Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

The transcription factor E2F1 and the SR protein SC35 control the ratio of pro-angiogenic versus antiangiogenic isoforms of vascular endothelial growth factor-A to inhibit neovascularization in vivo

Abstract

The transcription factor E2F1 has a crucial role in the control of cell growth and has been shown to regulate neoangiogenesis in a p53-dependent manner through inhibition of activity of the VEGF-A (vascular endothelial growth factor) promoter. Besides being regulated by transcription, VEGF-A is also highly regulated by pre-mRNA alternative splicing, resulting in the expression of several VEGF isoforms with either pro-(VEGFxxx) or anti-(VEGFxxxb) angiogenic properties. Recently, we identified the SR (Ser-Rich/Arg) protein SC35, a splicing factor, as a new transcriptional target of E2F1. Here, we show that E2F1 downregulates the activity of the VEGF-A promoter in tumour cells independently of p53, leading to a strong decrease in VEGFxxx mRNA levels. We further show that, strikingly, E2F1 alters the ratio of pro-VEGFxxx versus anti-VEGFxxxb angiogenic isoforms, favouring the antiangiogenic isoforms, by a mechanism involving the induction of SC35 expression. Finally, using lung tumour xenografts in nude mice, we provide evidence that E2F1 and SC35 proteins increase the VEGF165b/VEGF ratio and decrease tumour neovascularization in vivo. Overall, these findings highlight E2F1 and SC35 as two regulators of the VEGFxxx/VEGFxxxb angiogenic switch in human cancer cells, a role that could be crucial during tumour progression, as well as in tumour response to antiangiogenic therapies.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Bachelder RE, Crago A, Chung J, Wendt MA, Shaw LM, Robinson G et al. (2001). Vascular endothelial growth factor is an autocrine survival factor for neuropilin-expressing breast carcinoma cells. Cancer Res 61: 5736–5740.

    CAS  PubMed  Google Scholar 

  • Bachelder RE, Wendt MA, Mercurio AM . (2002). Vascular endothelial growth factor promotes breast carcinoma invasion in an autocrine manner by regulating the chemokine receptor CXCR4. Cancer Res 62: 7203–7206.

    CAS  PubMed  Google Scholar 

  • Bates DO, Cui TG, Doughty JM, Winkler M, Sugiono M, Shields JD et al. (2002). VEGF165b, an inhibitory splice variant of vascular endothelial growth factor, is down-regulated in renal cell carcinoma. Cancer Res 62: 4123–4131.

    CAS  PubMed  Google Scholar 

  • Bates DO, MacMillan PP, Manjaly JG, Qiu Y, Hudson SJ, Bevan HS et al. (2006). The endogenous anti-angiogenic family of splice variants of VEGF, VEGFxxxb, are down-regulated in pre-eclamptic placentae at term. Clin Sci (London) 110: 575–585.

    Article  CAS  Google Scholar 

  • Carmeliet P, Jain RK . (2000). Angiogenesis in cancer and other diseases. Nature 407: 249–257.

    Article  CAS  PubMed  Google Scholar 

  • Catena R, Muniz-Medina V, Moralejo B, Javierre B, Best CJ, Emmert-Buck MR et al. (2007). Increased expression of VEGF121/VEGF165-189 ratio results in a significant enhancement of human prostate tumor angiogenesis. Int J Cancer 120: 2096–2109.

    Article  CAS  PubMed  Google Scholar 

  • Cheung N, Wong MP, Yuen ST, Leung SY, Chung LP . (1998). Tissue-specific expression pattern of vascular endothelial growth factor isoforms in the malignant transformation of lung and colon. Hum Pathol 29: 910–914.

    Article  CAS  PubMed  Google Scholar 

  • Cohen CD, Doran PP, Blattner SM, Merkle M, Wang GQ, Schmid H et al. (2005). Sam68-like mammalian protein 2, identified by digital differential display as expressed by podocytes, is induced in proteinuria and involved in splice site selection of vascular endothelial growth factor. J Am Soc Nephrol 16: 1958–1965.

    Article  CAS  PubMed  Google Scholar 

  • Davis JN, Wojno KJ, Daignault S, Hofer MD, Kuefer R, Rubin MA et al. (2006). Elevated E2F1 inhibits transcription of the androgen receptor in metastatic hormone-resistant prostate cancer. Cancer Res 66: 11897–11906.

    Article  CAS  PubMed  Google Scholar 

  • Elias AP, Dias S . (2008). Microenvironment changes (in pH) affect VEGF alternative splicing. Cancer Microenviron 1: 131–139.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ferrara N, Gerber HP, LeCouter J . (2003). The biology of VEGF and its receptors. Nat Med 9: 669–676.

    Article  CAS  PubMed  Google Scholar 

  • Folkman J . (2007). Angiogenesis: an organizing principle for drug discovery? Nat Rev Drug Discov 6: 273–286.

    Article  CAS  PubMed  Google Scholar 

  • Fontemaggi G, Dell'Orso S, Trisciuoglio D, Shay T, Melucci E, Fazi F et al. (2009). The execution of the transcriptional axis mutant p53, E2F1 and ID4 promotes tumor neo-angiogenesis. Nat Struct Mol Biol 16: 1086–1093.

    Article  CAS  PubMed  Google Scholar 

  • Hurwitz H, Fehrenbacher L, Novotny W, Cartwright T, Hainsworth J, Heim W et al. (2004). Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med 350: 2335–2342.

    Article  CAS  PubMed  Google Scholar 

  • Hurwitz HI, Fehrenbacher L, Hainsworth JD, Heim W, Berlin J, Holmgren E et al. (2005). Bevacizumab in combination with fluorouracil and leucovorin: an active regimen for first-line metastatic colorectal cancer. J Clin Oncol 23: 3502–3508.

    Article  CAS  PubMed  Google Scholar 

  • Jiang SX, Sheldrick M, Desbois A, Slinn J, Hou ST . (2007). Neuropilin-1 is a direct target of the transcription factor E2F1 during cerebral ischemia-induced neuronal death in vivo. Mol Cell Biol 27: 1696–1705.

    Article  CAS  PubMed  Google Scholar 

  • Kawamura H, Li X, Harper SJ, Bates DO, Claesson-Welsh L . (2008). Vascular endothelial growth factor (VEGF)-A165b is a weak in vitro agonist for VEGF receptor-2 due to lack of coreceptor binding and deficient regulation of kinase activity. Cancer Res 68: 4683–4692.

    Article  CAS  PubMed  Google Scholar 

  • Ladomery MR, Harper SJ, Bates DO . (2007). Alternative splicing in angiogenesis: the vascular endothelial growth factor paradigm. Cancer Lett 249: 133–142.

    Article  CAS  PubMed  Google Scholar 

  • Lantuejoul S, Constantin B, Drabkin H, Brambilla C, Roche J, Brambilla E . (2003). Expression of VEGF, semaphorin SEMA3F, and their common receptors neuropilins NP1 and NP2 in preinvasive bronchial lesions, lung tumours, and cell lines. J Pathol 200: 336–347.

    Article  CAS  PubMed  Google Scholar 

  • Merdzhanova G, Edmond V, De Seranno S, Van Den Broeck A, Corcos L, Brambilla C et al. (2008). E2F1 controls alternative splicing pattern of genes involved in apoptosis through upregulation of the splicing factor SC35. Cell Death Differ 15: 1815–1823.

    Article  CAS  PubMed  Google Scholar 

  • Nowak DG, Amin EM, Rennel ES, Hoareau-Aveilla C, Gammons M, Damodoran G et al. (2010). Regulation of vascular endothelial growth factor (VEGF) splicing from pro-angiogenic to anti-angiogenic isoforms: a novel therapeutic strategy for angiogenesis. J Biol Chem 285: 5532–5540.

    Article  CAS  PubMed  Google Scholar 

  • Nowak DG, Woolard J, Amin EM, Konopatskaya O, Saleem MA, Churchill AJ et al. (2008). Expression of pro- and anti-angiogenic isoforms of VEGF is differentially regulated by splicing and growth factors. J Cell Sci 121: 3487–3495.

    Article  CAS  PubMed  Google Scholar 

  • Polager S, Ginsberg D . (2008). E2F—at the crossroads of life and death. Trends Cell Biol 18: 528–535.

    Article  CAS  PubMed  Google Scholar 

  • Pritchard-Jones RO, Dunn DB, Qiu Y, Varey AH, Orlando A, Rigby H et al. (2007). Expression of VEGF(xxx)b, the inhibitory isoforms of VEGF, in malignant melanoma. Br J Cancer 97: 223–230.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qin G, Kishore R, Dolan CM, Silver M, Wecker A, Luedemann CN et al. (2006). Cell cycle regulator E2F1 modulates angiogenesis via p53-dependent transcriptional control of VEGF. Proc Natl Acad Sci USA 103: 11015–11020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rak J, Mitsuhashi Y, Bayko L, Filmus J, Shirasawa S, Sasazuki T et al. (1995). Mutant ras oncogenes upregulate VEGF/VPF expression: implications for induction and inhibition of tumor angiogenesis. Cancer Res 55: 4575–4580.

    CAS  PubMed  Google Scholar 

  • Rennel E, Waine E, Guan H, Schuler Y, Leenders W, Woolard J et al. (2008). The endogenous anti-angiogenic VEGF isoform, VEGF165b inhibits human tumour growth in mice. Br J Cancer 98: 1250–1257.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robinson CJ, Stringer SE . (2001). The splice variants of vascular endothelial growth factor (VEGF) and their receptors. J Cell Sci 114: 853–865.

    CAS  PubMed  Google Scholar 

  • Salon C, Eymin B, Micheau O, Chaperot L, Plumas J, Brambilla C et al. (2006). E2F1 induces apoptosis and sensitizes human lung adenocarcinoma cells to death-receptor-mediated apoptosis through specific downregulation of c-FLIP(short). Cell Death Differ 13: 260–272.

    Article  CAS  PubMed  Google Scholar 

  • Salon C, Merdzhanova G, Brambilla C, Brambilla E, Gazzeri S, Eymin B . (2007). E2F-1, Skp2 and cyclin E oncoproteins are upregulated and directly correlated in high-grade neuroendocrine lung tumors. Oncogene 26: 6927–6936.

    Article  CAS  PubMed  Google Scholar 

  • Shweiki D, Itin A, Soffer D, Keshet E . (1992). Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature 359: 843–845.

    Article  CAS  PubMed  Google Scholar 

  • Varey AH, Rennel ES, Qiu Y, Bevan HS, Perrin RM, Raffy S et al. (2008). VEGF 165 b, an antiangiogenic VEGF-A isoform, binds and inhibits bevacizumab treatment in experimental colorectal carcinoma: balance of pro- and antiangiogenic VEGF-A isoforms has implications for therapy. Br J Cancer 98: 1366–1379.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woolard J, Wang WY, Bevan HS, Qiu Y, Morbidelli L, Pritchard-Jones RO et al. (2004). VEGF165b, an inhibitory vascular endothelial growth factor splice variant: mechanism of action, in vivo effect on angiogenesis and endogenous protein expression. Cancer Res 64: 7822–7835.

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Yu D, Hu M, Xiong S, Lang A, Ellis LM et al. (2000). Wild-type p53 suppresses angiogenesis in human leiomyosarcoma and synovial sarcoma by transcriptional suppression of vascular endothelial growth factor expression. Cancer Res 60: 3655–3661.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Patricia Betton, Pascal Perron and Celine Lampreia for technical assistance. This work was supported by the Ligue Nationale contre le Cancer (Equipe Labellisée Ligue 2007) and by the Conseil Scientifique National d’AGIR á dom. Galina Merdzhanova was supported by fellowships from the Research French Ministry and the Fondation pour la Recherche Medicale (FRM). Stephanie Gout was supported by a fellowship from Association pour la Recherche Contre le Cancer (ARC). Valerie Edmond was supported by a grant from the Conseil Scientifique National d’AGIR á dom.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B Eymin.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Merdzhanova, G., Gout, S., Keramidas, M. et al. The transcription factor E2F1 and the SR protein SC35 control the ratio of pro-angiogenic versus antiangiogenic isoforms of vascular endothelial growth factor-A to inhibit neovascularization in vivo. Oncogene 29, 5392–5403 (2010). https://doi.org/10.1038/onc.2010.281

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2010.281

Keywords

This article is cited by

Search

Quick links