Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Tumor angiogenesis is enforced by autocrine regulation of high-mobility group box 1

Abstract

The endothelium plays a pivotal role in the progression of solid tumors and is considered a highly relevant target for therapy. However, it emerges that current clinical angiogenesis inhibitors that act through inhibition of tumor-derived growth factors are prone to inducing drug resistance. Therefore, markers of tumor endothelial cells (ECs) themselves provide attractive novel therapeutic targets. In a screen for markers of tumor angiogenesis, we recently identified high-mobility group box 1 (HMGB1), known to act as proinflammatory cytokine and chromatin-binding molecule. Here we report on the role of HMGB1 in angiogenesis by showing that its overexpression is associated with an increased angiogenic potential of ECs. HMGB1 stimulates the expression of players in vascular endothelial growth factor and platelet-derived growth factor signaling, both in vitro and in vivo. Importantly, we show that HMGB1 triggers and helps to sustain this proangiogenic gene expression program in ECs, additionally characterized by increased activity of matrix metalloproteinases, integrins and nuclear factor-κB. Moreover, we found that HMGB1 is involved in several autocrine and/or paracrine feedback mechanisms resulting in positive enforcement of HMGB1 expression, and that of its receptors, RAGE (receptor for advanced glycation end products) and Toll-like receptor 4 (TLR4). Interference in HMGB1 expression and/or function using knockdown approaches and antibody-mediated targeting to break this vicious circle resulted in inhibited migration and sprouting of ECs. Using different in vivo models, therapeutic efficacy of HMGB1 targeting was confirmed. First, we demonstrated induction of HMGB1 expression in the chicken embryo chorioallantoic membrane (CAM) neovasculature following both photodynamic therapy and tumor challenge. We subsequently showed that anti-HMGB1 antibodies inhibited vessel density in both models, accompanied by a reduced vascular expression of angiogenic growth factor receptors. Collectively, these data identify HMGB1 as an important modulator of tumor angiogenesis and suggest the feasibility of targeting HMGB1 for multi-level cancer treatment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Folkman J . Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med 1995; 1: 27–31.

    Article  CAS  PubMed  Google Scholar 

  2. Griffioen AW, Molema G . Angiogenesis: potentials for pharmacologic intervention in the treatment of cancer, cardiovascular diseases, and chronic inflammation. Pharmacol Rev 2000; 52: 237–268.

    CAS  PubMed  Google Scholar 

  3. Paez-Ribes M, Allen E, Hudock J, Takeda T, Okuyama H, Vinals F et al. Antiangiogenic therapy elicits malignant progression of tumors to increased local invasion and distant metastasis. Cancer Cell 2009; 15: 220–231.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Thijssen VL, van Beijnum JR, Mayo KH, Griffioen AW . Identification of novel drug targets for angiostatic cancer therapy; it takes two to tango. Curr Pharm Des 2007; 13: 3576–3583.

    Article  CAS  PubMed  Google Scholar 

  5. van Beijnum JR, Griffioen AW . In silico analysis of angiogenesis associated gene expression identifies angiogenic stage related profiles. Biochim Biophys Acta 2005; 1755: 121–134.

    CAS  PubMed  Google Scholar 

  6. van Beijnum JR, Dings RP, van der Linden E, Zwaans BM, Ramaekers FC, Mayo KH et al. Gene expression of tumor angiogenesis dissected: specific targeting of colon cancer angiogenic vasculature. Blood 2006; 108: 2339–2348.

    Article  CAS  PubMed  Google Scholar 

  7. van Beijnum JR, Rousch M, Castermans K, van der Linden E, Griffioen AW . Isolation of endothelial cells from fresh tissues. Nat Protoc 2008; 3: 1085–1091.

    Article  CAS  PubMed  Google Scholar 

  8. Bianchi ME, Beltrame M, Paonessa G . Specific recognition of cruciform DNA by nuclear protein HMG1. Science 1989; 243 (4894 Part 1): 1056–1059.

    Article  CAS  PubMed  Google Scholar 

  9. Merenmies J, Pihlaskari R, Laitinen J, Wartiovaara J, Rauvala H . 30-kDa heparin-binding protein of brain (amphoterin) involved in neurite outgrowth. Amino acid sequence and localization in the filopodia of the advancing plasma membrane. J Biol Chem 1991; 266: 16722–16729.

    CAS  PubMed  Google Scholar 

  10. Bianchi ME, Manfredi AA . High-mobility group box 1 (HMGB1) protein at the crossroads between innate and adaptive immunity. Immunol Rev 2007; 220: 35–46.

    Article  CAS  PubMed  Google Scholar 

  11. Wang H, Bloom O, Zhang M, Vishnubhakat JM, Ombrellino M, Che J et al. HMG-1 as a late mediator of endotoxin lethality in mice. Science 1999; 285: 248–251.

    Article  CAS  PubMed  Google Scholar 

  12. Mitola S, Belleri M, Urbinati C, Coltrini D, Sparatore B, Pedrazzi M et al. Cutting edge: extracellular high mobility group box-1 protein is a proangiogenic cytokine. J Immunol 2006; 176: 12–15.

    Article  CAS  PubMed  Google Scholar 

  13. Schlueter C, Weber H, Meyer B, Rogalla P, Roser K, Hauke S et al. Angiogenetic signaling through hypoxia: HMGB1: an angiogenetic switch molecule. Am J Pathol 2005; 166: 1259–1263.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ohmori H, Luo Y, Kuniyasu H . Non-histone nuclear factor HMGB1 as a therapeutic target in colorectal cancer. Expert Opin Ther Targets 2011; 15: 183–193.

    Article  CAS  PubMed  Google Scholar 

  15. Tang D, Kang R, Zeh III HJ, Lotze MT . High-mobility group box 1 and cancer. Biochim Biophys Acta 2010; 1799: 131–140.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. van Beijnum JR, Buurman WA, Griffioen AW . Convergence and amplification of toll-like receptor (TLR) and receptor for advanced glycation end products (RAGE) signaling pathways via high mobility group B1 (HMGB1). Angiogenesis 2008; 11: 91–99.

    Article  PubMed  Google Scholar 

  17. Liu Y, Xie C, Zhang X, Huang D, Zhou X, Tan P et al. Elevated expression of HMGB1 in squamous-cell carcinoma of the head and neck and its clinical significance. Eur J Cancer 2010; 46: 3007–3015.

    Article  CAS  PubMed  Google Scholar 

  18. Liu L, Yang M, Kang R, Wang Z, Zhao Y, Yu Y et al. HMGB1-induced autophagy promotes chemotherapy resistance in leukemia cells. Leukemia 2011; 25: 23–31.

    Article  PubMed  Google Scholar 

  19. Chung HW, Lee SG, Kim H, Hong DJ, Chung JB, Stroncek D et al. Serum high mobility group box-1 (HMGB1) is closely associated with the clinical and pathologic features of gastric cancer. J Transl Med 2009; 7: 38.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Andersson U, Erlandsson-Harris H, Yang H, Tracey KJ . HMGB1 as a DNA-binding cytokine. J Leukoc Biol 2002; 72: 1084–1091.

    CAS  PubMed  Google Scholar 

  21. Scaffidi P, Misteli T, Bianchi ME . Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature 2002; 418: 191–195.

    Article  CAS  PubMed  Google Scholar 

  22. Mullins GE, Sunden-Cullberg J, Johansson AS, Rouhiainen A, Erlandsson-Harris H, Yang H et al. Activation of human umbilical vein endothelial cells leads to relocation and release of high-mobility group box chromosomal protein 1. Scand J Immunol 2004; 60: 566–573.

    Article  CAS  PubMed  Google Scholar 

  23. Fiuza C, Bustin M, Talwar S, Tropea M, Gerstenberger E, Shelhamer JH et al. Inflammation-promoting activity of HMGB1 on human microvascular endothelial cells. Blood 2003; 101: 2652–2660.

    Article  CAS  PubMed  Google Scholar 

  24. Treutiger CJ, Mullins GE, Johansson AS, Rouhiainen A, Rauvala HM, Erlandsson-Harris H et al. High mobility group 1 B-box mediates activation of human endothelium. J Intern Med 2003; 254: 375–385.

    Article  CAS  PubMed  Google Scholar 

  25. Yang H, Lundback P, Ottosson L, Erlandsson-Harris H, Venereau E, Bianchi ME et al. Redox modification of cysteine residues regulates the cytokine activity of HMGB1. Mol Med (e-pub ahead of print 7 November 2011; doi:10.2119/molmed.2011.00389).

    Article  PubMed Central  Google Scholar 

  26. Griffioen AW, Damen CA, Blijham GH, Groenewegen G . Tumor angiogenesis is accompanied by a decreased inflammatory response of tumor-associated endothelium. Blood 1996; 88: 667–673.

    CAS  PubMed  Google Scholar 

  27. Hori O, Brett J, Slattery T, Cao R, Zhang J, Chen JX et al. The receptor for advanced glycation end products (RAGE) is a cellular binding site for amphoterin. Mediation of neurite outgrowth and co-expression of rage and amphoterin in the developing nervous system. J Biol Chem 1995; 270: 25752–25761.

    Article  CAS  PubMed  Google Scholar 

  28. Park JS, Svetkauskaite D, He Q, Kim JY, Strassheim D, Ishizaka A et al. Involvement of toll-like receptors 2 and 4 in cellular activation by high mobility group box 1 protein. J Biol Chem 2004; 279: 7370–7377.

    Article  CAS  PubMed  Google Scholar 

  29. Huttunen HJ, Fages C, Rauvala H . Receptor for advanced glycation end products (RAGE)-mediated neurite outgrowth and activation of NF-kappaB require the cytoplasmic domain of the receptor but different downstream signaling pathways. J Biol Chem 1999; 274: 19919–19924.

    Article  CAS  PubMed  Google Scholar 

  30. Youn JH, Shin JS . Nucleocytoplasmic shuttling of HMGB1 is regulated by phosphorylation that redirects it toward secretion. J Immunol 2006; 177: 7889–7897.

    Article  CAS  PubMed  Google Scholar 

  31. Oh YJ, Youn JH, Ji Y, Lee SE, Lim KJ, Choi JE et al. HMGB1 is phosphorylated by classical protein kinase C and is secreted by a calcium-dependent mechanism. J Immunol 2009; 182: 5800–5809.

    Article  CAS  PubMed  Google Scholar 

  32. Hagedorn M, Javerzat S, Gilges D, Meyre A, de Lafarge B, Eichmann A et al. Accessing key steps of human tumor progression in vivo by using an avian embryo model. Proc Natl Acad Sci USA 2005; 102: 1643–1648.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Nowak-Sliwinska P, Ballini JP, Wagnieres G, van den Bergh H . Processing of fluorescence angiograms for the quantification of vascular effects induced by anti-angiogenic agents in the CAM model. Microvasc Res 2010; 79: 21–28.

    Article  CAS  PubMed  Google Scholar 

  34. Nowak-Sliwinska P, van Beijnum JR, van Berkel M, van den Bergh H, Griffioen AW . Vascular regrowth following photodynamic therapy in the chicken embryo chorioallantoic membrane. Angiogenesis 2010; 13: 281–292.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Agresti A, Lupo R, Bianchi ME, Muller S . HMGB1 interacts differentially with members of the Rel family of transcription factors. Biochem Biophys Res Commun 2003; 302: 421–426.

    Article  CAS  PubMed  Google Scholar 

  36. Kawahara K, Biswas KK, Unoshima M, Ito T, Kikuchi K, Morimoto Y et al. C-reactive protein induces high-mobility group box-1 protein release through activation of p38MAPK in macrophage RAW264.7 cells. Cardiovasc Pathol 2008; 17: 129–138.

    Article  CAS  PubMed  Google Scholar 

  37. Zhang CL, Shu MG, Qi HW, Li LW . Inhibition of tumor angiogenesis by HMGB1 A box peptide. Med Hypotheses 2008; 70: 343–345.

    Article  CAS  PubMed  Google Scholar 

  38. Li W, Sama AE, Wang H . Role of HMGB1 in cardiovascular diseases. Curr Opin Pharmacol 2006; 6: 130–135.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Taguchi A, Blood DC, del Toro G, Canet A, Lee DC, Qu W et al. Blockade of RAGE-amphoterin signalling suppresses tumour growth and metastases. Nature 2000; 405: 354–360.

    Article  CAS  PubMed  Google Scholar 

  40. Biscetti F, Straface G, De Cristofaro R, Lancellotti S, Rizzo P, Arena V et al. High-mobility group box-1 protein promotes angiogenesis after peripheral ischemia in diabetic mice through a VEGF-dependent mechanism. Diabetes 2010; 59: 1496–1505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Fontijn R, Hop C, Brinkman HJ, Slater R, Westerveld A, van Mourik JA et al. Maintenance of vascular endothelial cell-specific properties after immortalization with an amphotrophic replication-deficient retrovirus containing human papilloma virus 16 E6/E7 DNA. Exp Cell Res 1995; 216: 199–207.

    Article  CAS  PubMed  Google Scholar 

  42. van Beijnum JR, van der Linden E, Griffioen AW . Angiogenic profiling and comparison of immortalized endothelial cells for functional genomics. Exp Cell Res 2008; 314: 264–272.

    Article  CAS  PubMed  Google Scholar 

  43. Nowak-Sliwinska P, van Beijnum JR, Casini A, Nazarov AA, Wagnieres G, van den Bergh H et al. Organometallic ruthenium(II) arene compounds with antiangiogenic activity. J Med Chem 2011; 54: 3895–3902.

    Article  CAS  PubMed  Google Scholar 

  44. Lim SH, Thivierge C, Nowak-Sliwinska P, Han J, van den Bergh H, Wagnieres G et al. In vitro and in vivo photocytotoxicity of boron dipyrromethene derivatives for photodynamic therapy. J Med Chem 2010; 53: 2865–2874.

    Article  CAS  PubMed  Google Scholar 

  45. Laib AM, Bartol A, Alajati A, Korff T, Weber H, Augustin HG . Spheroid-based human endothelial cell microvessel formation in vivo. Nat Protoc 2009; 4: 1202–1215.

    Article  CAS  PubMed  Google Scholar 

  46. Nowak-Sliwinska P, Weiss A, van Beijnum JR, Wong TJ, Ballini JP, Lovisa B et al. Angiostatic kinase inhibitors to sustain photodynamic angio-occlusion. J Cell Mol Med (e-pub ahead of print 1 September 2011; doi:10.1111/j.1582-4934.2011.01440.x).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Thijssen VL, Brandwijk RJ, Dings RP, Griffioen AW . Angiogenesis gene expression profiling in xenograft models to study cellular interactions. Exp Cell Res 2004; 299: 286–293.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants of the transnational University Limburg (tUL), GROW—School for Oncology and Developmental Biology, the sixth EU Framework Programme (Integrated Project ‘Angiotargeting’; contract no. 504743) in the area of ‘Life sciences, genomics and biotechnology for health’ and Center for Translational Molecular Medicine (CTMM) ‘03O-201 MAMMOTH’. We are grateful for financial support from J Jacobi Trust, and technical assistance from Dr Roeland Hanemaaijer, Saskia van der Velden, Iris Schulkens, Rajshri Lalai and Maaike van Berkel.

Author contributions: JRvB wrote the manuscript; JRvB and PN-S designed research, performed experiments and analyzed data; EvdB and PH performed experiments; WAB contributed analytical tools; AWG designed research.

Fundings: Transnational University Limburg (tUL); EU Framework Programme Integrated Project ‘Angiotargeting’; contract no. 50474; Center for Translational Molecular Medicine (CTMM) ‘03O-201 MAMMOTH’.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A W Griffioen.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Beijnum, J., Nowak-Sliwinska, P., van den Boezem, E. et al. Tumor angiogenesis is enforced by autocrine regulation of high-mobility group box 1. Oncogene 32, 363–374 (2013). https://doi.org/10.1038/onc.2012.49

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2012.49

Keywords

This article is cited by

Search

Quick links