Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Prominent synaptic and metabolic abnormalities revealed by proteomic analysis of the dorsolateral prefrontal cortex in schizophrenia and bipolar disorder

Abstract

There is evidence for both similarity and distinction in the presentation and molecular characterization of schizophrenia and bipolar disorder. In this study, we characterized protein abnormalities in the dorsolateral prefrontal cortex in schizophrenia and bipolar disorder using two-dimensional gel electrophoresis. Tissue samples were obtained from 35 individuals with schizophrenia, 35 with bipolar disorder and 35 controls. Eleven protein spots in schizophrenia and 48 in bipolar disorder were found to be differentially expressed (P<0.01) in comparison to controls, with 7 additional spots found to be altered in both diseases. Using mass spectrometry, 15 schizophrenia-associated proteins and 51 bipolar disorder-associated proteins were identified. The functional groups most affected included synaptic proteins (7 of the 15) in schizophrenia and metabolic or mitochondrial-associated proteins (25 of the 51) in bipolar disorder. Six of seven synaptic-associated proteins abnormally expressed in bipolar disorder were isoforms of the septin family, while two septin protein spots were also significantly differentially expressed in schizophrenia. This finding represented the largest number of abnormalities from one protein family. All septin protein spots were upregulated in disease in comparison to controls. This study provides further characterization of the synaptic pathology present in schizophrenia and of the metabolic dysfunction observed in bipolar disorder. In addition, our study has provided strong evidence implicating the septin protein family of proteins in psychiatric disorders for the first time.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Frith C, Dolan R . The role of the prefrontal cortex in higher cognitive functions. Brain Res Cogn Brain Res 1996; 5: 175–181.

    Article  CAS  PubMed  Google Scholar 

  2. Goldman-Rakic PS, Selemon LD . Functional and anatomical aspects of prefrontal pathology in schizophrenia. Schizophr Bull 1997; 23: 437–458.

    Article  CAS  PubMed  Google Scholar 

  3. Goldstein JM, Goodman JM, Seidman LJ, Kennedy DN, Makris N, Lee H et al. Cortical abnormalities in schizophrenia identified by structural magnetic resonance imaging. Arch Gen Psychiatry 1999; 56: 537–547.

    Article  CAS  PubMed  Google Scholar 

  4. Sanfilipo M, Lafargue T, Rusinek H, Arena L, Loneragan C, Lautin A et al. Volumetric measure of the frontal and temporal lobe regions in schizophrenia: relationship to negative symptoms. Arch Gen Psychiatry 2000; 57: 471–480.

    Article  CAS  PubMed  Google Scholar 

  5. Pantelis C, Velakoulis D, McGorry PD, Wood SJ, Suckling J, Phillips LJ et al. Neuroanatomical abnormalities before and after onset of psychosis: a cross-sectional and longitudinal MRI comparison. Lancet 2003; 361: 281–288.

    Article  PubMed  Google Scholar 

  6. Drevets WC, Price JL, Simpson Jr JR, Todd RD, Reich T, Vannier M et al. Subgenual prefrontal cortex abnormalities in mood disorders. Nature 1997; 386: 824–827.

    Article  CAS  PubMed  Google Scholar 

  7. Strakowski SM, Adler CM, DelBello MP . Volumetric MRI studies of mood disorders: do they distinguish unipolar and bipolar disorder? Bipolar Disord 2002; 4: 80–88.

    Article  PubMed  Google Scholar 

  8. Sheline YI . Neuroimaging studies of mood disorder effects on the brain. Biol Psychiatry 2003; 54: 338–352.

    Article  PubMed  Google Scholar 

  9. Selemon LD, Rajkowska G, Goldman-Rakic PS . Elevated neuronal density in prefrontal area 46 in brains from schizophrenic patients: application of a three-dimensional, stereologic counting method. J Comp Neurol 1998; 392: 402–412.

    Article  CAS  PubMed  Google Scholar 

  10. Pierri JN, Volk CL, Auh S, Sampson A, Lewis DA . Decreased somal size of deep layer 3 pyramidal neurons in the prefrontal cortex of subjects with schizophrenia. Arch Gen Psychiatry 2001; 58: 466–473.

    Article  CAS  PubMed  Google Scholar 

  11. Rajkowska G, Selemon LD, Goldman-Rakic PS . Neuronal and glial somal size in the prefrontal cortex: a postmortem morphometric study of schizophrenia and Huntington disease. Arch Gen Psychiatry 1998; 55: 215–224.

    Article  CAS  PubMed  Google Scholar 

  12. Broadbelt K, Byne W, Jones LB . Evidence for a decrease in basilar dendrites of pyramidal cells in schizophrenic medial prefrontal cortex. Schizophr Res 2002; 58: 75–81.

    Article  PubMed  Google Scholar 

  13. Black JE, Kodish IM, Grossman AW, Klintsova AY, Orlovskaya D, Vostrikov V et al. Pathology of layer V pyramidal neurons in the prefrontal cortex of patients with schizophrenia. Am J Psychiatry 2004; 161: 742–744.

    Article  PubMed  Google Scholar 

  14. Rosoklija G, Toomayan G, Ellis SP, Keilp J, Mann JJ, Latov N et al. Structural abnormalities of subicular dendrites in subjects with schizophrenia and mood disorders: preliminary findings. Arch Gen Psychiatry 2000; 57: 349–356.

    Article  CAS  PubMed  Google Scholar 

  15. Kolluri N, Sun Z, Sampson AR, Lewis DA . Lamina-specific reductions in dendritic spine density in the prefrontal cortex of subjects with schizophrenia. Am J Psychiatry 2005; 162: 1200–1202.

    Article  PubMed  Google Scholar 

  16. Cotter D, Mackay D, Chana G, Beasley C, Landau S, Everall IP . Reduced neuronal size and glial cell density in area 9 of the dorsolateral prefrontal cortex in subjects with major depressive disorder. Cereb Cortex 2002; 12: 386–394.

    Article  PubMed  Google Scholar 

  17. Knable MB, Torrey EF, Webster MJ, Bartko JJ . Multivariate analysis of prefrontal cortical data from the Stanley Foundation Neuropathology Consortium. Brain Res Bull 2001; 55: 651–659.

    Article  CAS  PubMed  Google Scholar 

  18. Torrey EF, Barci BM, Webster MJ, Bartko JJ, Meador-Woodruff JH, Knable MB . Neurochemical markers for schizophrenia, bipolar disorder, and major depression in postmortem brains. Biol Psychiatry 2005; 57: 252–260.

    Article  CAS  PubMed  Google Scholar 

  19. Hakak Y, Walker JR, Li C, Wong WH, Davis KL, Buxbaum JD et al. Genome-wide expression analysis reveals dysregulation of myelination-related genes in chronic schizophrenia. Proc Natl Acad Sci USA 2001; 98: 4746–4751.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Vawter MP, Crook JM, Hyde TM, Kleinman JE, Weinberger DR, Becker KG et al. Microarray analysis of gene expression in the prefrontal cortex in schizophrenia: a preliminary study. Schizophr Res 2002; 58: 11–20.

    Article  PubMed  Google Scholar 

  21. Glatt SJ, Everall IP, Kremen WS, Corbeil J, Sasik R, Khanlou N et al. Comparative gene expression analysis of blood and brain provides concurrent validation of SELENBP1 up-regulation in schizophrenia. Proc Natl Acad Sci USA 2005; 102: 15533–15538.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Vawter MP, Barrett T, Cheadle C, Sokolov BP, Wood III WH, Donovan DM et al. Application of cDNA microarrays to examine gene expression differences in schizophrenia. Brain Res Bull 2001; 55: 641–650.

    Article  CAS  PubMed  Google Scholar 

  23. Mirnics K, Middleton FA, Marquez A, Lewis DA, Levitt P . Molecular characterization of schizophrenia viewed by microarray analysis of gene expression in prefrontal cortex. Neuron 2000; 28: 53–67.

    Article  CAS  PubMed  Google Scholar 

  24. Eastwood SL, Burnet PW, Harrison PJ . Decreased hippocampal expression of the susceptibility gene PPP3CC and other calcineurin subunits in schizophrenia. Biol Psychiatry 2005; 57: 702–710.

    Article  CAS  PubMed  Google Scholar 

  25. Sawada K, Barr AM, Nakamura M, Arima K, Young CE, Dwork AJ et al. Hippocampal complexin proteins and cognitive dysfunction in schizophrenia. Arch Gen Psychiatry 2005; 62: 263–272.

    Article  CAS  PubMed  Google Scholar 

  26. Owen MJ, O’Donovan MC, Harrison PJ . Schizophrenia: a genetic disorder of the synapse? BMJ 2005; 330: 158–159.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Frankle WG, Lerma J, Laruelle M . The synaptic hypothesis of schizophrenia. Neuron 2003; 39: 205–216.

    Article  CAS  PubMed  Google Scholar 

  28. Anderson L, Seilhamer J . A comparison of selected mRNA and protein abundances in human liver. Electrophoresis 1997; 18: 533–537.

    Article  CAS  PubMed  Google Scholar 

  29. Gygi SP, Rochon Y, Franza BR, Aebersold R . Correlation between protein and mRNA abundance in yeast. Mol Cell Biol 1999; 19: 1720–1730.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Johnston-Wilson NL, Sims CD, Hofmann JP, Anderson L, Shore AD, Torrey EF et al. Disease-specific alterations in frontal cortex brain proteins in schizophrenia, bipolar disorder, and major depressive disorder. The Stanley Neuropathology Consortium. Mol Psychiatry 2000; 5: 142–149.

    Article  CAS  PubMed  Google Scholar 

  31. Prabakaran S, Swatton JE, Ryan MM, Huffaker SJ, Huang JT, Griffin JL et al. Mitochondrial dysfunction in schizophrenia: evidence for compromised brain metabolism and oxidative stress. Mol Psychiatry 2004; 9: 684–697, 643.

    Article  CAS  PubMed  Google Scholar 

  32. Clark D, Dedova I, Cordwell S, Matsumoto I . A proteome analysis of the anterior cingulate cortex gray matter in schizophrenia. Mol Psychiatry 2006; 11: 459–470, 423.

    Article  CAS  PubMed  Google Scholar 

  33. Beasley CL, Pennington K, Behan A, Wait R, Dunn MJ, Cotter D . Proteomic analysis of the anterior cingulate cortex in the major psychiatric disorders: evidence for disease-associated changes. Proteomics 2006; 6: 3414–3425.

    Article  CAS  PubMed  Google Scholar 

  34. Vawter MP, Tomita H, Meng F, Bolstad B, Li J, Evans S et al. Mitochondrial-related gene expression changes are sensitive to agonal-pH state: implications for brain disorders. Mol Psychiatry 2006; 11: 615, 663–679.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Li JZ, Vawter MP, Walsh DM, Tomita H, Evans SJ, Choudary PV et al. Systematic changes in gene expression in postmortem human brains associated with tissue pH and terminal medical conditions. Hum Mol Genet 2004; 13: 609–616.

    Article  CAS  PubMed  Google Scholar 

  36. Fountoulakis M, Hardmeier R, Hoger H, Lubec G . Postmortem changes in the level of brain proteins. Exp Neurol 2001; 167: 86–94.

    Article  CAS  PubMed  Google Scholar 

  37. Franzen B, Yang Y, Sunnemark D, Wickman M, Ottervald J, Oppermann M et al. Dihydropyrimidinase related protein-2 as a biomarker for temperature and time dependent post mortem changes in the mouse brain proteome. Proteomics 2003; 3: 1920–1929.

    Article  CAS  PubMed  Google Scholar 

  38. O’Farrell PH . High resolution two-dimensional electrophoresis of proteins. J Biol Chem 1975; 250: 4007–4021.

    PubMed  Google Scholar 

  39. Rabilloud T, Valette C, Lawrence JJ . Sample application by in-gel rehydration improves the resolution of two-dimensional electrophoresis with immobilized pH gradients in the first dimension. Electrophoresis 1994; 15: 1552–1558.

    Article  CAS  PubMed  Google Scholar 

  40. Sanchez JC, Rouge V, Pisteur M, Ravier F, Tonella L, Moosmayer M et al. Improved and simplified in-gel sample application using reswelling of dry immobilized pH gradients. Electrophoresis 1997; 18: 324–327.

    Article  CAS  PubMed  Google Scholar 

  41. Gorg A, Postel W, Gunther S, Weser J, Strahler JR, Hanash SM et al. Approach to stationary two-dimensional pattern: influence of focusing time and immobiline/carrier ampholytes concentrations. Electrophoresis 1988; 9: 37–46.

    Article  CAS  PubMed  Google Scholar 

  42. Yan JX, Wait R, Berkelman T, Harry RA, Westbrook JA, Wheeler CH et al. A modified silver staining protocol for visualization of proteins compatible with matrix-assisted laser desorption/ionization and electrospray ionization-mass spectrometry. Electrophoresis 2000; 21: 3666–3672.

    Article  CAS  PubMed  Google Scholar 

  43. Eastwood SL, Burnet PW, Harrison PJ . Decreased hippocampal expression of the susceptibility gene PPP3CC and other calcineurin subunits in schizophrenia. Biol Psychiatry 2005; 57: 702–710.

    Article  CAS  PubMed  Google Scholar 

  44. Sawada K, Barr AM, Nakamura M, Arima K, Young CE, Dwork AJ et al. Hippocampal complexin proteins and cognitive dysfunction in schizophrenia. Arch Gen Psychiatry 2005; 62: 263–272.

    Article  CAS  PubMed  Google Scholar 

  45. Owen MJ, O’Donovan MC, Harrison PJ . Schizophrenia: a genetic disorder of the synapse? BMJ 2005; 330: 158–159.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Frankle WG, Lerma J, Laruelle M . The synaptic hypothesis of schizophrenia. Neuron 2003; 39: 205–216.

    Article  CAS  PubMed  Google Scholar 

  47. Harrison PJ, Weinberger DR . Schizophrenia genes, gene expression, and neuropathology: on the matter of their convergence. Mol Psychiatry 2005; 10: 40–68.

    Article  CAS  PubMed  Google Scholar 

  48. Eastwood SL, Harrison PJ . Hippocampal synaptic pathology in schizophrenia, bipolar disorder and major depression: a study of complexin mRNAs. Mol Psychiatry 2000; 5: 425–432.

    Article  CAS  PubMed  Google Scholar 

  49. Eastwood SL, Harrison PJ . Synaptic pathology in the anterior cingulate cortex in schizophrenia and mood disorders. A review and a Western blot study of synaptophysin, GAP-43 and the complexins. Brain Res Bull 2001; 55: 569–578.

    Article  CAS  PubMed  Google Scholar 

  50. Saito T, Guan F, Papolos DF, Lau S, Klein M, Fann CS et al. Mutation analysis of SYNJ1: a possible candidate gene for chromosome 21q22-linked bipolar disorder. Mol Psychiatry 2001; 6: 387–395.

    Article  CAS  PubMed  Google Scholar 

  51. Beasley CL, Honer WG, Bergmann K, Falkai P, Lutjohann D, Bayer TA . Reductions in cholesterol and synaptic markers in association cortex in mood disorders. Bipolar Disord 2005; 7: 449–455.

    Article  CAS  PubMed  Google Scholar 

  52. Byk T, Dobransky T, Cifuentes-Diaz C, Sobel A . Identification and molecular characterization of Unc-33-like phosphoprotein (Ulip), a putative mammalian homolog of the axonal guidance-associated unc-33 gene product. J Neurosci 1996; 16: 688–701.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Horiuchi M, Loebrich S, Brandstaetter JH, Kneussel M, Betz H . Cellular localization and subcellular distribution of Unc-33-like protein 6, a brain-specific protein of the collapsin response mediator protein family that interacts with the neuronal glycine transporter 2. J Neurochem 2005; 94: 307–315.

    Article  CAS  PubMed  Google Scholar 

  54. Kowara R, Chen Q, Milliken M, Chakravarthy B . Calpain-mediated truncation of dihydropyrimidinase-like 3 protein (DPYSL3) in response to NMDA and H2O2 toxicity. J Neurochem 2005; 95: 466–474.

    Article  CAS  PubMed  Google Scholar 

  55. Modregger J, Ritter B, Witter B, Paulsson M, Plomann M . All three PACSIN isoforms bind to endocytic proteins and inhibit endocytosis. J Cell Sci 2000; 113(Part 24): 4511–4521.

    CAS  PubMed  Google Scholar 

  56. Praefcke GJ, McMahon HT . The dynamin superfamily: universal membrane tubulation and fission molecules? Nat Rev Mol Cell Biol 2004; 5: 133–147.

    Article  CAS  PubMed  Google Scholar 

  57. Husi H, Ward MA, Choudhary JS, Blackstock WP, Grant SG . Proteomic analysis of NMDA receptor-adhesion protein signaling complexes. Nat Neurosci 2000; 3: 661–669.

    Article  CAS  PubMed  Google Scholar 

  58. Predescu SA, Predescu DN, Timblin BK, Stan RV, Malik AB . Intersectin regulates fission and internalization of caveolae in endothelial cells. Mol Biol Cell 2003; 14: 4997–5010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Fatemi SH, Earle JA, Stary JM, Lee S, Sedgewick J . Altered levels of the synaptosomal associated protein SNAP-25 in hippocampus of subjects with mood disorders and schizophrenia. NeuroReport 2001; 12: 3257–3262.

    Article  CAS  PubMed  Google Scholar 

  60. Thompson PM, Egbufoama S, Vawter MP . SNAP-25 reduction in the hippocampus of patients with schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 2003; 27: 411–417.

    Article  CAS  PubMed  Google Scholar 

  61. Sokolov BP . Expression of NMDAR1, GluR1, GluR7, and KA1 glutamate receptor mRNAs is decreased in frontal cortex of “neuroleptic-free” schizophrenics: evidence on reversible up-regulation by typical neuroleptics. J Neurochem 1998; 71: 2454–2464.

    Article  CAS  PubMed  Google Scholar 

  62. Le Corre S, Harper CG, Lopez P, Ward P, Catts S . Increased levels of expression of an NMDARI splice variant in the superior temporal gyrus in schizophrenia. NeuroReport 2000; 11: 983–986.

    Article  CAS  PubMed  Google Scholar 

  63. Robinson PJ, Sontag JM, Liu JP, Fykse EM, Slaughter C, McMahon H et al. Dynamin GTPase regulated by protein kinase C phosphorylation in nerve terminals. Nature 1993; 365: 163–166.

    Article  CAS  PubMed  Google Scholar 

  64. Sontag JM, Fykse EM, Ushkaryov Y, Liu JP, Robinson PJ, Sudhof TC . Differential expression and regulation of multiple dynamins. J Biol Chem 1994; 269: 4547–4554.

    CAS  PubMed  Google Scholar 

  65. Kristiansen LV, Beneyto M, Haroutunian V, Meador-Woodruff JH . Changes in NMDA receptor subunits and interacting PSD proteins in dorsolateral prefrontal and anterior cingulate cortex indicate abnormal regional expression in schizophrenia. Mol Psychiatry 2006; 11: 737–747, 705.

    Article  CAS  PubMed  Google Scholar 

  66. Toyooka K, Muratake T, Tanaka T, Igarashi S, Watanabe H, Takeuchi H et al. 14-3-3 protein eta chain gene (YWHAH) polymorphism and its genetic association with schizophrenia. Am J Med Genet 1999; 88: 164–167.

    Article  CAS  PubMed  Google Scholar 

  67. Middleton FA, Peng L, Lewis DA, Levitt P, Mirnics K . Altered expression of 14-3-3 genes in the prefrontal cortex of subjects with schizophrenia. Neuropsychopharmacology 2005; 30: 974–983.

    Article  CAS  PubMed  Google Scholar 

  68. Hennah W, Tuulio-Henriksson A, Paunio T, Ekelund J, Varilo T, Partonen T et al. A haplotype within the DISC1 gene is associated with visual memory functions in families with a high density of schizophrenia. Mol Psychiatry 2005; 10: 1097–1103.

    Article  CAS  PubMed  Google Scholar 

  69. Thomson PA, Wray NR, Millar JK, Evans KL, Hellard SL, Condie A et al. Association between the TRAX/DISC locus and both bipolar disorder and schizophrenia in the Scottish population. Mol Psychiatry 2005; 10: 657–668, 616.

    Article  CAS  PubMed  Google Scholar 

  70. Goff DC, Coyle JT . The emerging role of glutamate in the pathophysiology and treatment of schizophrenia. Am J Psychiatry 2001; 158: 1367–1377.

    Article  CAS  PubMed  Google Scholar 

  71. Collier DA, Li T . The genetics of schizophrenia: glutamate not dopamine? Eur J Pharmacol 2003; 480: 177–184.

    Article  CAS  PubMed  Google Scholar 

  72. Zarate Jr CA, Singh J, Manji HK . Cellular plasticity cascades: targets for the development of novel therapeutics for bipolar disorder. Biol Psychiatry 2006; 59: 1006–1020.

    Article  CAS  PubMed  Google Scholar 

  73. Toro C, Deakin JF . NMDA receptor subunit NRI and postsynaptic protein PSD-95 in hippocampus and orbitofrontal cortex in schizophrenia and mood disorder. Schizophr Res 2005; 80: 323–330.

    Article  PubMed  Google Scholar 

  74. Hall PA, Jung K, Hillan KJ, Russell SE . Expression profiling the human septin gene family. J Pathol 2005; 206: 269–278.

    Article  CAS  PubMed  Google Scholar 

  75. Murphy KC, Jones LA, Owen MJ . High rates of schizophrenia in adults with velo–cardio–facial syndrome. Arch Gen Psychiatry 1999; 56: 940–945.

    Article  CAS  PubMed  Google Scholar 

  76. Weksberg R, Stachon AC, Squire JA, Moldovan L, Bayani J, Meyri S et al. Molecular characterization of deletion breakpoints in adults with 22q11 deletion syndrome. Hum Genet 2007; 120: 837–845.

    Article  CAS  PubMed  Google Scholar 

  77. Tunbridge EM, Weinberger DR, Harrison PJ . A novel protein isoform of catechol O-methyltransferase (COMT): brain expression analysis in schizophrenia and bipolar disorder and effect of Val158Met genotype. Mol Psychiatry 2006; 11: 116–117.

    Article  CAS  PubMed  Google Scholar 

  78. Kremer BE, Haystead T, Macara IG . Mammalian septins regulate microtubule stability through interaction with the microtubule-binding protein MAP4. Mol Biol Cell 2005; 16: 4648–4659.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Beites CL, Xie H, Bowser R, Trimble WS . The septin CDCrel-1 binds syntaxin and inhibits exocytosis. Nat Neurosci 1999; 2: 434–439.

    Article  CAS  PubMed  Google Scholar 

  80. Beites CL, Campbell KA, Trimble WS . The septin Sept5/CDCrel-1 competes with alpha-SNAP for binding to the SNARE complex. Biochem J 2005; 385: 347–353.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Kinoshita A, Noda M, Kinoshita M . Differential localization of septins in the mouse brain. J Comp Neurol 2000; 428: 223–239.

    Article  CAS  PubMed  Google Scholar 

  82. Caltagarone J, Rhodes J, Honer WG, Bowser R . Localization of a novel septin protein, hCDCrel-1, in neurons of human brain. NeuroReport 1998; 9: 2907–2912.

    Article  CAS  PubMed  Google Scholar 

  83. Kinoshita A, Kinoshita M, Akiyama H, Tomimoto H, Akiguchi I, Kumar S et al. Identification of septins in neurofibrillary tangles in Alzheimer's disease. Am J Pathol 1998; 153: 1551–1560.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Choi P, Snyder H, Petrucelli L, Theisler C, Chong M, Zhang Y et al. SEPT5_v2 is a parkin-binding protein. Brain Res Mol Brain Res 2003; 117: 179–189.

    Article  CAS  PubMed  Google Scholar 

  85. Whatley SA, Curti D, Das GF, Ferrier IN, Jones S, Taylor C et al. Superoxide, neuroleptics and the ubiquinone and cytochrome b5 reductases in brain and lymphocytes from normals and schizophrenic patients. Mol Psychiatry 1998; 3: 227–237.

    Article  CAS  PubMed  Google Scholar 

  86. Prince JA, Blennow K, Gottfries CG, Karlsson I, Oreland L . Mitochondrial function is differentially altered in the basal ganglia of chronic schizophrenics. Neuropsychopharmacology 1999; 21: 372–379.

    Article  CAS  PubMed  Google Scholar 

  87. Maurer I, Zierz S, Moller H . Evidence for a mitochondrial oxidative phosphorylation defect in brains from patients with schizophrenia. Schizophr Res 2001; 48: 125–136.

    Article  CAS  PubMed  Google Scholar 

  88. Marchbanks RM, Ryan M, Day IN, Owen M, McGuffin P, Whatley SA . A mitochondrial DNA sequence variant associated with schizophrenia and oxidative stress. Schizophr Res 2003; 65: 33–38.

    Article  CAS  PubMed  Google Scholar 

  89. Kato T, Kato N . Mitochondrial dysfunction in bipolar disorder. Bipolar Disord 2000; 2: 180–190.

    Article  CAS  PubMed  Google Scholar 

  90. Mah L, Zarate Jr CA, Singh J, Duan YF, Luckenbaugh DA, Manji HK et al. Regional cerebral glucose metabolic abnormalities in bipolar II depression. Biol Psychiatry 2007; 61: 765–775.

    Article  CAS  PubMed  Google Scholar 

  91. Sun X, Wang JF, Tseng M, Young LT . Downregulation in components of the mitochondrial electron transport chain in the postmortem frontal cortex of subjects with bipolar disorder. J Psychiatry Neurosci 2006; 31: 189–196.

    PubMed  PubMed Central  Google Scholar 

  92. Bezchlibnyk YB, Wang JF, McQueen GM, Young LT . Gene expression differences in bipolar disorder revealed by cDNA array analysis of post-mortem frontal cortex. J Neurochem 2001; 79: 826–834.

    Article  CAS  PubMed  Google Scholar 

  93. Iwamoto K, Bundo M, Kato T . Altered expression of mitochondria-related genes in postmortem brains of patients with bipolar disorder or schizophrenia, as revealed by large-scale DNA microarray analysis. Hum Mol Genet 2005; 14: 241–253.

    Article  CAS  PubMed  Google Scholar 

  94. Ryan MM, Lockstone HE, Huffaker SJ, Wayland MT, Webster MJ, Bahn S . Gene expression analysis of bipolar disorder reveals downregulation of the ubiquitin cycle and alterations in synaptic genes. Mol Psychiatry 2006; 11: 965–978.

    Article  CAS  PubMed  Google Scholar 

  95. Higgs BW, Elashoff M, Richman S, Barci B . An online database for brain disease research. BMC Genomics 2006; 7: 70.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Webster MJ, Knable MB, Johnston-Wilson N, Nagata K, Inagaki M, Yolken RH . Immunohistochemical localization of phosphorylated glial fibrillary acidic protein in the prefrontal cortex and hippocampus from patients with schizophrenia, bipolar disorder, and depression. Brain Behav Immun 2001; 15: 388–400.

    Article  CAS  PubMed  Google Scholar 

  97. Toro CT, Hallak JE, Dunham JS, Deakin JF . Glial fibrillary acidic protein and glutamine synthetase in subregions of prefrontal cortex in schizophrenia and mood disorder. Neurosci Lett 2006; 404: 276–281.

    Article  CAS  PubMed  Google Scholar 

  98. Inagaki M, Gonda Y, Nishizawa K, Kitamura S, Sato C, Ando S et al. Phosphorylation sites linked to glial filament disassembly in vitro locate in a non-alpha-helical head domain. J Biol Chem 1990; 265: 4722–4729.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Post-mortem brains were donated by the Stanley Foundation Brain Bank Consortium courtesy of Drs Llewellyn B Bigelow, Juraj Cervenak, Mary M Herman, Thomas M Hyde, Joel Kleinman, Jose D Paltan, Robert M Post, E Fuller Torrey, Maree J Webster and Robert Yolken. We also acknowledge the contribution of the SMRI in providing access to the Stanley Genomic Database. We thank Professor Peter Hall, Department of Pathology, Queens University Belfast, for his useful and insightful discussions. In addition, we thank Lance Hudson for technical assistance in 2-DE image analysis. Access to and use of MS instrumentation of Conway Institute is gratefully acknowledged and we thank Dr Niaobh O’Donoghue, Kaspar Pedersen and Kieran Wynne for their technical assistance in mass spectrometry. Additionally, we thank Matt Sullivan and the proteomics informatics group (http://proteomics.ucd.ie) for use of their Proline software. This work was funded by a Wellcome Trust project award to DRC, The Stanley Medical Research Institute and Science Foundation Ireland under Grant no. 04/RPI/B499 to MJD. RW received financial support from ARC and MRC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D R Cotter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pennington, K., Beasley, C., Dicker, P. et al. Prominent synaptic and metabolic abnormalities revealed by proteomic analysis of the dorsolateral prefrontal cortex in schizophrenia and bipolar disorder. Mol Psychiatry 13, 1102–1117 (2008). https://doi.org/10.1038/sj.mp.4002098

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.mp.4002098

Keywords

This article is cited by

Search

Quick links