Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Research Article
  • Published:

Combined action of the ACE D- and the G-protein β3 T-allele in major depression: a possible link to cardiovascular disease?

Abstract

Although it is well established that depression is a major risk factor for the development of coronary artery disease and that cerebrovascular disease can be a major contributing factor for the development of depression, the information about the interplay between the central nervous system and cardiovascular disease is still limited. We investigated the angiotensin I converting enzyme (ACE) ID and the G-protein β3-subunit (Gβ3) C825T polymorphism in 201 patients with unipolar major depression and 161 ethnically and age-matched controls. Both gene variants have earlier been associated with either cardiovascular disease or affective disorders, making them good candidates for a combined analysis. We found a significant increase in the Gβ3 T allele (OR = 1.61, 95% CI 1.17–2.2, P = 0.0035) and a marginal altered genotype distribution of the ACE ID polymorphism with decrease in the II genotypes (χ2 = 6.43, df=3, P = 0.04) in the patients’ group. Analysing the data for both genes we found that the combined actions of ACE and Gβ3 genotypes accumulate in carriers of the ACE D allele (ID and DD) and Gβ3 TT homozygotes with ID/DD-TT carriers showing a more than five-fold increase in risk for major depression (crude OR = 5.83, 95% CI 1.99–17.08, P = 0.0002). As our study was carried out with depressive patients without serious cardiac impairment at the time of the investigation, we are presently unable to predict whether this combined action of the ACE ID/DD–Gβ3 TT genotype is increasing the risk for both disorders. Nevertheless our study reports for the first time that the same allelic combination of two genes that have been shown to increase the risk for myocardial infarction (Naber et al, 2000) increase the vulnerability for depressive disorder.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Musselman DL, Evans DL, Nemeroff CB . The relationship of depression to cardiovascular disease: epidemiology, biology, and treatment Arch Gen Psychiatry 1998 55: 580–592

    Article  CAS  Google Scholar 

  2. Frasure-Smith N, Lesperance F, Talajic M . Depression following myocardial infarction. Impact on 6-month survival JAMA 1993 270: 1819–1825

    Article  CAS  Google Scholar 

  3. Penninx BW, Beekman AT, Honig A et al. Depression and cardiac mortality: results from a community-based longitudinal study Arch Gen Psychiatry 2001 58: 221–227

    Article  CAS  Google Scholar 

  4. Dam H . Depression in stroke patients 7 years following stroke Acta Psychiatr Scand 2001 103: 287–293

    Article  CAS  Google Scholar 

  5. Kumar A, Mintz J, Bilker W, Gottlieb G . Autonomous neurobiological pathways to late-life major depressive disorder. Clinical and pathophysiological implications Neuropsychopharmacology 2002 26: 229–236

    Article  Google Scholar 

  6. Carney RM, Freedland KE, Veith RC et al. Major depression, heart rate, and plasma norepinephrine in patients with coronary heart disease Biol Psychiatry 1999 45: 458–463

    Article  CAS  Google Scholar 

  7. Holsboer F . The corticosteroid receptor hypothesis of depression Neuropsychopharmacology 2000 23: 477–501

    Article  CAS  Google Scholar 

  8. Troxler RG, Sprague EA, Albanese RA, Fuchs R, Thompson AJ . The association of elevated plasma cortisol and early atherosclerosis as demonstrated by coronary angiography Atherosclerosis 1977 26: 151–162

    Article  CAS  Google Scholar 

  9. Corvol P, Soubrier F, Jeunemaitre X . Molecular genetics of the renin-angiotensin-aldosterone system in human hypertension Pathol Biol (Paris) 1997 45: 229–239

    CAS  Google Scholar 

  10. Cambien F, Poirier O, Lecerf L et al. Deletion polymorphism in the gene for angiotensin-converting enzyme is a potent risk factor for myocardial infarction Nature 1992 359: 641–644

    Article  CAS  Google Scholar 

  11. Arinami T, Li L, Mitsushio H, Itokawa M, Hamaguchi H, Toru M . An insertion/deletion polymorphism in the angiotensin converting enzyme gene is associated with both brain substance P contents and affective disorders Biol Psychiatry 1996 40: 1122–1127

    Article  CAS  Google Scholar 

  12. Jenkins TA, Mendelsohn-Frederick AO, Chai SY . Angiotensin-converting enzyme modulates dopamine turnover in the striatum J Neurochem 1997 68: 1304–1311

    Article  CAS  Google Scholar 

  13. Kramer MS, Cutler N, Feighner J et al. Distinct mechanism for antidepressant activity by blockade of central substance P receptors Science 1998 281: 1640–1645

    Article  CAS  Google Scholar 

  14. Gunduz H, Georges JL, Fleishman S . Quinapril and depression Am J Psychiatry 1999 156: 1114–1115

    CAS  PubMed  Google Scholar 

  15. Zubenko GS, Nixon RA . Mood-elevating effect of captopril in depressed patients Am J Psychiatry 1984 141: 110–111

    Article  CAS  Google Scholar 

  16. Okuyama S, Sakagawa T, Sugiyama F, Fukamizu A, Murakami K . Reduction of depressive-like behavior in mice lacking angiotensinogen Neurosci Lett 1999 261: 167–170

    Article  CAS  Google Scholar 

  17. Aguilera G, Kiss A, Luo X . Increased expression of type 1 angiotensin II receptors in the hypothalamic paraventricular nucleus following stress and glucocorticoid administration J Neuroendocrinol 1995 7: 775–783

    Article  CAS  Google Scholar 

  18. Jezova D, Ochedalski T, Kiss A, Aguilera G . Brain angiotensin II modulates sympathoadrenal and hypothalamic pituitary adrenocortical activation during stress J Neuroendocrinol 1998 10: 67–72

    Article  CAS  Google Scholar 

  19. Rigat B, Hubert C, Alhenc GF, Cambien F, Corvol P, Soubrier F . An insertion/deletion polymorphism in the angiotensin I-converting enzyme gene accounting for half the variance of serum enzyme levels J Clin Invest 1990 86: 1343–1346

    Article  CAS  Google Scholar 

  20. O'Malley JP, Maslen CL, Illingworth DR . Angiotensin-converting enzyme DD genotype and cardiovascular disease in heterozygous familial hypercholesterolemia Circulation 1998 97: 1780–1783

    Article  CAS  Google Scholar 

  21. Naber CK, Husing J, Wolfhard U, Erbel R, Siffert W . Interaction of the ACE D allele and the GNB3 825T allele in myocardial infarction Hypertension 2000 36: 986–989

    Article  CAS  Google Scholar 

  22. Siffert W, Rosskopf D, Siffert G et al. Association of a human G-protein beta3 subunit variant with hypertension Nat Genet 1998 18: 45–48

    Article  CAS  Google Scholar 

  23. ZILL P, Baghai TC, Zwanzger P et al. Evidence for an association between a G-protein beta3-gene variant with depression and response to antidepressant treatment Neuroreport 2000 11: 1893–1897

    Article  CAS  Google Scholar 

  24. Baghai T, Schle C, Zwanzger P et al. Possible influence of the insertion/deletion polymorphism in the angiotensin I-converting enzyme gene on therapeutic outcome in affective disorders Mol Psychiatry 2001 6: 258–259

    Article  CAS  Google Scholar 

  25. Poch E, Gonzales D, Giner V, Bragulat E, Coca A, de la Sierra A . Molecular basis of salt sensitivity in human hypertension. Evaluation of renin-angiotensin-aldosterone system gene polymorphisms Hypertension 2001 38: 1204–1209

    Article  CAS  Google Scholar 

  26. Giner V, Corella D, Chaves FJ et al. Renin-angiotensin system genetic polymorphisms and essential hypertension in the Spanish population Med Clin 2001 117: 525–529

    Article  CAS  Google Scholar 

  27. Furlong RA, Keramatipour M, Ho LW et al. No association of an insertion/deletion polymorphism in the angiotensin I converting enzyme gene with bipolar or unipolar affective disorders Am J Med Genet 2000 96: 733–735

    Article  CAS  Google Scholar 

  28. Meira-Lima IV, Pereira AC, Mota GF, Krieger JE, Vallada H . Angio-tensinogen and angiotensin converting enzyme gene polymorphisms and the risk of bipolar affective disorder in humans Neurosci Lett 2000 293: 103–106

    Article  CAS  Google Scholar 

  29. Rigat B, Hubert C, Corvol P, Soubrier F . PCR detection of the insertion/deletion polymorphism of the human angiotensin converting enzyme gene (DCP1) (dipeptidyl carboxypeptidase 1) Nucleic Acids Res 1992 20: 1433

    Article  CAS  Google Scholar 

  30. Zacharieva S, Matrozov P, Stoeva I, Andonova K . The effect of angiotensin-converting enzyme inhibition on ACTH response to corti-cotropin-releasing hormone (CRH) in normal men Horm Metab Res 1991 23: 245–246

    Article  CAS  Google Scholar 

  31. Rasenick MM, Chaney KA, Chen J . G protein-mediated signal transduction as a target of antidepressant and antibipolar drug action: evidence from model systems J Clin Psychiary 1996 57 Suppl 13: 49–55

    CAS  Google Scholar 

  32. Ram A, Guedj F, Cravchik A et al. No abnormality in the gene for the G protein stimulatory alpha subunit in patients with bipolar disorder Arch Gen Psychiatry 1997 54: 44–48

    Article  CAS  Google Scholar 

  33. Mattera R, Hayek S, Summers BA, Grove DL . Agonist-specific alterations in receptor-phospholipase coupling following inactivation of Gi2alpha gene Biochem J 1998 332: 263–271

    Article  CAS  Google Scholar 

  34. Figler RA, Graber SG, Lindorfer MA, Yasuda H, Linden J, Garrison JC . Reconstitution of recombinant bovine A-1 adenosine receptors in Sf9 cell membranes with recombinant G proteins of defined composition Mol Pharmacol 1996 50: 1587–1595

    CAS  PubMed  Google Scholar 

  35. Lefkovits J, Plow EF, Topol EJ . Platelet glycoprotein IIb/IIIa receptors in cardiovascular medicine N Engl J Med 1995 332: 1553–1559

    Article  CAS  Google Scholar 

  36. Nemeroff CB, Musselman DL . Are platelets the link between depression and ischemic heart disease? Am Heart J 2000 140: 57–62

    Article  CAS  Google Scholar 

  37. Naber C, Hermann BL, Vietzke D et al. Enhanced epinephrine-induced platelet aggregation in individuals carrying the G protein <beta> 3 subunit 825T allele FEBS Lett 2000 484: 199–201

    Article  CAS  Google Scholar 

  38. Lancaster HO . Complex contingency tables treated by the partition of chi2 J. Royal Stat Soc 1951 13: 126–129

    Google Scholar 

Download references

Acknowledgements

This project is supported by the German Federal Research Ministry within the promotional emphasis ‘Competence Nets in Medicine’.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B Bondy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bondy, B., Baghai, T., Zill, P. et al. Combined action of the ACE D- and the G-protein β3 T-allele in major depression: a possible link to cardiovascular disease?. Mol Psychiatry 7, 1120–1126 (2002). https://doi.org/10.1038/sj.mp.4001149

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.mp.4001149

Keywords

This article is cited by

Search

Quick links