Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Manuscript
  • Published:

Apoptosis

Telomerase inhibition enhances apoptosis in human acute leukemia cells: possibility of antitelomerase therapy

Abstract

Telomerase is a ribonucleoprotein enzyme that maintains protective structures at the ends of eukaryotic chromosomes. We examined the impact of telomerase inhibition by the dominant-negative human catalytic subunit of telomerase (DN-hTERT) on the biological features of acute leukemia. We introduced vectors encoding dominant- negative (DN)-hTERT, wild-type (WT)-hTERT, or a control vector expressing only a drug-resistant marker into a telomerase-positive human acute lymphoblastic leukemia cell line, HAL-01. Expression of DN-hTERT dramatically inhibited telomerase activity, leading to apoptotic cell death. Mutant telomerase expression also enhanced daunorubicin-induced apoptosis. Nude mice (n=5 per group) received subcutanous implants of HAL-01 cells expressing the control vector or DN-hTERT or WT-hTERT. Implantation of HAL-01 cells expressing control vector (n=5) rapidly produced tumors, whereas implantation of those expressing DN-hTERT (n=5) did not. Thus, telomerase inhibition both growth of HAL-01 cells in vitro and tumorigenic capacity in vivo. Furthermore, the G-quadruplex-interactive telomerase-specific inhibitor, telomestatin, shortened the telomere length and induced apoptosis in freshly isolated primary acute leukemia cells. These results suggest that antitelomerase therapy may be useful in some acute leukemias in combination with antileukemic agents such as daunorubicin.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Blackburn E, Greider C (eds). Telomers. New York: Cold Spring Harbor Laboratory Press, 1995.

    Google Scholar 

  2. Harley CB . Telomere loss: mitotic clock or genetic time bomb? Mutat Res 1991; 256: 271–282.

    Article  CAS  PubMed  Google Scholar 

  3. van Steensel B, Smogorzewska A, de Lange T . TRF2 protects human telomeres from end-to-end fusions. Cell 1998; 92: 401–413.

    Article  CAS  PubMed  Google Scholar 

  4. de Lange T, Jacks T . For better or worse? Telomerase inhibition and cancer. Cell 1999; 98: 273–275.

    Article  CAS  PubMed  Google Scholar 

  5. Vaziri H, Dragowska W, Allsopp RC, Thomas TE, Harley CB, Lansdorp PM . Evidence for a mitotic clock in human hematopoietic stem cells: loss of telomeric DNA with age. Proc Natl Acad Sci USA 1994; 91: 9857–9860.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Shay JW, Werbin H, Wright WE . Telomeres and telomerase in human leukemias. Leukemia 1996; 10: 1255–1261.

    CAS  PubMed  Google Scholar 

  7. Engelhardt M, Kumar R, Albanell J, Pettengell R, Han R, Moore MAS . Telomerase regulation, cell cycle, and telomere stability in primitive hematopoietic cells. Blood 1997; 90: 182–193.

    CAS  PubMed  Google Scholar 

  8. Ohyashiki JH, Ohyashiki K, Iwama H, Hayashi S, Toyama K, Shay JW . Clinical implications of telomerase activity levels in acute leukemia. Clin Cancer Res 1997; 3: 619–625.

    CAS  PubMed  Google Scholar 

  9. Engelhardt M, Mackenzie K, Drullinsky P, Silver RT, Moore MA . Telomerase activity and telomere length in acute and chronic leukemia, pre- and post-ex vivo culture. Cancer Res 2000; 60: 610–617.

    CAS  PubMed  Google Scholar 

  10. Brummendorf TH, Holyoake TL, Rufer N, Barnett MJ, Schulzer M, Eaves CJ et al. Prognostic implications of differences in telomere length between normal and malignant cells from patients with chronic myeloid leukemia measured by flow cytometry. Blood 2000; 95: 1883–1890.

    CAS  PubMed  Google Scholar 

  11. Hu BT, Insel RA . Up-regulation of telomerase in human B lymphocytes occurs independently of cellular proliferation and with expression of the telomerase catalytic subunit. Eur J Immunol 1999; 29: 3745–3753.

    Article  CAS  PubMed  Google Scholar 

  12. Chaves-Dias C, Hundley TR, Gilfillan AM, Kirshenbaum AS, Cunha-Melo JR, Metcalfe DD et al. Induction of telomerase activity during development of human mast cells from peripheral blood CD34+ cells: comparisons with tumor mast-cell lines. J Immunol 2001; 166: 6647–6656.

    Article  CAS  PubMed  Google Scholar 

  13. Bodnar AG, Ouellette M, Frolkis M, Holt SE, Chiu CP, Morin GB et al. Extension of life-span by introduction of telomerase into normal human cells. Science 1998; 279: 349–352.

    Article  CAS  PubMed  Google Scholar 

  14. Kiyono T, Foster SA, Koop JI, McDougall JK, Galloway DA, Klingelhutz AJ . Both Rb/pl6INK4a inactivation and telomerase activity are required to immortalize human epithelial cells. Nature 1998; 396: 84–88.

    Article  CAS  PubMed  Google Scholar 

  15. Jiang XR, Jimenetz G, Chang E, Frolkis M, Kusler B, Sage M et al. Telomerase expression in human somatic cells does not induce changes associated with a transformed phenotype. Nature Genet 1999; 21: 111–114.

    Article  CAS  PubMed  Google Scholar 

  16. Morales CP, Holt SE, Ouellette M, Kaur KJ, Van Y, Wilson KS et al. Absence of cancer-associated changes in human fibroblasts immortalized with telomerase. Nat Genet 1999; 21: 115–118.

    Article  CAS  PubMed  Google Scholar 

  17. Hahn WC, Counter CM, Lundberg AS, Beijersbergen RL, Brooks MW, Weinberg RA . Creation of human tumor cells with defined genetic elements. Nature 1999; 400: 464–468.

    Article  CAS  PubMed  Google Scholar 

  18. Wang J, Hannon GJ, Beach DH . Risky immortalization by telomerase. Nature 2000; 405: 755–756.

    Article  CAS  PubMed  Google Scholar 

  19. Weitzman JB, Yaniv M . Rebuilding the road to cancer. Nature 1999; 400: 401–402.

    Article  CAS  PubMed  Google Scholar 

  20. Hahn CW, Stewart SA, Brooks MW, York SG, Eaton E, Kurachi A et al. Inhibition of telomerase limits the growth of human cancer cells. Nat Med 1999; 5: 1164–1170.

    Article  CAS  PubMed  Google Scholar 

  21. Zhang X, Mar V, Zhou W, Harrington L, Robinson MO . Telomere shortening and apoptosis in telomerase-inhibited human tumor cells. Genes Dev 1999; 13: 2388–2399.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ohyashiki K, Fujieda H, Miyauchi J, Ohyashiki JH, Tauchi T, Saito M et al. Establishment of a novel heterotransplantable acute lymphoblastic leukemia cell line with a t(17;19) chromosomal translocation the growth of which is inhibited by interleukin-3. Leukemia 1991; 5: 322–331.

    CAS  PubMed  Google Scholar 

  23. Tauchi T, Yoshimura A, Ohyashiki K . CIS1, a cytokine-inducible SH2 protein, suppresses BCR-ABL-mediated transformation: involvement of the ubiquitin proteasome pathway. Exp Hematol 2001; 29: 356–361.

    Article  CAS  PubMed  Google Scholar 

  24. Ohyashiki JH, Ohyashiki K, Toyama K, Shay JW . A nonradioactive. fluorescence-based telomeric repeat amplification protocol to detect and quantitate telomerase activity. Trends Genet 1996; 12: 395–396.

    Article  CAS  Google Scholar 

  25. Yahata N, Ohyashiki K, Ohyashiki JH, Iwama H, Hayashi S, Ando K et al. Telomerase activity in lung cancer cells obtained from bronchial washings. J Natl Cancer Inst 1998; 90: 684–690.

    Article  CAS  PubMed  Google Scholar 

  26. Iwama H, Ohyashiki K, Ohyashiki JH, Hayashi S, Yahata N, Ando K et al. Telomeric length and telomerase activity vary with age in peripheral blood cells obtained from normal individuals. Hum Genet 1998; 102: 397–402.

    Article  CAS  PubMed  Google Scholar 

  27. Nakajima A, Tauchi T, Ohyashiki K . ABL-specific tyrosine kinase inhibitor, STI571 in vitro, affects Ph-positive acute lymphoblastic leukemia and chronic myelogenous leukemia in blastic crisis. Leukemia 2001; 15: 989–990.

    Article  CAS  PubMed  Google Scholar 

  28. Rufer N, Brummendorf TH, Kolvraa S, Bischoff C, Christensen K, Wadsworth L et al. Telomere fluorescence measurements in granulocytes and T lymphocyte subsets point to a high turnover of hematopoietic stem cells and memory T cells in early childhood. J Exp Med 1999; 190: 157–167.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Shin-ya K, Wierzba K, Matsuo K, Ohtani T, Yamada Y, Furihata K et al. Telomestatin, a novel telomerase inhibitor from Streptomyces anulatus. J Am ChemSoc 2001; 123: 1262–1263.

    Article  CAS  Google Scholar 

  30. Kim MY, Vankayalapati H, Shin-ya K, Wierzba K, Hurley LH . Telomestatin, a potent telomerase inhibitor that interacts quite specifically with the human telomeric intramolecular G-quadruplex. J Am Chem Soc 2002; 124: 2098–2099.

    Article  CAS  PubMed  Google Scholar 

  31. Kilian A, Bowtell DD, Abud HE, Hime GR, Venter DJ, Keese PK et al. Isolation of a candidate human telomerase catalytic subunit gene, which reveals complex splicing patterns in different cell types. Hum Mol Genet 1997; 6: 2011–2019.

    Article  CAS  PubMed  Google Scholar 

  32. Ulaner GA, Hu JF, Vu TH, Giudice LC, Hoffman AR . Telomerase activity in human development is regulated by human telomerase reverse transcriptase (hTERT) transcription and by alternate splicing of hTERT transcripts. Cancer Res 1998; 58: 4168–4172.

    CAS  PubMed  Google Scholar 

  33. Wick M, Zubov D, Hagen G . Genomic organization and promoter characterization of the gene encoding the human telomerase reverse transcriptase (hTERT). Gene 1999; 232: 97–106.

    Article  CAS  PubMed  Google Scholar 

  34. Colgin LM, Wilkinson C, Englezou A, Kilian A, Robinson MO, Reddel RR . The hTERT alpha splice variant is a dominant negative inhibitor of telomerase activity. Neoplasia 2000; 2: 426–432.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Aisner DL, Wright WE, Shay JW . Telomerase regulation: not just flipping the switch. Curr Opin Genet Dev 2002; 12: 80–85.

    Article  CAS  PubMed  Google Scholar 

  36. Lingner J, Hughes TR, Shevchenko A, Mann M, Lundblad V, Cech TR . Reverse transcriptase motifs in the catalytic subunit of telomerase. Science 1997; 276: 561–567.

    Article  CAS  PubMed  Google Scholar 

  37. Sachsinger J, Gonzalez-Suarez E, Samper E, Heicappell R, Muller M, Blasco MA . Telomerase inhibition in RenCa, a murine tumor cell line with short telomeres, by overexpression of a dominant negative mTERT mutant, reveals fundamental differences in telomerase regulation between human and murine cells. Cancer Res 2001; 61: 5580–5586.

    CAS  PubMed  Google Scholar 

  38. Liu JP . Studies of the molecular mechanisms in the regulation of telomerase activity. FASEB J 1999; 13: 2091–2104.

    Article  CAS  PubMed  Google Scholar 

  39. Buchkovich KJ, Greider CW . Telomerase regulation during entry into the cell cycle in normal human T cells. Mol Biol Cell 1996; 7: 1443–1454.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kondo S, Kondo Y, Li G, Silverman RH, Cowell JK . Targeted therapy of human malignant glioma in a mouse model by 2-5A antisense directed against telomerase RNA. Oncogene 1998; 16: 3323–3330.

    Article  CAS  PubMed  Google Scholar 

  41. Glukhov AI, Zimnik OV, Gordeev SA, Severin SE . Inhibition of telomerase activity of melanoma cells in vitro by antisense oligonucleotides. Biochem Biophys Res Commun 1998; 248: 368–371.

    Article  CAS  PubMed  Google Scholar 

  42. Damm K, Hemmann U, Garin-Chesa P, Hauel N, Kauffmann I, Priepke H et al. A highly selective telomerase inhibitor limiting human cancer cell proliferation. EMBO J 2001; 20: 6958–6968.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ohyashiki JH, Sashida G, Tauchi T, Ohyashiki K . Telomeres and telomerase in hematologic neoplasia. Oncogens 2002; 21: 680–687.

    Article  CAS  Google Scholar 

  44. Lee KH, Rudolph KL, Ju YJ, Greenberg RA, Cannizzaro L et al. Telomere dysfunction alters the chemotherapeutic profile of transformed cells. Proc Natl Acad Sci USA 2001; 98: 3381–3386.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Baur JA, Zou Y, Shay JW, Wright WE . Telomere position effect in human cells. Science 2001; 292: 2075–2077.

    Article  CAS  PubMed  Google Scholar 

  46. Artandi SE, Chang S, Lee SL, Alson S, Gottlieb GJ, Chin L et al. Telomere dysfunction promotes non-reciprocal translocations and epithelial cancers in mice. Nature 2000; 406: 641–645.

    Article  CAS  PubMed  Google Scholar 

  47. Wright WE, Shay JW . Telomere dynamics in cancer progression and prevention: fundamental differences in human and mouse telomere biology. Nat Med 2000; 6: 849–851.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by a Grant-in-Aid from the Ministry of Education, Science, and Culture of Japan (to TT); by a Grant-in-Aid for the Second Term Comprehensive 10-year Strategy for Cancer Control from the Ministry of Health Labor, and Welfare, Japan (to KO); by the Promotion and Mutual Aid Corporation for Private Schools of Japan (to KO); and by the High-tech Research Center for Intractable Disease of Tokyo Medical University from the Ministry of Education, Culture. Sports, Science, and Technology in Japan (to KO).

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nakajima, A., Tauchi, T., Sashida, G. et al. Telomerase inhibition enhances apoptosis in human acute leukemia cells: possibility of antitelomerase therapy. Leukemia 17, 560–567 (2003). https://doi.org/10.1038/sj.leu.2402825

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2402825

Keywords

This article is cited by

Search

Quick links