation in signaling response to oxidative stress. J Biol Chem 282: 28395–28407.

    Article  CAS  Google Scholar 

  • Wojewodzka M, Buraczewska I, Kruszewski M . (2002). A modified neutral comet assay: elimination of lysis at high temperature and validation of the assay with anti-single-stranded DNA antibody. Mutat Res 518: 9–20.

    Article  CAS  Google Scholar 

  • York SJ, Armbruster BN, Greenwell P, Petes TD, York JD . (2005). Inositol diphosphate signaling regulates telomere length. J Biol Chem 280: 4264–4269.

    Article  CAS  Google Scholar 

  • Zhang H, Thompson J, Prestwich GD . (2009). A scalable synthesis of the IP(7) Isomer, 5-PP-Ins(1,2,3,4,6)P(5). Org Lett 11: 1551–1554.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Philip Sanford, University of Cincinnati, for design of targeting vector and creation of IHPK2 knockout mice. Donna Kusewitt, Ohio State University, Director, Mouse Phenotyping Shared Resource, kusewitt.1@osu.edu, conducted the phenotyping studies. Judy Drazba, Cleveland Clinic Imaging Core, performed the time-lapse photography of microinjected cells. Dr Yong Xu, Dr Honglu Zhang and Dr Jianxing Zhang performed the synthesis of 5-PP-Ins(1,2,3,4,6)P5. These studies were supported by grants from NIH/NCI (CA095020) to DJL and from NIH (NS29632) to GDP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D J Lindner.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morrison, B., Haney, R., Lamarre, E. et al. Gene deletion of inositol hexakisphosphate kinase 2 predisposes to aerodigestive tract carcinoma. Oncogene 28, 2383–2392 (2009). https://doi.org/10.1038/onc.2009.113

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2009.113

Keywords

This article is cited by

Search

Quick links