Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Combination of cytosine deaminase suicide gene expression with DR5 antibody treatment increases cancer cell cytotoxicity

Abstract

Combined treatment using adenoviral-directed enzyme/prodrug therapy and immunotherapy has the potential to become a powerful alternative method of cancer therapy. We have developed adenoviral vectors encoding the cytosine deaminase gene (Ad-CD) and cytosine deaminase:uracil phosphoribosyltransferase fusion gene (Ad-CD:UPRT). A monoclonal antibody, TRA-8, specifically binds to death receptor 5, one of two death receptors bound by tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). The purpose of this study was to evaluate cytotoxicity in vitro and therapeutic efficacy in vivo of the combination of Ad-CD:UPRT and TRA-8 against human pancreatic cancer and glioma cell lines. The present study demonstrates that Ad-CD:UPRT infection resulted in increased 5-FC-mediated cell killing, compared with Ad-CD. Furthermore, a significant increase of cytotoxicity following Ad-CD:UPRT/5-FC and TRA-8 treatment of cancer cells in vitro was demonstrated. Animal studies showed significant inhibition of tumor growth of MIA PaCa-2 pancreatic and D54MG glioma xenografts by the combination of Ad-CD:UPRT/5-FC plus TRA-8 as compared with either agent alone or no treatment. The results suggest that the combination of Ad-CD:UPRT/5-FC with TRA-8 produces an additive cytotoxic effect in cancer cells in vitro and in vivo. These data indicate that combined treatment with enzyme/prodrug therapy and TRAIL immunotherapy provides a promising approach for cancer therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

Abbreviations

Ad:

adenovirus

CD:

cytosine deaminase

DR5:

death receptor 5

CMV:

cytomegalovirus

E. coli :

Escherichia coli

EGFP:

enhanced green fluorescent protein

5-FC:

5-fluorocytosine

5-FU:

5-fluorouracil

MOI:

multiplicity of infection

TRAIL:

tumor necrosis factor-related apoptosis-inducing ligand

TBS:

Tris-buffered solution

TCID50:

50% tissue culture infectious dose

TS:

thymidylate synthase

UPRT:

uracil phosphoribosyltransferase

References

  1. Shirakawa T, Gardner TA, Ko SC, Bander N, Woo S, Gotoh A et al. Cytotoxicity of adenoviral-mediated cytosine deaminase plus 5-fluorocytosine gene therapy is superior to thymidine kinase plus acyclovir in a human renal cell carcinoma model. J Urol 1999; 162: 949–954.

    Article  CAS  PubMed  Google Scholar 

  2. Lawrence TS, Rehemtulla A, Ng EY, Wilson M, Trosko JE, Stetson PL . Preferential cytotoxicity of cells transduced with cytosine deaminase compared to bystander cells after treatment with 5-fluorocytosine. Cancer Res 1998; 58: 2588–2593.

    CAS  PubMed  Google Scholar 

  3. Koyama F, Sawada H, Fuji H, Hamada H, Hirao T, Ueno M et al. Adenoviral transfer of Escherichia coli uracil phosphoribosyltransferase (UPRT) gene to modulate the sensitivity of the human colon cancer cells to 5-fluorouracil. Eur J Cancer 2000; 36: 2403–2410.

    Article  CAS  PubMed  Google Scholar 

  4. Kawamura K, Tasaki K, Hamada H, Takenaga K, Sakiyama S, Tagawa M . Expression of Escherichia coli uracil phosphoribosyltransferase gene in murine colon carcinoma cells augments the antitumoral effect of 5-fluorouracil and induces protective immunity. Cancer Gene Ther 2000; 7: 637–643.

    Article  CAS  PubMed  Google Scholar 

  5. Tiraby M, Cazaux C, Baron M, Drocourt D, Reynes JP, Tiraby G . Concomitant expression of E. coli cytosine deaminase and uracil phosphoribosyltransferase improves the cytotoxicity of 5-fluorocytosine. FEMS Microbiol Lett 1998; 167: 41–49.

    Article  CAS  PubMed  Google Scholar 

  6. Adachi Y, Tamiya T, Ichikawa T, Terada K, Ono Y, Matsumoto K et al. Experimental gene therapy for brain tumors using adenovirus-mediated transfer of cytosine deaminase gene and uracil phosphoribosyltransferase gene with 5-fluorocytosine. Hum Gene Ther 2000; 11: 77–89.

    Article  CAS  PubMed  Google Scholar 

  7. Chung-Faye GA, Chen MJ, Green NK, Burton A, Anderson D, Mautner V et al. In vivo gene therapy for colon cancer using adenovirus-mediated transfer of the fusion gene cytosine deaminase and uracil phosphoribosyltransferase. Gene Therapy 2001; 8: 1547–1554.

    Article  CAS  PubMed  Google Scholar 

  8. Ichikawa K, Liu W, Zhao L, Wang Z, Liu D, Ohtsuka T et al. Tumoricidal activity of a novel anti-human DR5 monoclonal antibody without hepatocyte cytotoxicity. Nat Med 2001; 7: 954–960.

    Article  CAS  PubMed  Google Scholar 

  9. Buchsbaum DJ, Zhou T, Grizzle WE, Oliver PG, Hammond CJ, Zhang S et al. Antitumor efficacy of TRA-8 anti-DR5 monoclonal antibody alone or in combination with chemotherapy and/or radiation therapy in a human breast cancer model. Clin Cancer Res 2003; 9: 3731–3741.

    CAS  PubMed  Google Scholar 

  10. Kaliberov S, Stackhouse MA, Kaliberova L, Zhou T, Buchsbaum DJ . Enhanced apoptosis following treatment with TRA-8 anti-human DR5 monoclonal antibody and overexpression of exogenous Bax in human glioma cells. Gene Therapy 2004; 11: 658–667.

    Article  CAS  PubMed  Google Scholar 

  11. Pederson LC, Buchsbaum DJ, Vickers SM, Kancharla SR, Mayo MS, Curiel DT et al. Molecular chemotherapy combined with radiation therapy enhances killing of cholangiocarcinoma cells in vitro and in vivo. Cancer Res 1997; 57: 4325–4332.

    CAS  PubMed  Google Scholar 

  12. Chou TC, Talalay P . Quantitative analysis of dose–effect relationships: the combined effects of multiple drugs or enzyme inhibitors. Adv Enz Regul 1984; 22: 27–55.

    Article  CAS  Google Scholar 

  13. Dressler V, Muller G, Suhnel J . CombiTool – a new computer program for analyzing combination experiments with biologically active agents. Comput Biomed Res 1999; 32: 145–160.

    Article  CAS  PubMed  Google Scholar 

  14. Brandes AA . State-of-the-art treatment of high-grade brain tumors. Semin Oncol 2003; 6: 4–9.

    Article  Google Scholar 

  15. Li D, Xie K, Wolff R, Abbruzzese JL . Pancreatic cancer. Lancet 2004; 363: 1049–1057.

    Article  CAS  PubMed  Google Scholar 

  16. Hawkins CJ . TRAIL and malignant glioma. Vitam Horm 2004; 67: 427–542.

    Article  CAS  PubMed  Google Scholar 

  17. Stackhouse MA, Pederson LC, Grizzle WE, Curiel DT, Gebert J, Haack K et al. Fractionated radiation therapy in combination with adenoviral delivery of the cytosine deaminase gene and 5-fluorocytosine enhances cytotoxic and antitumor effects in human colorectal and cholangiocarcinoma models. Gene Therapy 2000; 7: 1019–1026.

    Article  CAS  PubMed  Google Scholar 

  18. Yazawa K, Fisher WE, Brunicardi FC . Current progress in suicide gene therapy for cancer. World J Surg 2002; 26: 783–789.

    Article  PubMed  Google Scholar 

  19. Kambara H, Tamiya T, Ono Y, Ohtsuka S, Terada K, Adachi Y et al. Combined radiation and gene therapy for brain tumors with adenovirus-mediated transfer of cytosine deaminase and uracil phosphoribosyltransferase genes. Cancer Gene Ther 2002; 9: 840–845.

    Article  CAS  PubMed  Google Scholar 

  20. Patterson AV, Saunders MP, Greco O . Prodrugs in genetic chemoradiotherapy. Curr Pharm Des 2003; 9: 2131–2154.

    Article  CAS  PubMed  Google Scholar 

  21. Etienne MC, Cheradame S, Fischel JL, Formento P, Dassonville O, Renee N et al. Response to fluorouracil therapy in cancer patients: the role of tumoral dihydropyrimidine dehydrogenase activity. J Clin Oncol 1995; 13: 1663–1670.

    Article  CAS  PubMed  Google Scholar 

  22. Harris BE, Song R, Soong SJ, Diasio RB . Relationship between dihydropyrimidine dehydrogenase activity and plasma 5-fluorouracil levels with evidence for circadian variation of enzyme activity and plasma drug levels in cancer patients receiving 5-fluorouracil by protracted continuous infusion. Cancer Res 1990; 50: 197–201.

    CAS  PubMed  Google Scholar 

  23. Salonga D, Danenberg KD, Johnson M, Metzger R, Groshen S, Tsao-Wei DD et al. Colorectal tumors responding to 5-fluorouracil have low gene expression levels of dihydropyrimidine dehydrogenase, thymidylate synthase, and thymidine phosphorylase. Clin Cancer Res 2000; 6: 1322–1327.

    CAS  PubMed  Google Scholar 

  24. Lenz HJ, Leichman CG, Danenberg KD, Danenberg PV, Groshen S, Cohen H et al. Thymidylate synthetase mRNA level in adenocarcinoma of the stomach: a predictor for primary tumor response and overall survival. J Clin Oncol 1996; 14: 176–182.

    Article  CAS  PubMed  Google Scholar 

  25. Inaba M, Naoe Y, Mitsuhashi J . Mechanisms for 5-fluorouracil resistance in human colon cancer DLD-1 cells. Biol Pharm Bull 1998; 21: 569–573.

    Article  CAS  PubMed  Google Scholar 

  26. Wang FS, Aschele C, Sobrero A, Chang YM, Bertino JR . Decreased folylpolyglutamate synthetase expression: a novel mechanism of fluorouracil resistance. Cancer Res 1993; 53: 3677–3680.

    CAS  PubMed  Google Scholar 

  27. Koyama F, Sawada H, Hirao T, Fujii H, Hamada H, Nakano H . Combined suicide gene therapy for human colon cancer cells using adenovirus-mediated transfer of Escherichia coli cytosine deaminase gene and Escherichia coli uracil phosphoribosyltransferase gene with 5-fluorocytosine. Cancer Gene Ther 2000; 7: 1015–1022.

    Article  CAS  PubMed  Google Scholar 

  28. Kanai F, Kawakami T, Hamada H, Sadata A, Yoshida Y, Tanaka T et al. Adenovirus mediated transduction of Escherichia coli uracil phosphoribosyltransferase gene sensitizes cancer cells to low concentrations of 5-fluorouracil. Cancer Res 1998; 58: 1946–1951.

    CAS  PubMed  Google Scholar 

  29. Miyagi T, Koshida K, Hori O, Konaka H, Katoh H, Kitagawa Y et al. Gene therapy for prostate cancer using the cytosine deaminase/uracil phosphoribosyltransferase suicide system. J Gene Med 2003; 5: 30–37.

    Article  CAS  PubMed  Google Scholar 

  30. Kurozumi K, Tamiya T, Ono Y, Otsuka S, Kambara H, Adachi Y et al. Apoptosis induction with 5-fluorocytosine/cytosine deaminase gene therapy for human malignant glioma cells mediated by adenovirus. J Neurooncol 2004; 66: 117–127.

    Article  PubMed  Google Scholar 

  31. Zhang SN, Yuan SZ, Zhu ZH, Wen ZF, Huang ZQ, Zeng ZY . Apoptosis induced by 5-flucytosine in human pancreatic cancer cells genetically modified to express cytosine deaminase. Acta Pharmacol Sin 2000; 21: 655–659.

    CAS  PubMed  Google Scholar 

  32. Ohtsuka T, Buchsbaum D, Oliver P, Makhija S, Kimberly R, Zhou T . Synergistic induction of tumor cell apoptosis by death receptor antibody and chemotherapy agent through JNK/p38 and mitochondrial death pathway. Oncogene 2003; 22: 2034–2044.

    Article  CAS  PubMed  Google Scholar 

  33. Keane MM, Ettenberg SA, Nau MM, Russell EK, Lipkowitz S . Chemotherapy augments TRAIL-induced apoptosis in breast cell lines. Cancer Res 1999; 59: 734–741.

    CAS  PubMed  Google Scholar 

  34. Ashkenazi A, Pai RC, Fong S, Leung S, Lawrence DA, Marsters SA et al. Safety and antitumor activity of recombinant soluble Apo2 ligand. J Clin Invest 1999; 104: 155–162.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Naka T, Sugamura K, Hylander BL, Widmer MB, Rustum YM, Repasky EA . Effects of tumor necrosis factor-related apoptosis-inducing ligand alone and in combination with chemotherapeutic agents on patients' colon tumors grown in SCID mice. Cancer Res 2002; 62: 5800–5806.

    CAS  PubMed  Google Scholar 

  36. von Haefen C, Gillissen B, Hemmati PG, Wendt J, Guner D, Mrozek A et al. Multidomain Bcl-2 homolog Bax but not Bak mediates synergistic induction of apoptosis by TRAIL and 5-FU through the mitochondrial apoptosis pathway. Oncogene 2004; 23: 8320–8332.

    Article  CAS  PubMed  Google Scholar 

  37. Bonavida B, Ng CP, Jazirehi A, Schiller G, Mizutani Y . Selectivity of TRAIL-mediated apoptosis of cancer cells and synergy with drugs: the trail to non-toxic cancer therapeutics. Int J Oncol 1999; 15: 793–802.

    CAS  PubMed  Google Scholar 

  38. Nagane M, Pan G, Weddle JJ, Dixit VM, Cavenee WK, Huang H-JS . Increased death receptor 5 expression by chemotherapeutic agents in human gliomas causes synergistic cytotoxicity with tumor necrosis factor-related apoptosis-inducing ligand in vitro and in vivo. Cancer Res 2000; 60: 847–853.

    CAS  PubMed  Google Scholar 

  39. Wen J, Ramadevi N, Nguyen D, Perkins C, Worthington E, Bhalla K . Antileukemic drugs increase death receptor 5 levels and enhance Apo-2L-induced apoptosis of human acute leukemia cells. Blood 2000; 96: 3900–3906.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Sankyo Co., Ltd for providing the TRA-8 antibody and Sally B Lagan for assistance in preparing the manuscript. Supported in part by NCI SPORE grants in Brain Cancer P50 CA97247 and Pancreatic Cancer P20 CA11905.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D J Buchsbaum.

Additional information

Conflict of Interest

DJB has intellectual property interest related to the TRA-8 anti-DR5 antibody.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaliberov, S., Chiz, S., Kaliberova, L. et al. Combination of cytosine deaminase suicide gene expression with DR5 antibody treatment increases cancer cell cytotoxicity. Cancer Gene Ther 13, 203–214 (2006). https://doi.org/10.1038/sj.cgt.7700874

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.cgt.7700874

Keywords

This article is cited by

Search

Quick links