Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Research Article
  • Published:

A haplotype at the DBH locus, associated with low plasma dopamine β-hydroxylase activity, also associates with cocaine-induced paranoia

Abstract

Low levels of dopamine β-hydroxylase (DβH) protein in the plasma or cerebrospinal fluid (CSF) are associated with greater vulnerability to positive psychotic symptoms in several psychiatric disorders. DβH level is a stable, genetically controlled trait. DBH, the locus encoding DβH protein, is the major quantitative trait locus controlling plasma and CSF DβH levels. We therefore hypothesized that DBH variants or haplotypes, associated with low levels of DβH in the plasma, would also associate with greater vulnerability to cocaine-induced paranoia. To test this hypothesis, we first showed that a di-allelic variant, DBH*5′-ins/del, located approximately 3 kb 5′ to the DBH transcriptional start site, significantly associates with plasma DβH activity in European-Americans (n = 66). Linkage disequilibrium analysis of that polymorphism and DBH*444g/a, another di-allelic variant associated with DβH levels, demonstrated that alleles of similar association to DβH levels are in positive disequilibrium. We then estimated DBH haplotype frequencies in cocaine-dependent European Americans rated for cocaine-induced paranoia (n = 45). As predicted, the low-DβH-associated haplotype, Del-a, was significantly more frequent (P = 0.0003) in subjects endorsing cocaine-induced paranoia (n = 29) than in those denying it (n = 16). Comparison to control haplotype frequencies (n = 145 healthy European-Americans) showed that the association predominantly reflected under-representation of Del-a haplotypes in those denying cocaine-induced paranoia. We conclude that: (a) the two DBH polymorphisms we studied are associated with plasma DBH levels; (b) those two polymorphisms are in significant linkage disequilibrium in European Americans, with alleles of similar association to DβH levels in positive disequilibrium; and (c) the haplotype associated with low DBH activity is also associated with cocaine-induced paranoia.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Satel SL, Southwick S, Gawin F . Clinical features of cocaine-induced paranoia Am J Psychiatry 1991; 148: 495–499

    Article  CAS  PubMed  Google Scholar 

  2. Brady KT, Lydiard RB, Malcolm R, Ballenger JC . Cocaine-induced psychosis J Clin Psychiatry 1991; 52: 509–511

    CAS  PubMed  Google Scholar 

  3. Rosse RR, Fay-McCarthy M, Collins Jr JP, Alim TN, Deutsch SI . The relationship between cocaine-induced paranoia and compulsive foraging: a preliminary report Addiction 1994; 89: 1097–1104

    Article  CAS  PubMed  Google Scholar 

  4. Satel SL, Edell WS . Cocaine-induced paranoia and psychosis-proneness Am J Psychiatry 1991; 148: 1708–1711

    Article  CAS  PubMed  Google Scholar 

  5. Crawley JN, Belknap JK, Collins A, Crabbe JC, Frankel W, Henderson N et al. Behavioral phenotypes of inbred mouse strains: implications and recommendations for molecular studies Psychopharmacology 1997; 132: 107–124

    Article  CAS  PubMed  Google Scholar 

  6. Boutros N, Krystal J, Gelernter J . Sensory gating and cocaine induced paranoia Biol Psychiatry 1998; 43: 89S

    Article  Google Scholar 

  7. Freedman R, Coon H, Myles-Worsley M, Orr-Urtreger A, Olincy A, Davis A et al. Linkage of a neurophysiological deficit in schizophrenia to a chromosome 15 locus Proc Natl Acad Sci USA 1997; 94: 587–592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Brady K, Anton R, Ballenger JC, Lydiard B, Adinoff B, Selander J . Cocaine abuse among schizophrenic patients Am J Psychiatry 1990; 147: 1164–1167

    Article  CAS  PubMed  Google Scholar 

  9. Lysaker P, Bell M, Beam-Goulet J, Milstein R . Relationship of positive and negative symptoms to cocaine abuse in schizophrenia J Nerv Mental Dis 1994; 182: 09–112

    Article  Google Scholar 

  10. Gelernter J, Kranzler HR, Satel SL, Rao PA . Genetic association between dopamine transporter protein alleles and cocaine-induced paranoia Neuropsychopharmacology 1994; 11: 195–200

    Article  CAS  PubMed  Google Scholar 

  11. Nurnberger JI, Gershon ES, Simmons S, Ebert M, Kessler LR, Dibble ED et al. Behavioral, biochemical, and neuroendocrine responses to amphetamine in normal twins and ‘well-state’ bipolar patients Psychoneuroendocrinology 1982; 7: 163–176

    Article  CAS  PubMed  Google Scholar 

  12. Lyons MJ, Toomey R, Meyer JM, Green AI, Eisen SA, Goldberg J et al. How do genes influence marijuana use? The role of subjective effects Addiction 1997; 92: 409–417

    Article  CAS  PubMed  Google Scholar 

  13. Cooper JR, Bloom FE, Roth RH . The Biochemical Basis of Neuropharmacology Oxford University Press: New York 1986

    Google Scholar 

  14. Dunnette J, Weinshilboum RM . Human serum dopamine-β-hydroxylase: correlation of enzyme activity with immunoreactive protein in genetically defined samples Am J Hum Genet 1976; 28: 155–166

    CAS  PubMed  PubMed Central  Google Scholar 

  15. O'Connor DT, Levine GL, Frigon RP . Homologous radio-immunoassay of human plasma dopamine β-hydroxylase: analysis of homospecific activity, circulating plasma pool and intergroup differences based upon race, blood pressure and cardiac function J Hypertension 1983; 1: 227–233

    Article  CAS  Google Scholar 

  16. O'Connor DT, Cervenka JH, Stone RA, Levine GL, Parmer RJ, Franco-Bourland RE et al. Dopamine β-hydroxylase immunoreactivity in human cerebrospinal fluid: properties, relationship to central noradrenergic neuronal activity and variation in Parkinson's disease and congenital dopamine β-hydroxylase deficiency Clin Sci 1994; 86: 148–158

    Article  Google Scholar 

  17. Weinshilboum RM . Serum dopamine-β-hydroxylase Pharmacol Rev 1978; 30: 133–166

    CAS  PubMed  Google Scholar 

  18. Oxenstierna G, Edman G, Iselius L, Oreland L, Ross SB, Sedvall G . Concentrations of monoamine metabolites in the cerebrospinal fluid of twins and unrelated individuals—a genetic study J Psychiat Res 1986; 20: 19–29

    Article  CAS  PubMed  Google Scholar 

  19. Goldin LR, Gershon ES, Lake CR, Murphy DL, McGinniss M, Sparkes RS . Segregation and linkage studies of plasma dopamine-beta-hydroxylase (DBH), erythrocyte catechol-O-methyl transferase (COMT) and platelet monoamine oxidase (MAO): possible linkage between the ABO locus and a gene controlling DBH activity Am J Hum Genet 1982; 34: 250–262

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Wilson AF, Elston RC, Siervogel RM, Tran LD . Linkage of a gene regulating dopamine-β-hydroxylase activity and the ABO blood group locus Am J Hum Genet 1988; 42: 160–166

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Wei J, Ramchand CN, Hemmings GP . Possible control of dopamine β-hydroxylase via a codominant mechanism associated with the polymorphic (GT)n repeat at its gene locus in healthy individuals Hum Genet 1997; 99: 52–55

    Article  CAS  PubMed  Google Scholar 

  22. Cubells JF, van Kammen DP, Kelley ME, Anderson GM, O'Connor DT, Price LH et al. Dopamine β-hydroxylase: two polymorphisms in linkage disequilibrium at the structural gene DBH associate with biochemical phenotypic variation Hum Genet 1998; 102: 533–540

    Article  CAS  PubMed  Google Scholar 

  23. Sternberg DF, van Kammen DP, Lerner P, Bunney WE . Schizophrenia: dopamine-β-hydroxylase activity and treatment response Science 1982; 216: 1423–1425

    Article  CAS  PubMed  Google Scholar 

  24. van Kammen DP, Kelley ME, Gilbertson MW, Gurklis J, O'Connor DT . CSF dopamine β-hydroxylase in schizophrenia: associations with premorbid functioning and brain computerized tomography scan measures Am J Psychiatry 1994; 151: 372–378

    Article  CAS  PubMed  Google Scholar 

  25. Meltzer HY, Hyong HW, Carroll BJ, Russo P . Serum dopamine-β-hydroxylase in the affective psychoses and schizophrenia: decreased activity in unipolar psychotically depressed patients Arch Gen Psychiatry 1976; 33: 585–591

    Article  CAS  PubMed  Google Scholar 

  26. Mód L, Rihmer Z, Magyar I, Arató M, Alföldi A, Bagdy G . Serum DBH activity in psychotic vs nonpsychotic unipolar and bipolar depression Psychiatry Res 1986; 19: 331–333

    Article  PubMed  Google Scholar 

  27. Sapru MK, Rao BSSR, Channabasavanna SM . Serum dopamine-β-hydroxylase activity in clinical subtypes of depression Acta Psychiatr Scand 1989; 80: 474–478

    Article  CAS  PubMed  Google Scholar 

  28. Meyers BS, Alexopoulos GS, Kakuma T, Tirumalesetti F, Gabriele M, Alpert S et al. Decreased dopamine beta-hydroxylase activity in unipolar geriatric delusional depression Biol Psychiatry 1999; 45: 448–442

    Article  CAS  PubMed  Google Scholar 

  29. Kobayashi K, Kiuchi K, Ishii A, Kaneda N, Kurosawa Y, Fujita K et al. Human dopamine β-hydoxylase gene: two mRNA types having different 3-terminal regions are produced through alternative polyadenylation Nucl Acids Res 1989; 17: 1089–1102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Cubells JF, Kobayashi K, Nagatsu T, Kidd KK, Kidd JR, Calafell F et al. Population genetics of a functional variant of the dopamine β-hydroxylase gene (DBH) Am J Med Genet (Neuropsychiatric Genet) 1997; 74: 374–379

    Article  CAS  Google Scholar 

  31. Gelernter J, Kranzler H, Satel SL . No association between D2 dopamine receptor alleles or haplotypes and cocaine dependence or severity of cocaine dependence in European- or African Americans Biol Psychiatry 1999; 45: 340–345

    Article  CAS  PubMed  Google Scholar 

  32. Nahmias J, Burley MW, Povey S, Porter C, Craig I, Wolfe J . A 19bp deletion polymorphism adjacent to a dinucleotide repeat polymorphism at the human dopamine beta-hydroxylase locus Hum Molec Gen 1992; 1: 286

    Article  CAS  Google Scholar 

  33. Long JC, Williams RC, Urbanek M . An E-M algorithm and testing strategy for multiple-locus haplotypes Am J Hum Genet 1995; 56: 799–810

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Lewontin RC . On measures of gametic disequilibrium Genetics 1988; 120: 849–852

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Sham PC, Curtis D . Monte Carlo tests for associations between disease and alleles at highly polymorphic loci Ann Hum Genet 1995; 59: 97–105

    Article  CAS  PubMed  Google Scholar 

  36. Craig SP, Buckle VJ, Lamaroux A, Malet J, Craig IW . Localization of the human dopamine beta-hydroxylase (DBH) gene to chromosome 9q34 Cytogenet Cell Genet 1988; 48: 48–50

    Article  CAS  PubMed  Google Scholar 

  37. Gelernter J, Gejman PV, Bisighini S, Kidd KK . Sequence tagged site (STS) TaqI RFLP at dopamine β-hydroxylase (DBH) Nucl Acids Res 1991; 19: 1957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Perry SE, Summar L, Phillips JA, Robertson D . Linkage analysis of the human dopamine β-hydroxylase gene Genomics 1991; 10: 493–495

    Article  CAS  PubMed  Google Scholar 

  39. Gelernter J, Goldman D, Risch N . The A1 allele at the D2 dopamine receptor gene and alcoholism: a reappraisal JAMA 1993; 269: 1673–1677

    Article  CAS  PubMed  Google Scholar 

  40. Gejman PV, Gelernter J . Mutational analysis of candidate genes in psychiatric disorders Am J Med. Genet (Neuropsychiatric Genet) 1993; 48: 184–191

    Article  CAS  Google Scholar 

  41. Kidd KK, Pakstis AJ, Castiglione CM, Kidd JR, Speed WC, Goldman D et al. DRD2 haplotypes containing the taq I A1 allele: implications for alcoholism research Alcoholism: Clin Exp Res 1996; 20: 697–705

    Article  CAS  Google Scholar 

  42. Carroll KM, Nich C, Ball SA, McCance E, Rounsaville BJ . Treatment of cocaine and alcohol dependence with psychotherapy and disulfiram Addiction 1998; 93: 713–728

    Article  CAS  PubMed  Google Scholar 

  43. Petrakis IL, Carrol KM, Nich C, Gordon L, McCance-Katz EL, Frankforter T et al. Disulfiram treatment for cocaine dependence in methadone maintained opioid addicts Addiction (in press)

  44. Hameedi FA, Rosen MI, McCance-Katz EF, MCMahon TJ, Price LH, Jatlow PI et al. Behavioral, physiological and pharmacological interaction of cocaine and disulfiram Biol Psychiatry 1995; 37: 560–563

    Article  CAS  PubMed  Google Scholar 

  45. McCance-Katz EF, Kosten TR, Jatlow P . Chronic disulfiram treatment effects on intranasal cocaine administration: initial results Biol Psychiatry 1998; 43: 540–543

    Article  CAS  PubMed  Google Scholar 

  46. McCance-Katz EF, Kosten TR, Jatlow P . Disulfiram effects on acute cocaine administration Drug Alc Dep 1998; 52: 27–39

    Article  CAS  Google Scholar 

  47. Major LF, Lerner P, Ballenger JC, Brown GL, Goodwin FK, Lovenberg W . Dopamine β-hydroxylase in the cerebrospinal fluid: relationship to disulfiram-induced psychosis Biol Psychiatry 1979; 14: 337–344

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Dr Sally L Satel for subject assessment and collection of DNA samples. Ann Marie Wantroba MS and Harold Landis provided excellent technical assistance. Supported by the US Department of Veterans Affairs Research Program (Research Advisory Group and Presidential Early Career Award for Scientists and Engineers to JFC, Merit Review Award to JG; the VA National Centers for Alcoholism and for Schizophrenia, and the VA Connecticut Mental Illness Research Educational and Clinical Center); NARSAD Young Investigator Awards (JFC and RTM); NIH Grants K02 MH01387 and RO1 AA11330 (JG), P50-AA03510 and K-02-AA00239 (HRK), R-29 DA09573 and K20 DA00216 (EMK), the Yale Mental Health Clinical Research Center (MH30920), the General Clinical Research Center of the University of Connecticut (M01-RR06192), the State of Connecticut Department of Mental Health, a Stanley Foundation Award and a Departmental Research Award, Department of Psychiatry and Human Behavior, Brown University School of Medicine (LHP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J F Cubells.

Additional information

This article is a ‘United States Government Work’ paper as defined by the US Copyright Act.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cubells, J., Kranzler, H., McCance-Katz, E. et al. A haplotype at the DBH locus, associated with low plasma dopamine β-hydroxylase activity, also associates with cocaine-induced paranoia. Mol Psychiatry 5, 56–63 (2000). https://doi.org/10.1038/sj.mp.4000657

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.mp.4000657

Keywords

This article is cited by

Search

Quick links