Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Loss of Nkx3.1 leads to the activation of discrete downstream target genes during prostate tumorigenesis

Abstract

The expression of NKX3.1, a transcriptional regulator and tumor suppressor gene in prostate cancer, is downregulated during early stages of prostate tumorigenesis. However, little is known of the alterations in gene expression that occur as a result of this event. We combined laser capture microdissection and gene expression profiling to analyse the molecular consequences of Nkx3.1 loss during prostate cancer initiation using Nkx3.1-deficient mice. This analysis identified a cohort of genes (loss-of-Nkx3.1 signature) that are aberrantly overexpressed during loss-of-Nkx3.1-driven tumor initiation. We studied the expression of these genes in independent loss-of-Pten and c-myc overexpression prostate adenocarcinoma mouse models. Nkx3.1 expression is lost in prostate epithelial proliferation in both of these mouse models. However, Nkx3.1 loss is an early event of tumor development in the loss-of-Pten model, whereas it occurs at later stages in c-myc transgenic mice. A number of genes of the loss-of-Nkx3.1 signature, such as clusterin and quiescin Q6, are highly expressed in prostatic hyperplasia and intraepithelial neoplasia (PIN) lesions that also lack Nkx3.1 in the Pten-deficient prostate, but not in similar lesions in the c-myc transgenic model. Meta-analysis of multiple prostate cancer gene expression data sets, including those from loss-of-Nkx3.1, loss-of-Pten, c-myc overexpression and constitutively active Akt prostate cancer models, further confirmed that genes associated with the loss-of-Nkx3.1 signature integrate with PTEN–AKT signaling pathways, but do not overlap with molecular changes associated with the c-myc signaling pathway. In human prostate tissue samples, loss of NKX3.1 expression and corresponding clusterin overexpression are co-localized at sites of prostatic inflammatory atrophy, a possible very early stage of human prostate tumorigenesis. Collectively, these results suggest that the molecular consequences of NKX3.1 loss depend on the epithelial proliferative stage at which its expression is lost, and that alterations in the PTEN–AKT–NKX3.1 axis are important for prostate cancer initiation.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  • Abate-Shen C, Shen MM . (2000). Molecular genetics of prostate cancer. Genes Dev 14: 2410–2434.

    Article  CAS  PubMed  Google Scholar 

  • Abdulkadir SA, Magee JA, Peters TJ, Kaleem Z, Naughton CK, Humphrey PA et al. (2002). Conditional loss of Nkx3.1 in adult mice induces prostatic intraepithelial neoplasia. Mol Cell Biol 22: 1495–1503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Asatiani E, Huang WX, Wang A, Rodriguez Ortner E, Cavalli LR, Haddad BR et al. (2005). Deletion, methylation, and expression of the NKX3.1 suppressor gene in primary human prostate cancer. Cancer Res 65: 1164–1173.

    Article  CAS  PubMed  Google Scholar 

  • Ashida S, Nakagawa H, Katagiri T, Furihata M, Iiizumi M, Anazawa Y et al. (2004). Molecular features of the transition from prostatic intraepithelial neoplasia (PIN) to prostate cancer: genome-wide gene-expression profiles of prostate cancers and PINs. Cancer Res 64: 5963–5972.

    Article  CAS  PubMed  Google Scholar 

  • Batlle E, Bacani J, Begthel H, Jonkheer S, Gregorieff A, van de Born M et al. (2005). EphB receptor activity suppresses colorectal cancer progression. Nature 435: 1126–1130.

    Article  CAS  PubMed  Google Scholar 

  • Bethel CR, Bieberich CJ . (2007). Loss of Nkx3.1 expression in the transgenic adenocarcinoma of mouse prostate model. Prostate 67: 1740–1750.

    Article  CAS  PubMed  Google Scholar 

  • Bethel CR, Faith D, Li X, Guan B, Hicks JL, Lan F et al. (2006). Decreased NKX3.1 protein expression in focal prostatic atrophy, prostatic intraepithelial neoplasia, and adenocarcinoma: association with gleason score and chromosome 8p deletion. Cancer Res 66: 10683–10690.

    Article  CAS  PubMed  Google Scholar 

  • Bhatia-Gaur R, Donjacour AA, Sciavolino PJ, Kim M, Desai N, Young P et al. (1999). Roles for Nkx3.1 in prostate development and cancer. Genes Dev 13: 966–977.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bostwick DG, Alexander EE, Singh R, Shan A, Qian J, Santella RM et al. (2000). Antioxidant enzyme expression and reactive oxygen species damage in prostatic intraepithelial neoplasia and cancer. Cancer 89: 123–134.

    Article  CAS  PubMed  Google Scholar 

  • Bova GS, Carter BS, Bussemakers MJ, Emi M, Fujiwara Y, Kyprianou N et al. (1993). Homozygous deletion and frequent allelic loss of chromosome 8p22 loci in human prostate cancer. Cancer Res 53: 3869–3873.

    CAS  PubMed  Google Scholar 

  • Bowen C, Bubendorf L, Voeller HJ, Slack R, Willi N, Sauter G et al. (2000). Loss of NKX3.1 expression in human prostate cancers correlates with tumor progression. Cancer Res 60: 6111–6115.

    CAS  PubMed  Google Scholar 

  • Chan JM, Gann PH, Giovannucci EL . (2005). Role of diet in prostate cancer development and progression. J Clin Oncol 23: 8152–8160.

    Article  CAS  PubMed  Google Scholar 

  • Chen Z, Trotman LC, Shaffer D, Lin HK, Dotan ZA, Niki M et al. (2005). Crucial role of p53-dependent cellular senescence in suppression of Pten-deficient tumorigenesis. Nature 436: 725–730.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Das SK, Wang XN, Paria BC, Damm D, Abraham JA, Klagsbrun M et al. (1994). Heparin-binding EGF-like growth factor gene is induced in the mouse uterus temporally by the blastocyst solely at the site of its apposition: a possible ligand for interaction with blastocyst EGF-receptor in implantation. Development 120: 1071–1083.

    CAS  PubMed  Google Scholar 

  • De Marzo AM, Marchi VL, Epstein JI, Nelson WG . (1999). Proliferative inflammatory atrophy of the prostate: implications for prostatic carcinogenesis. Am J Pathol 155: 1985–1992.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Di Cristofano A, De Acetis M, Koff A, Cordon-Cardo C, Pandolfi PP . (2001). Pten and p27KIP1 cooperate in prostate cancer tumor suppression in the mouse. Nat Genet 27: 222–224.

    Article  CAS  PubMed  Google Scholar 

  • Ehrig T, Abdulkadir SA, Dintzis SM, Milbrandt J, Watson MA . (2001). Quantitative amplification of genomic DNA from histological tissue sections after staining with nuclear dyes and laser capture microdissection. J Mol Diagn 3: 22–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ellwood-Yen K, Graeber TG, Wongvipat J, Iruela-Arispe ML, Zhang J, Matusik R et al. (2003). Myc-driven murine prostate cancer shares molecular features with human prostate tumors. Cancer Cell 4: 223–238.

    Article  CAS  PubMed  Google Scholar 

  • Eshel R, Neumark E, Sagi-Assif O, Witz IP . (2002). Receptors involved in microenvironment-driven molecular evolution of cancer cells. Semin Cancer Biol 12: 139–147.

    Article  CAS  PubMed  Google Scholar 

  • Gao H, Ouyang X, Banach-Petrosky W, Borowsky AD, Lin Y, Kim M et al. (2004). A critical role for p27kip1 gene dosage in a mouse model of prostate carcinogenesis. Proc Natl Acad Sci USA 101: 17204–17209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garabedian EM, Humphrey PA, Gordon JI . (1998). A transgenic mouse model of metastatic prostate cancer originating from neuroendocrine cells. Proc Natl Acad Sci USA 95: 15382–15387.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gleave M, Miyake H . (2005). Use of antisense oligonucleotides targeting the cytoprotective gene, clusterin, to enhance androgen- and chemo-sensitivity in prostate cancer. World J Urol 23: 38–46.

    Article  CAS  PubMed  Google Scholar 

  • Greenberg NM, DeMayo F, Finegold MJ, Medina D, Tilley WD, Aspinall JO et al. (1995). Prostate cancer in a transgenic mouse. Proc Natl Acad Sci USA 92: 3439–3443.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He WW, Sciavolino PJ, Wing J, Augustus M, Hudson P, Meissner PS et al. (1997). A novel human prostate-specific, androgen-regulated homeobox gene (NKX3.1) that maps to 8p21, a region frequently deleted in prostate cancer. Genomics 43: 69–77.

    Article  CAS  PubMed  Google Scholar 

  • Kim MJ, Bhatia-Gaur R, Banach-Petrosky WA, Desai N, Wang Y, Hayward SW et al. (2002). Nkx3.1 mutant mice recapitulate early stages of prostate carcinogenesis. Cancer Res 62: 2999–3004.

    CAS  PubMed  Google Scholar 

  • Lei Q, Jiao J, Xin L, Chang CJ, Wang S, Gao J et al. (2006). NKX3.1 stabilizes p53, inhibits AKT activation, and blocks prostate cancer initiation caused by PTEN loss. Cancer Cell 9: 367–378.

    Article  CAS  PubMed  Google Scholar 

  • Luzzi V, Mahadevappa M, Raja R, Warrington JA, Watson MA . (2003). Accurate and reproducible gene expression profiles from laser capture microdissection, transcript amplification, and high density oligonucleotide microarray analysis. J Mol Diagn 5: 9–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Macoska JA, Trybus TM, Benson PD, Sakr WA, Grignon DJ, Wojno KD et al. (1995). Evidence for three tumor suppressor gene loci on chromosome 8p in human prostate cancer. Cancer Res 55: 5390–5395.

    CAS  PubMed  Google Scholar 

  • Magee JA, Abdulkadir SA, Milbrandt J . (2003). Haploinsufficiency at the Nkx3.1 locus. A paradigm for stochastic, dosage-sensitive gene regulation during tumor initiation. Cancer Cell 3: 273–283.

    Article  CAS  PubMed  Google Scholar 

  • Majumder PK, Yeh JJ, George DJ, Febbo PG, Kum J, Xue Q et al. (2003). Prostate intraepithelial neoplasia induced by prostate restricted Akt activation: the MPAKT model. Proc Natl Acad Sci USA 100: 7841–7846.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Markowski MC, Bowen C, Gelmann EP . (2008). Inflammatory cytokines induce phosphorylation and ubiquitination of prostate suppressor protein NKX3.1. Cancer Res 68: 6896–6901.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nelson WG, De Marzo AM, Deweese TL, Lin X, Brooks JD, Putzi MJ et al. (2001). Preneoplastic prostate lesions: an opportunity for prostate cancer prevention. Ann N Y Acad Sci 952: 135–144.

    Article  CAS  PubMed  Google Scholar 

  • Nelson WG, De Marzo AM, Isaacs WB . (2003). Prostate cancer. N Engl J Med 349: 366–381.

    Article  CAS  PubMed  Google Scholar 

  • Oberley TD . (2002). Oxidative damage and cancer. Am J Pathol 160: 403–408.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ouyang X, DeWeese TL, Nelson WG, Abate-Shen C . (2005). Loss-of-function of Nkx3.1 promotes increased oxidative damage in prostate carcinogenesis. Cancer Res 65: 6773–6779.

    Article  CAS  PubMed  Google Scholar 

  • Ouyang X, Jessen WJ, Al-Ahmadie H, Serio AM, Lin Y, Shih WJ et al. (2008). Activator protein-1 transcription factors are associated with progression and recurrence of prostate cancer. Cancer Res 68: 2132–2144.

    Article  CAS  PubMed  Google Scholar 

  • Shannan B, Seifert M, Leskov K, Willis J, Boothman D, Tilgen W et al. (2006). Challenge and promise: roles for clusterin in pathogenesis, progression and therapy of cancer. Cell Death Differ 13: 12–19.

    Article  CAS  PubMed  Google Scholar 

  • Simard J, Dumont M, Labuda D, Sinnett D, Meloche C, El-Alfy M et al. (2003). Prostate cancer susceptibility genes: lessons learned and challenges posed. Endocr Relat Cancer 10: 225–259.

    Article  CAS  PubMed  Google Scholar 

  • Simmons SO, Horowitz JM . (2006). Nkx3.1 binds and negatively regulates the transcriptional activity of Sp-family members in prostate-derived cells. Biochem J 393: 397–409.

    Article  CAS  PubMed  Google Scholar 

  • Song H, Lim H, Paria BC, Matsumoto H, Swift LL, Morrow J et al. (2002). Cytosolic phospholipase A2alpha is crucial [correction of A2alpha deficiency is crucial] for ‘on-time’ embryo implantation that directs subsequent development. Development 129: 2879–2889.

    CAS  PubMed  Google Scholar 

  • Steadman DJ, Giuffrida D, Gelmann EP . (2000). DNA-binding sequence of the human prostate-specific homeodomain protein NKX3.1. Nucleic Acids Res 28: 2389–2395.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thorpe C, Hoober KL, Raje S, Glynn NM, Burnside J, Turi GK et al. (2002). Sulfhydryl oxidases: emerging catalysts of protein disulfide bond formation in eukaryotes. Arch Biochem Biophys 405: 1–12.

    Article  CAS  PubMed  Google Scholar 

  • Tomlins SA, Rhodes DR, Perner S, Dhanasekaran SM, Mehra R, Sun XW et al. (2005). Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science 310: 644–648.

    Article  CAS  PubMed  Google Scholar 

  • Tricoli JV, Schoenfeldt M, Conley BA . (2004). Detection of prostate cancer and predicting progression: current and future diagnostic markers. Clin Cancer Res 10: 3943–3953.

    Article  PubMed  Google Scholar 

  • Tusher VG, Tibshirani R, Chu G . (2001). Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci USA 98: 5116–5121.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van Leenders GJ, Gage WR, Hicks JL, van Balken B, Aalders TW, Schalken JA et al. (2003). Intermediate cells in human prostate epithelium are enriched in proliferative inflammatory atrophy. Am J Pathol 162: 1529–1537.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang S, Gao J, Lei Q, Rozengurt N, Pritchard C, Jiao J et al. (2003). Prostate-specific deletion of the murine Pten tumor suppressor gene leads to metastatic prostate cancer. Cancer Cell 4: 209–221.

    Article  CAS  PubMed  Google Scholar 

  • Wu X, Wu J, Huang J, Powell WC, Zhang J, Matusik RJ et al. (2001). Generation of a prostate epithelial cell-specific Cre transgenic mouse model for tissue-specific gene ablation. Mech Dev 101: 61–69.

    Article  CAS  PubMed  Google Scholar 

  • Xin L, Lawson DA, Witte ON . (2005). The Sca-1 cell surface marker enriches for a prostate-regenerating cell subpopulation that can initiate prostate tumorigenesis. Proc Natl Acad Sci USA 102: 6942–6947.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng SL, Ju JH, Chang BL, Ortner E, Sun J, Isaacs SD et al. (2006). Germ-line mutation of NKX3.1 cosegregates with hereditary prostate cancer and alters the homeodomain structure and function. Cancer Res 66: 69–77.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are deeply indebted to Rakesh Nagarajan for help with bioinformatic analysis and Robert Heuckeroth for careful review of the manuscript and helpful discussions of the data. We thank Amy Strickland, Tatiana Gorodinsky and Nina Panchenko for technical assistance. We are grateful to Hong Wu and Charles Sawyers (UCLA) for Pten conditional and c-myc transgenic mice, respectively. This work was supported by NIH grants CA111966 (to JM) and Washington University Cancer Biology Pathway Fellowship (to BZ). HS was supported by a postdoctoral fellowship from the Department of Defense (PC030380).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J Milbrandt.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Song, H., Zhang, B., Watson, M. et al. Loss of Nkx3.1 leads to the activation of discrete downstream target genes during prostate tumorigenesis. Oncogene 28, 3307–3319 (2009). https://doi.org/10.1038/onc.2009.181

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2009.181

Keywords

This article is cited by

Search

Quick links