Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Suppression of ocular neovascularization with siRNA targeting VEGF receptor 1

Abstract

In this study, we used small interfering RNA (siRNA) directed against vascular endothelial growth factor receptor 1 (vegfr1) mRNA to investigate the role of VEGFR1 in ocular neovascularization (NV). After evaluating many siRNAs, Sirna-027 was identified; it cleaved vegfr1 mRNA at the predicted site and reduced its levels in cultured endothelial cells and in mouse models of retinal and choroidal neovascularization (CNV). Compared to injection of an inverted control sequence, quantitative reverse transcriptase-PCR demonstrated statistically significant reductions of 57 and 40% in vegfr1 mRNA after intravitreous or periocular injection of Sirna-027, respectively. Staining showed uptake of 5-bromodeoxyuridine-labeled Sirna-027 in retinal cells that lasted between 3 and 5 days after intravitreous injection and was still present 5 days after periocular injection. In a CNV model, intravitreous or periocular injections of Sirna-027 resulted in significant reductions in the area of NV ranging from 45 to 66%. In mice with ischemic retinopathy, intravitreous injection of 1.0 μg of Sirna-027 reduced retinal NV by 32% compared to fellow eyes treated with 1.0 μg of inverted control siRNA. These data suggest that VEGFR1 plays an important role in the development of retinal and CNV and that targeting vegfr1 mRNA with siRNA has therapeutic potential.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Okamoto N, Tobe T, Hackett SF, Ozaki H, Vinores MA, LaRochelle W et al. Transgenic mice with increased expression of vascular endothelial growth factor in the retina: a new model of intraretinal and subretinal neovascularization. Am J Pathol 1997; 151: 281–291.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Seo M-S, Kwak N, Ozaki H, Yamada H, Okamoto N, Yamada E et al. Dramatic inhibition of retinal and choroidal neovascularization by oral administration of a kinase inhibitor. Am J Pathol 1999; 154: 1743–1753.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ozaki H, Seo M-S, Ozaki K, Yamada H, Yamada E, Okamoto N et al. Blockade of vascular endothelial cell growth factor receptor signaling is sufficient to completely prevent retinal neovascularization. Am J Pathol 2000; 156: 679–707.

    Article  Google Scholar 

  4. Kwak N, Okamoto N, Wood JM, Campochiaro PA . VEGF is an important stimulator in a model of choroidal neovascularization. Invest Ophthalmol Vis Sci 2000; 41: 3158–3164.

    CAS  PubMed  Google Scholar 

  5. Gragoudas ES, Adamis AP, Cunningham Jr ET, Feinsod M, Guyer DR . Pegaptanib for neovascular age-related macular degeneration. N Engl J Med 2004; 351: 2805–2816.

    Article  CAS  PubMed  Google Scholar 

  6. Rosenfeld PJ, Villante N, Feuer WJ, Puliafito CA, McCluskey ER . RhuFav V2 (anti-VEGF antibody fragment) in neovascular AMD: safety, tolerability, and efficacy of multiple, escalatin dose intravitreal injections. Invest Ophthalmol Vis Sci 2003; 44 (Suppl): 970.

    Google Scholar 

  7. Gille H, Kowalski J, Li B, LeCouter J, Moffat B, Zioncheck TF et al. Analysis of biological effects and signaling properties of Flt-1 (VEGFR-1) and KDR (VEGFR-2). J Biol Chem 2001; 276: 3222–3230.

    Article  CAS  PubMed  Google Scholar 

  8. Park JE, Chen HH, Winer J, Houck KA, Ferrara N . Placenta growth factor. Potentiation of vascular endothelial growth factor bioactivity, in vitro and in vivo, and high affinity binding Flt-1 but not to Flk-1/KDR. J Biol Chem 1994; 269: 25646–25654.

    CAS  PubMed  Google Scholar 

  9. Fong GH, Zhang L, Bryce DM, Peng J . Increased hemangioblast commitment, not vascular disorganization, is the primary defect in flt-1 knockout mice. Development 1999; 126: 3015–3025.

    CAS  PubMed  Google Scholar 

  10. Luttun A, Tjwa M, Moons L, Wu Y, Angelillo-Scherrer A, Liao F et al. Revascularization of ischemic tissues by PlGF treatment, and inhibition of tumor angiogenesis, arthritis and atherosclerosis by anti-Flt1. Nat Med 2002; 8: 831–839.

    Article  CAS  PubMed  Google Scholar 

  11. LeCouter J, Moritz DR, Bing L, Phillips GL, Liang XH, Gerber H-P et al. Angiogenesis-independent endothelial protection of liver: role of VEGFR-1. Science 2003; 299: 890–893.

    Article  CAS  PubMed  Google Scholar 

  12. Elbashir SM, Martinez J, Patkaniowska A, Lendeckel W, Tuschi T . Functional anatomy of siRNAs for mediating efficient RNAi in Drosophila melanogaster embryo lysate. EMBO J 2001; 20: 6877–6888.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hiratsuka S, Minowa O, Kuno J, Noba T, Shibuya M . Flt-1 lacking the tyrosine kinase domain is sufficient for normal devleopment and angiogenesis in mice. Proc Natil Acad Sci USA 1998; 95: 9349–9354.

    Article  CAS  Google Scholar 

  14. Hiratsuka S, Maru Y, Okada A, Seiki M, Noda T, Shibuya M . Involvement of Flt-1 tyrosine kinase (vascular endothelial growth factor receptor-1) in pathological angiogenesis. Cancer Res 2001; 61: 1207–1213.

    CAS  PubMed  Google Scholar 

  15. Ishida S, Shinoda K, Kawashima S, Oguchi Y, Okada Y, Ikeda E . Coexpression of VEGF receptors VEGF-R2 and neurophilin-1 in proliferative diabetic retinopathy. Invest Ophthalmol Vis Sci 2000; 41: 1649–1656.

    CAS  PubMed  Google Scholar 

  16. Ishihama H, Ohbayashi M, Kurosawa N, Kitsukawa T, Matsuura O, Miyake Y et al. Colocalization of neuropilin-1 and Flk-1 in retinal neovascularization in a mouse model of retinopathy. Invest Ophthalmol Vis Sci 2001; 42: 1172–1178.

    CAS  PubMed  Google Scholar 

  17. Oh H, Takagi H, Otani A, Koyama S, Kemmonchi S, Uemura A et al. Selective induction of neuropilin-1 by vascular endothelial growth factor (VEGF): a mechanism contributing to VEGF-induced angiogenesis. Proc Natl Acad Sci USA 2002; 99: 383–388.

    Article  CAS  PubMed  Google Scholar 

  18. Shen J, Samul R, Zimmer J, Liu H, Liang X, Hackett SF et al. Deficiency of neuropilin 2 suppresses VEGF-induced retinal neovascularization. Mol Med 2004; 10: 12–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wincott F, Di Renzo A, Shaffex C, Grimm S, Tracz D, Workman C et al. Synthesis, deprotection, analysis and purification of RNA and ribozymes. Nucleic Acids Res 1995; 23: 2677–2684.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Peracchi A, Beigelman L, Usman N, Herschlag D . Rescue of abasic hammerhead ribozymes by exogenous addition of specific bases. Proc Natl Acad Sci USA 1996; 93: 11522–11527.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Martinez J, Patkaniowska A, Urlaub H, Luhrmann R, Tuschi T . Single-stranded antisense siRNAs guide target RNA cleavage in RNAi. Cell 2002; 110: 563–574.

    Article  CAS  PubMed  Google Scholar 

  22. Milligan JF, Groebe DR, Witherell FW, Uhlenbeck OC . Oligoribonucleotide synthesis using T7 RNA polymerase and synthetic DNA templates. Nucleic Acids Res 1987; 15: 8783–8798.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Vournakis JN, Celantano J, Finn M, Lockard RE, Mitra T, Pavlakis G et al. Sequence and structure analysis of end-labeled RNA with nucleases. In: Chirikjian GG, Papas TS (eds) Gene Amplification and Analysis. New York: Elsevier/North Holland, 1981, pp. 267–298.

    Google Scholar 

  24. Levin JR, Krummel B, Chamberlin MJ . Isolation and properties of transcribing ternary complexes of Escherichia coli RNA polymerase positioned at a single template base. J Mol Biol 1987; 196: 85–100.

    Article  CAS  PubMed  Google Scholar 

  25. Smith LEH, Wesolowski E, McLellan A, Kostyk SK, D’Amato R, Sullivan R et al. Oxygen-induced retinopathy in the mouse. Invest Ophthalmol Vis Sci 1994; 35: 101–111.

    CAS  PubMed  Google Scholar 

  26. Tobe T, Ortega S, Luna JD, Ozaki H, Okamoto N, Derevjanik NL et al. Targeted disruption of the FGF2 gene does not prevent choroidal neovascularization in a murine model. Am J Pathol 1998; 153: 1641–1646.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Edelman JL, Castro MR . Quantitative image analysis of laser-induced choroidal neovascularization in rat. Exp Eye Res 2000; 71: 523–533.

    Article  CAS  PubMed  Google Scholar 

  28. Tobe T, Okamoto N, Vinores MA, Derevjanik NL, Vinores SA, Zack DJ et al. Evolution of neovascularization in mice with overexpression of vascular endothelial growth factor in photoreceptors. Invest Ophthalmol Vis Sci 1998; 39: 180–188.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from Sirna Therapeutics, Inc. PAC is the George S and Dolores Dore Eccles Professor of Ophthalmology and Neuroscience. PAC is a consultant for Sirna Therapeutics, Inc., which is monitored by the Conflict of Interest Committee of the Johns Hopkins University School of Medicine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P A Campochiaro.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shen, J., Samul, R., Silva, R. et al. Suppression of ocular neovascularization with siRNA targeting VEGF receptor 1. Gene Ther 13, 225–234 (2006). https://doi.org/10.1038/sj.gt.3302641

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3302641

Keywords

This article is cited by

Search

Quick links