Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Polyethylenimine/DNA complexes shielded by transferrin target gene expression to tumors after systemic application

Abstract

Systemic application of positively charged polycation/DNA complexes has been shown to result in predominant gene expression in the lungs. Targeting gene expression to other sites, eg distant tumors, is hampered by nonspecific interactions largely due to the positive surface charge of transfection complexes. In the present study we show that the positive surface charge of PEI (25 kDa branched or 22 kDa linear)/DNA complexes can be efficiently shielded by covalently incorporating transferrin at sufficiently high densities in the complex, resulting in a dramatic decrease in nonspecific interactions, eg with erythrocytes, and decreased gene expression in the lung. Systemic application of transferrin-shielded PEI/DNA complexes into A/J mice bearing subcutaneously growing Neuro2a tumors via the tail vein resulted in preferential (100- to 500-fold higher) luciferase reporter gene expression in distant tumors as compared with the major organs including the lungs. Tumor targeting is also demonstrated by DNA uptake and β-galactosidase gene expression in tumor cells. Assessing DNA distribution following systemic application significant amounts of DNA were found in the liver and tumor. However, in the liver, DNA was mainly taken up by Kupffer cells and degraded without significant transgene expression. In the tumor, DNA was associated mainly with tumor cells and frequently found near structures which resemble primitive blood vessels.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Behr JP . Gene transfer with synthetic cationic amphiphiles: prospects for gene therapy (review) Bioconj Chem 1994 5: 382–389

    Article  CAS  Google Scholar 

  2. Felgner JH et al. Enhanced gene delivery and mechanism studies with a novel series of cationic lipid formulations J Biol Chem 1994 269: 2550–2561

    CAS  PubMed  Google Scholar 

  3. Wagner E et al. Coupling of adenovirus to transferrin-polylysine/DNA complexes greatly enhances receptor-mediated gene delivery and expression of transfected genes Proc Natl Acad Sci USA 1992 89: 6099–6103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Boussif O et al. A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo – polyethylenimine Proc Natl Acad Sci USA 1995 92: 7297–7301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Tang MX, Redemann CT, Szoka FC Jr . In vitro gene delivery by degraded polyamidoamine dendrimers Bioconj Chem 1996 7: 703–714

    Article  CAS  Google Scholar 

  6. Goula D et al. Size, diffusibility and transfection performance of linear PEI/DNA complexes in the mouse central nervous system Gene Therapy 1998 5: 712–717

    Article  CAS  PubMed  Google Scholar 

  7. Kircheis R et al. Coupling of cell-binding ligands to polyethylenimine for targeted gene delivery Gene Therapy 1997 4: 409–418

    Article  CAS  PubMed  Google Scholar 

  8. Plank C, Mechtler K, Szoka F, Wagner E . Activation of the complement system by synthetic DNA complexes: a potential barrier for intravenous gene delivery Hum Gene Ther 1996 7: 1437–1446

    Article  CAS  PubMed  Google Scholar 

  9. Ogris M et al. PEGylated DNA/transferrin–PEI complexes: reduced interaction with blood components, extended circulation in blood and potential for systemic gene delivery Gene Therapy 1999 6: 595–605

    Article  CAS  PubMed  Google Scholar 

  10. Kircheis R, Wagner E . Polycation/DNA complexes for in vivo gene delivery Gene Ther Regul 2000 1: 95–114

    Article  CAS  Google Scholar 

  11. Gregoriadis G (ed . ). Liposomes as Drug Carriers: Recent Trends and Progress John Wiley and Sons: New York 1988

    Google Scholar 

  12. Papahadjopoulos D et al. Sterically stabilized liposomes: improvements in pharmacokinetics and antitumor therapeutic efficacy Proc Natl Acad Sci USA 1991 88: 11460–11464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Mahato RI et al. Physicochemical and pharmacokinetic characteristics of plasmid DNA/cationic liposome complexes J Pharmacol Sci 1995 84: 1267–1271

    Article  CAS  Google Scholar 

  14. Boussif O, Zanta MA, Behr J-P . Optimized galenics improve in vitro gene transfer with cationic molecules up to a thousand-fold Gene Therapy 1996 3: 1074–1080

    CAS  PubMed  Google Scholar 

  15. Abdallah B et al. A powerful nonviral vector for in vivo gene transfer into the adult mammalian brain: polyethylenimine Hum Gene Ther 1996 7: 1947–1954

    Article  CAS  PubMed  Google Scholar 

  16. Ferrari S et al. ExGen 500 is an efficient vector for gene delivery to lung epithelial cells in vitro and in vivo Gene Therapy 1997 4: 1100–1106

    Article  CAS  PubMed  Google Scholar 

  17. Goula D et al. Polyethylenimine-based intravenous delivery of transgenes to mouse lung Gene Therapy 1998 5: 1291–1295

    Article  CAS  PubMed  Google Scholar 

  18. Zou S-M, Erbacher P, Remy J-S, Behr J-P . Systemic linear polyethylenimine (L-PEI)-mediated gene delivery in the mouse J Gene Med 2000 2: 128–134

    Article  CAS  PubMed  Google Scholar 

  19. Goula D et al. Rapid crossing of the pulmonary endothelial barrier by polyethylenimine/ DNA complexes Gene Therapy 2000 7: 499–504

    Article  CAS  PubMed  Google Scholar 

  20. Coll J-L et al. In vivo delivery to tumors of DNA complexed with linear polyethylenimine Hum Gene Ther 1999 10: 1659–1666

    Article  CAS  PubMed  Google Scholar 

  21. Zanta MA, Boussif O, Adib A, Behr JP . In vitro gene delivery to hepatocytes with galactosylated polyethylenimine Bioconjug Chem 1997 8: 839–844

    Article  CAS  PubMed  Google Scholar 

  22. Erbacher P, Remy JS, Behr JP . Gene transfer with synthetic virus-like particles via the integrin-mediated endocytosis pathway Gene Therapy 1999 6: 138–145

    Article  CAS  PubMed  Google Scholar 

  23. Diebold SS et al. Efficient gene delivery into human dendritic cells by adenovirus polyethylenimine and Mannose polyethylenimine transfection Hum Gene Ther 1999 10: 775–786

    Article  CAS  PubMed  Google Scholar 

  24. Wightman L, Patzelt E, Wagner E, Kircheis R . Development of transferrin-polycation/DNA based vectors for gene delivery to melanoma cells J Drug Target 1999 7: 293–303

    Article  CAS  PubMed  Google Scholar 

  25. Kircheis R et al. Polycation-based DNA complexes for tumor-targeted gene delivery in vivo J Gene Med 1999 1: 111–120

    Article  CAS  PubMed  Google Scholar 

  26. Ogris M et al. The size of DNA/transferrin–PEI complexes is an important factor for gene expression in cultured cells GeneTherapy 1998 5: 1425–1433

    CAS  Google Scholar 

  27. Liu F, Song YK, Liu D . Hydrodynamics-based transfection in animals by systemic administration of plasmid DNA GeneTherapy 1999 6: 1258–1266

    CAS  Google Scholar 

  28. Zhang G, Budker V, Wolff J . High levels of foreign gene expression in hepatocytes after tail vein injections of naked DNA Hum Gene Ther 1999 10: 1735–1737

    Article  CAS  PubMed  Google Scholar 

  29. Zelphati O, Liang X, Hobart P, Felgner PL . Gene chemistry: functionally and conformationally intact fluorescent plasmid DNA Hum Gene Ther 1999 10: 15–24

    Article  CAS  PubMed  Google Scholar 

  30. Liu F, Qi H, Huang L, Liu D . Factors controlling the efficiency of cationic lipid-mediated transfection in vivo via intravenous administration Gene Therapy 1997 4: 517–523

    Article  CAS  PubMed  Google Scholar 

  31. Liu Y et al. Factors influencing the efficiency of cationic liposome-mediated intravenous gene delivery Nat Biotechnol 1997 15: 167–173

    Article  CAS  PubMed  Google Scholar 

  32. Dash PR et al. Factors affecting blood clearance and in vivo distribution of polyelectrolyte complexes for gene delivery Gene Therapy 1999 6: 643–650

    Article  CAS  PubMed  Google Scholar 

  33. Wolfert MA et al. Polyelectrolyte vectors for gene delivery: influence of cationic polymer on biophysical properties of complexes formed with DNA Bioconjug Chem 1999 10: 993–1004

    Article  CAS  PubMed  Google Scholar 

  34. Dash PR et al. Decreased binding to proteins and cells of polymeric gene delivery vectors surface modified with multivalent hydrophilic polymer and retargeting through attachment of transferrin J Biol Chem 2000 275: 3793–3802

    Article  CAS  PubMed  Google Scholar 

  35. Li S, Huang L . In vivo gene transfer via intravenous administration of cationic lipid-protamine–DNA (LPD) complexes Gene Therapy 1997 4: 891–900

    Article  CAS  PubMed  Google Scholar 

  36. Templeton NS et al. Improved DNA: liposome complexes for increased systemic delivery and gene expression Nat Biotechnol 1997 15: 647–652

    Article  CAS  PubMed  Google Scholar 

  37. Song YK, Liu F, Chu S, Liu D . Characterization of cationic liposome-mediated gene transfer in vivo by intravenous administration Hum Gene Ther 1997 8: 1585–1594

    Article  CAS  PubMed  Google Scholar 

  38. Xu L et al. Transferrin-liposome-mediated systemic p53 gene therapy in combination with radiation results in regression of human head and neck cancer xenografts Hum Gene Ther 1999 10: 2941–2952

    Article  CAS  PubMed  Google Scholar 

  39. Gerlowski LE, Jain RK . Microvascular permeability of normal and neoplastic tissues Microvasc Res 1986 31: 288–305

    Article  CAS  PubMed  Google Scholar 

  40. Yuan F et al. Vascular permeability in a human tumor xenograft: molecular size dependence and cutoff size Cancer Res 1995 55: 3752–3756

    CAS  PubMed  Google Scholar 

  41. Hobbs SK et al. Regulation of transport pathways in tumor vessels: role of tumor type and microenvironment Proc Natl Acad Sci USA 1998 95: 4607–4612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Brunner S et al. Cell cycle dependence of gene transfer by lipoplex, polyplex and recombinant adenovirus Gene Therapy 2000 7: 401–407

    Article  CAS  PubMed  Google Scholar 

  43. Thurston G et al. Cationic liposomes target angiogenic endothelial cells in tumors and chronic inflammation in mice J Clin Invest 1998 101: 1401–1413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Vile R, Hart I . In vitro and in vivo targeting of gene expression to melanoma cells Cancer Res 1993 53: 962–967

    CAS  PubMed  Google Scholar 

  45. Dachs GU et al. Targeting gene expression to hypoxic tumor cells Nature Med 1997 3: 515–520

    Article  CAS  PubMed  Google Scholar 

  46. Vacik J, Dean BS, Zimmer WE, Dean DA . Cell-specific nuclear import of plasmid DNA Gene Therapy 1999 6: 1006–1014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zanta MA, Belguise-Valladier P, Behr JP . Gene delivery: a single nuclear localization signal peptide is sufficient to carry DNA to the cell nucleus Proc Natl Acad Sci USA 1999 96: 91–96

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Hofmann C et al. Efficient gene transfer into human hepatocytes by baculovirus vectors Proc Natl Acad Sci USA 1995 92: 10099–10103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Dr Tamas Schweighoffer, Boehringer Ingelheim Austria, GmbH, for the gift of the recombinant luciferase-expressing baculovirus. This work was supported by a European Community grant.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kircheis, R., Wightman, L., Schreiber, A. et al. Polyethylenimine/DNA complexes shielded by transferrin target gene expression to tumors after systemic application. Gene Ther 8, 28–40 (2001). https://doi.org/10.1038/sj.gt.3301351

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3301351

Keywords

This article is cited by

Search

Quick links